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Abstract:
(Near-field Acoustic Holography, Audio Production, Guitar)

In recording studios, the placement of microphones to record an acoustic guitar is very much 
subjected to trial and error and audio engineer preference. In order to make more informed 
microphone placement decisions, Near-field Acoustic Holography is used to study the sound 
pressures of the guitar. This technique involves solving the integral formulation of the Helmholtz 
equation over the surface of the guitar. By measuring the acoustic pressures surrounding the 
guitar, an inverse problem can be solved to derive the pressures on the surface of the guitar. 
Then, the surface pressures are used to study the pressure propagations in the far-field. Using the 
superposition of waves principle, chords played on the guitar can be studied by summing the 
pressure waves of the three notes that make a chord. Studying the wave fields are then used to 
either validate current microphone techniques, or require new microphone placements and 
patterns.
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Introduction: Motivation for Study

The guitar is arguably one of the most diverse instruments in the musical family. First of all,  

most instruments are only seen in a few musical genres. For example, the cello is usually only seen as a 

classical music instrument, while the saxophone is seen primarily as a jazz instrument. The guitar is the 

only instrument, with the exception of the keyboard, to be very prominent in a diverse range of musical 

styles, from classical to heavy metal. Because of the guitar's popularity in these styles, it is the only 

instrument, again with the exception of the keyboard, to have a variety of shapes and sounds. The 

guitar family is subdivided into three branches: nylon-stringed guitars, steel-stringed guitars, and 

electric guitars. Within these three branches are even more subdivisions, with each guitar model 

creating a unique perspective on both the aesthetic portions and the sonic qualities of the guitar. The 

broad existence of guitar shapes and sounds creates an opportunity for a researcher to study how all of 

these variations can change the sound.

Another unique feature of the guitar that separates it from the other instruments is its ability to 

play both melodic (one note at a time) and polyphonic (multiple notes at one time) lines. This is in  

direct contrast to a purely monophonic instrument, such as the flute, which plays only one note at a 

time. In more contemporary styles, such as rock and country, the guitar plays a more accompanying 

role by providing a harmonic structure, in the form of chords, to a piece of music.

Because the guitar has many characteristics, it is important to limit research to one less-known 

characteristic. As a guitar player and audio engineer, I have decided to focus on the sound radiation of 

the acoustic guitar and how this affects microphone placement techniques. In the music and audio 

engineering world, the advice given to new engineers on how to mic a guitar is to “use your ears.” 

Miking an acoustic guitar is then subjected to what kind of guitar it is, how the person is playing it, and 

what the audio engineer running the session thinks is a good guitar sound. With many variables to think 

about, new audio engineers quickly become overwhelmed with the infinite amount of ways to mic a 
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guitar. Like learning how to play an instrument, it is only through experience of miking guitars and 

developing a good ear that you then become good at it. 

Therefore, I want to use mathematical techniques to help aid decisions on microphone 

placements around a guitar. Since guitarists usually play chords in the popular genres of music, the aim 

of my research is to investigate what a pressure field surrounding a guitar would be if a chord was 

played. Using the pressure field data, one can then determine whether current microphone placement 

techniques are validated, or if new microphone techniques will provide a more optimal sound. The 

outcome can then be used to help aid the engineer on where to place microphones. The subjectivity of 

microphone placements for a guitar is then lessened with mathematical certainty. In addition, it is very  

important for the implementation to be cost-effective and time efficient, so that studios and audio  

engineers are more willing to implement my research into their recording sessions. With all of these 

ideas in mind, I decided to use the mathematical technique Near-field Acoustic Holography (NAH) to 

find the acoustic pressures around the guitar. NAH is primarily used to study complex sound sources, 

such as jets and automobiles, and for reasons to be discussed, provides an excellent way to measure the 

pressures of an acoustic guitar. In the following chapters, I will first describe what is known about the 

guitar and recording techniques, then what NAH is and how it can be implemented. I will then 

implement NAH for the guitar and show the conclusions, ending with ideas for more optimal 

microphone placements and future research ideas.
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Chapter 1: Prior Studies of the Guitar

1.1 Empirical and Analytical Studies

Many physical properties of the guitar have been extensively studied.1,2 These studies range 

from physically observing how guitars work to complete mathematical interpretations. Most of these 

studies have two purposes. The first is to aid in guitar construction. This is particularly important since 

many guitars are being mass produced in factories. In order for a guitar to be consistent with another of 

the same brand, constant building habits must be in order, and therefore an understanding of how the 

guitar physically behaves is required. The second purpose is to mathematically model a guitar so that 

the sound can be artificially reproduced. Since the development of MIDI in the 1980's, artificially 

reproduced instruments have become popular as an inexpensive substitute to live musician 

performances on a recording.3 Many developments are materializing in the modeling field to produce 

accurate sounds so that the listener cannot tell the difference between a real and artificially reproduced 

instrument.

In regards to engineering the guitar, many of the physical properties of the guitar are discussed 

in the book Engineering the Guitar by Richard French. When studying the physics of the guitar, one 

must first consider the strings and how the strings interact with the guitar body. This is a fundamental 

property shared by all guitars. “All guitars, no matter the type, have components in common and are 

subject to the same types of loads.”4 The strings exert a tremendous amount of tension, and French goes 

into mathematical detail on how string forces and tension affect the guitar. This is a very important part  

in guitar construction and must not be overlooked because the design must be able to withstand and 

hold the tension of the strings. 

1 Richard Mark French, Engineering the Guitar: Theory and Practice (New York: Springer Science, 2009).
2 Daniel Russell, “Acoustics and Vibrations of Guitars,” Penn State Acoustics, 

http://www.acs.psu.edu/drussell/guitars.html (accessed March 5, 2012).
3 David Miles Huber and Robert E. Runstein, Modern Recording Techniques 7th Edition (Oxford: Focal Press, 2010), 309.
4 French, Engineering the Guitar: Theory and Practice, 43.

3



“The strings must be brought to the correct tension for the instrument to be in tune, 
so the neck and body must resist the resulting compressive load. In addition, there 
are dynamic loads when the instrument is played. Finally, there are forces generated 
by temperature and humidity changes. While these might not be the most obvious 
sources of loading, they are a very common source of structural failure. It makes 
sense, then, to explore the structure of guitars and how they are designed to be 
strong enough to withstand both playing and environmental loads while being light 
enough to radiate sound.”5 

While optimizing the tonal qualities of a guitar is very important, the guitar must also be 

playable. In regards to designing a guitar neck, “The neck also has to have a profile that makes it 

comfortable to play; it cannot be so wide or thick that it is difficult to grasp, nor so narrow or shallow 

that it is difficult to play.”6 Sometimes, most luthiers must go through a give and take between 

optimization of sound and playability. 

The part of the guitar that aids the body in holding the string tension is the bracing pattern. “The 

purpose of bracing is to increase the stiffness of the top plate enough for it to withstand string tension 

without making the plate so stiff or heavy that it can't respond to the string motion.”7 Many bracing 

patterns exist for the guitar, and it has a substantial impact on the tonal qualities. While most of the  

bracing designs evolved empirically from trial and error, some guitars are built analytically by studying 

the underlying physics of how guitar bodies vibrate, and are designed so that the body will respond in a 

particular way at different frequencies. An example of an analytical bracing pattern is the Kasha-

Schneider pattern. The bracing pattern is asymmetric, and is intended to match the bridge to the 

mechanical impedance of the soundboard.8 Another important aspect of the guitar body is the 

construction material. “Traditionally, all guitars have been made out of wood. Unlike most violin  

makers, guitar makers have been quite willing to make instruments from just about any wood 

available.”9 The most popular woods for the top plate are spruce and cedar, while the popular woods for 

5 Ibid., 43.
6 Ibid., 43.
7 Ibid., 64.
8 Ibid., 65.
9 Ibid., 93.
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the back plate and sides are rosewood, maple, and mahogany.10 

The next important study of the physics of guitars is how it radiates sound. This has been mostly 

studied by observing the modes, or the resonant frequencies, of the guitar. These modes vary in shape 

and form because there are so many variations on guitar designs. “Generalizing mode shapes is difficult 

since there is so much variation in the design of acoustic guitars.”11 Dr. Daniel Russell has done many 

experimental observations on the modes of guitars. Russell has investigated the modes of traditional 

shaped electric guitars, non-traditional shaped electric guitars, and acoustic guitars. To study the modes,  

an impact hammer was used to drive the guitar to a resonate state, and an accelerometer was used to 

gather the data. The data shows that at low frequencies, a major portion of the guitar vibrates, and the 

front and back plates vibrate out of phase with each other. In the middle frequency modes (223Hz-

315Hz), the front and back plates vibrate in phase with each other, and there are more surface nodal 

lines present than the lower frequencies. At the high frequency modes (>385Hz), more surface nodal 

lines are present, with parts of the guitar vibrating out of phase with other parts. The out of phase 

vibrational patterns make the guitar an ineffective radiator of sound at high frequencies.12

In addition to physically studying the guitar through observation, many attempts on 

mathematically modeling the guitar have been made.13,14 Mathematically describing a guitar provides 

consistency in guitar building, a means to artificially create guitar sounds, and it assists in designing 

more optimized guitar models. However, like many complex systems, mathematically modeling the  

guitar is very challenging because of the complexity of coupling and solving the many relevant 

equations. “Historically, stringed instruments have been designed empirically, and progress on 

describing them using mathematical models was slow until the mid 20 th century. Stringed musical 

10 Ibid., 93.
11 Ibid., 118.
12 Russell, “Acoustics and Vibrations of Guitars.”
13 Gregoire Derveaux et al., “Numerical Simulation of a Guitar,” Computers and Structures 83 (2005).
14 Giuseppe Cuzzucoli et al., “A Physical Model of the Classical Guitar, Including the Player's Touch,” Computer Music  

Journal 83, no. 2 (1999).
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instruments pose a surprisingly difficult challenge to the would-be analyst.”15 The two big papers that 

have dealt with modeling the guitar are “Numerical Simulation of a Guitar” by Gregoire Derveaux, and 

“A Physical Model of the Classical Guitar, Including the Player's Touch” by Giuseppe Cuzzucoli. 

In “Numerical Simulation of a Guitar,” Derveaux studies the guitar by solving a mathematical  

model numerically. Derveaux's approach does not directly integrate measured data into his method. 

Derveaux makes many assumptions: the amplitudes of vibration are small, which justify a linear 

model; the body has no thickness and the neck is neglected; the coupling between the string and the air  

is neglected; only the soundboard vibrates; only the transverse polarization of the string is considered, 

the in-plane displacement of the string (parallel to the soundboard) is neglected; and the string is  

excited with an idealized pluck. Therefore, the unknowns are the vertical displacement of the string, the 

vertical displacement of the soundboard, the acoustic pressure, and the acoustic velocity field. To solve 

for these unknown variables, equations for the string, soundboard, and the air are introduced and 

coupled so that the string equation results are the input for the soundboard equations, and so on. 

Derveaux then sets up the algorithm. First the system is at rest, and the string is under normal tension. 

Then, Derveaux uses the 1-D wave equation with a force exerted on the right-hand side of the string to 

describe how the string vibrates. The vertical force of the string is then used as input into the equations 

describing the flexural displacement of the soundboard. Acoustic radiation equations can then be used 

to translate the vibration of the plate to acoustic pressures in the air. Because the guitar is not a simple  

domain and the equations are not easy to solve, finite element methods are used. Also, since this 

problem is not time-periodic, the time variable is also discretized. When the algorithm was 

implemented, the numerical model agreed with experimental analysis on the modes. According to 

Derveaux, “Up to our knowledge, this is the first modeling of the instrument which involves the whole 

vibroacoustical behavior from the initial pluck to the 3D acoustic model.”16 An interesting note about 

15 French, Engineering the Guitar, 131.
16 Derveaux, “Numerical Simulation of a Guitar,” 124. 
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this model is that, since it includes the time variable, it also shows how the guitar body changes over 

time.

In the paper “A Physical Model of the Classical Guitar, including the Player's Touch,” 

Cuzzucoli had two goals. The first was to implement how the guitarist plucks the string. This idea is 

very important because the performer's approach to plucking the string substantially affects the sound 

quality of the instrument. Many musical pieces require that the guitarist pluck the strings in different  

ways so that tonal variations will “liven” the piece. In addition, tonal optimization can be achieved by 

plucking the guitar with the right combination of flesh and nail at a particular angle of attack, and with  

the right attack and release times. 

This article was published in the Computer Music Journal, so Cuzzucoli's second goal in his 

paper was to develop a model with the intention to artificially reproduce a guitar sound on a computer.  

Many musicians have differing criticisms on artificially reproduced sounds. However, most musicians 

agree that reproduced instruments sound close to a real instrument, but qualities and features of the 

sound give away that it is indeed artificial. Most of this comes from the lack or un-incorporation of 

how the performer affects the instrument. By taking the player's touch into account, a more realistic 

guitar model can be achieved. Cuzzucoli uses the same algorithm and equations as Derveaux, except 

Cuzzucoli takes into account computer reproduction methods of sound, such as sampling. In addition, 

Cuzzucoli focuses more on the initial pluck interaction, since that is where the player's touch is present.  

Cuzzucoli takes into account five parameters that affect how the string is plucked: the position 

of the plucking point along the string; the manner in which the string is excited; the manner in which 

the string is released; the interaction between the flesh or the nail and the vibrating string before the 

attack; and the initial displacement of the string resulting from the plucking force. “A realistic  

reproduction of the guitar sound can only result from a physical model that describes the player-
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instrument interaction by taking into account the resources that are under the player's control.” 17 

Cuzzucoli then implements mathematical models that describe and incorporate the above five  

parameters.

Through empirical analysis, the many features of the guitar, such as bracing, wood choice, and 

body design have been studied and documented. In addition, purely mathematical studies, such as 

Derveaux's complete model of the guitar and Cuzzucoli's version of the model with the added player's 

touch, have provided many insights on the physical and tonal properties of the guitar. While much is 

known about guitars, the previous studies do not generalize to everybody's guitars. In addition, the 

above studies do not give enough information, nor is a practical approach, to determine microphone 

placements for an acoustic guitar.

1.2 Recording Techniques

The art of sound recording and audio engineering is a very subjective art, with more guidelines 

than established rules.18 In a recording situation, the audio engineer must make decisions on how to 

achieve the most high-quality sound. The engineer must then make decisions on choices of room 

environments, instruments, microphones, microphone placements, and pre-amplifiers. In addition, the 

engineer must make decisions on how to use effects, such as reverbs, equalizers, and compressors, 

effectively to create the best possible sound. It is easy to see that many decisions fall upon the engineer,  

and expert knowledge on these many factors and parameters help to make decisions easier and faster. 

However, knowing how microphones work and suggested microphone placements act as template to 

help the engineer get started, and then the engineer can customize the choices to get the desired sound.

First of all, a microphone is a transducer, which “changes one form of energy (sound waves) 

17 Cuzzucoli,“A Physical Model of the Classical Guitar, Including the Player's Touch,” 60.
18 Huber, Modern Recording Techniques, 111.
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into another corresponding form of energy (electrical signals).”19 Excluding ribbon microphones, two 

main types of microphones exist, dynamic and condensers. A dynamic microphone consists of a 

diaphragm attached to a magnet, which is wrapped with a wire coil. “Whenever an acoustic pressure 

wave hits the diaphragm’s face, the magnet is displaced in proportion to the amplitude and frequency of 

the wave. In doing so, an analogous electrical signal is induced into the coil and across the output leads, 

producing an analog output signal.”20 Condenser microphones, on the other hand, operate by having 

two electrically charged plates, with one connected to the diaphragm. “When sound acts upon the 

movable diaphragm, the varying distance between the plates will likewise create a change in the 

device's capacitance.”21 This change in capacitance creates a change in voltage, which creates an output 

signal with the respective frequency and amplitude. Therefore, microphones largely respond to pressure 

waves. 

Pressure can be described in two ways, in pascals and in decibels. The pascal is a measurement 

of the change in air density from the equilibrium density at a given point in space.22 When a sound 

wave moves through the air, the areas where the air is compressed has positive pascal values, since 

there is a positive change in air density from the equilibrium pressure. In the areas of rarefaction, the 

pascal value is negative, since there is a negative change in air density from the equilibrium pressure.  

The pascal magnitude can be seen as the amplitude of a wave. If the magnitude of pascal measurement 

is high, then the change in air density is high, resulting in a loud sound. However, pascal values have a 

big range, so the decibel was introduced to make the numbers more manageable. The equation for the 

decibel level, or sound pressure level (SPL), is

SPL=20 log10(
Pm

Pref

) (1),

19 Ibid., 111.
20 Ibid., 113.
21 Ibid., 115.
22 Lawrence E. Kinsler et al., Fundamentals of Acoustics, Third Edition (New York: John Wiley & Sons, 1982), 100.
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where Pm  is the measured pressure in pascals and P ref=0.00002 pascals.23

There are many suggested guidelines for microphone choices and placements. Usually a 

condenser microphone is used to mic an acoustic guitar because it has a higher transient and frequency 

response than a dynamic microphone, giving it the ability to pick up more of the guitar's harmonic 

content. In terms of distance, the engineer has two basic choices, distant miking or close miking. 

Distant miking is defined as a distance of 3 feet or more. David Huber, in the book Modern Recording 

Techniques, states that distant miking “can pick up a large portion of a musical instrument, thereby 

preserving the overall tonal balance of that source.”24 In addition, distant miking “allows the room's 

acoustic environment to be picked up with the direct sound signal.”25 In contrast, close miking is 

defined as a distance between 1 inch to 3 feet from a sound source. Huber states that close miking 

“creates a tight, present sound quality, and it effectively excludes the acoustic environment.” 26

In addition, the engineer has a decision to perform mono or stereo miking. Mono miking 

involves recording with only one microphone. Therefore, the engineer must place it in a spot which has 

the best tonal balance. In stereo miking, two main techniques are used, a spaced pair and a x/y pair. In a 

spaced pair, two microphones are placed in a room and spaced apart. “This technique places the two 

microphones anywhere from only a few feet to more than 30 feet apart and uses time and amplitude 

cues in order to create a stereo image.”27 However, this microphone technique has one drawback, phase 

issues. “The primary drawback to this technique is the strong potential for phase discrepancies between 

the two microphones due to the differences in the sound's arrival time at one mic relative to the other.” 28 

However, a x/y pair is a stereo microphone technique that does not suffer from phase problems. The x/y 

technique involves taking two microphones and placing their grills as close as possible, with an angle 

23 Huber, Modern Recording Techniques, 60.
24 Ibid., 133.
25 Ibid., 133.
26 Ibid., 135.
27 Ibid., 142.
28 Ibid., 142.
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between 90 and 135 degrees. “X/y stereo miking is an intensity-independent system that uses only the 

cue of amplitude to discriminate direction. In addition, due to their proximity, no appreciable phase  

problems arise.”29 The midpoints of the two microphones are usually aimed at the sound source, and 

the two microphones are panned left and right to create a stereo image.

With these techniques in mind, suggested microphone placement techniques exist for the 

acoustic guitar. “A balanced pickup can often be achieved by placing a microphone, or a x/y pair, at a  

point slightly off axis to the sound-hole and above or below the sound hole at a distance of between 6 

inches and 1 foot.”30 In addition, there are spaced microphone techniques for the guitar. They usually 

comprise of one microphone aimed at the 12th fret and the other aimed somewhere around the bridge or 

lower-body.31 These microphones are usually at a distance of 6 inches to a foot from the guitar.

1.3 My Research Contribution

Many works have been done to study guitar modes and how guitars vibrate. In addition, there 

are suggested guidelines for microphone placement techniques. However, different guitars have 

different vibrational patters; that is why different brands of guitars have different sonic characteristics.  

Therefore, microphone placements may change depending on what kind of guitar is used in recording 

sessions. In addition, modal studies performed by Dr. Russell and the mathematical models derived by 

Derveaux only work for observing how a guitar vibrates for one frequency. Because a guitarist usually 

plays chords, the way the guitar surface vibrates and radiates sound must be studied to determine 

optimal microphone placements. My research method is to then use the mathematical technique Near-

field Acoustic Holography (NAH). NAH is a method, in contrast to previous numerical techniques, that 

integrates experimental data into the algorithm for predicting the acoustic pressures of a vibrating 

29 Ibid., 142.
30 Ibid., 152.
31 Paul White, “Recording Acoustic Guitar,” Sound on Sound, August 2001, 

http://www.soundonsound.com/sos/aug01/articles/recacgtr0801.asp (accessed March 24, 2012).
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source. This technique provides an efficient way to derive the pressures on the guitar surface and the 

pressures at any distance away from the guitar. By using the superposition of waves principle from 

physics with NAH, one can then use the data to analyze chords.

Chapter 2: Near-field Acoustic Holography (NAH)

2.1 History and Development of NAH

NAH is a powerful mathematical tool that is used to observe how a source is vibrating.32,33,34,35 

This is done by taking pressure measurements on a hologram above the surface. A hologram is defined 

as a fictitious two-dimensional surface surrounding a three-dimensional object of interest which 

contains pressure information. Then, the Helmholtz equation is used to derive the source pressures of a 

vibrating object. “On a fundamental level, the great utility of holography arises from its high 

information content, that is, data recorded on a two-dimensional surface (the hologram) may be used to 

reconstruct an entire three-dimensional wave field, with the well-known result of obtaining three-

dimensional images.”36 Not only does NAH produce a three-dimensional wave field, other quantities 

can be calculated from it. “In NAH, the recording of the sound pressure field on a two-dimensional 

surface can be used to determine not only the three-dimensional sound pressure field but also the 

particle velocity field, the acoustic vector intensity field, the surface velocity field, the surface velocity  

and intensity of a vibrating source, etc.”37 The high content of information from only measuring points 

on a two-dimensional surface make NAH an efficient and valuable way to measure and predict sound 

32 J.D. Maynard et al., “Nearfield Acoustic Holography: I. Theory of Generalized Holography and the Development of  
NAH,” Journal of the Acoustical Society of America 78, no. 4 (1985).

33 Mingsian R. Bai, “Application of BEM (Boundary Element Method)-Based Acoustic Holography to Radiation Analysis 
of Sound Sources with Arbitrarily Shaped Geometries,” Journal of the Acoustical Society of America 92, no. 1 (1992).

34 G.T. Kim et al., “3-D Sound Source Reconstruction and Field Prediction Using the Helmholtz Integral Equation,” 
Journal of Sound and Vibration 136, no. 2 (1990).

35 Sean F. Wu, “Hybrid Near-field Acoustic Holography,” Journal of the Acoustical Society of America 115, no. 1 (2004).
36 J.D. Maynard, “Nearfield Acoustic Holography: I. Theory of Generalized Holography and the Development of NAH,”  

1395.
37 Ibid., 1395.
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radiation from a vibrating object. Techniques of implementing NAH have evolved over time, and now 

there exists techniques to achieve great accuracy for many types of vibrating surface domains.

NAH theory was thoroughly written and implemented in the paper “Nearfield Acoustic 

Holography: I. Theory of Generalized Holography and the Development of NAH,” by J. D. Maynard. 

In this paper, Maynard states the benefits and limitations of NAH. The benefits are described in the 

above paragraph; however, the limitations are the following: the hologram is recorded with single 

frequency radiation; the hologram is recorded with a reference wave for phase information; the 

wavelength of the radiation limits the spatial resolution of the reconstruction; a hologram which records  

a specific scalar field can only be used to reconstruct that same field; a known Green's function is used; 

and the field being measured obeys the wave equation.38 Maynard then develops Fourier-Transform-

Based NAH. This technique is very beneficial for easy geometric surfaces, such as planes and spheres 

(due to symmetry principles). Maynard then implements Fourier-Transform-Based NAH by studying a 

vibrating two-dimensional plate using a 16x16 array of transducers to measure the hologram.39 

Since Maynard's paper, many different mathematical techniques have been implemented to 

study all kinds of challenging sources. These techniques are summarized in the paper “Techniques for 

Implementing Near-field Acoustical Holography,” by Sean Wu. Wu states that there are three main 

techniques to implement NAH: Fourier-Transform-Based NAH, Boundary Element Method, and the 

Least Squares Method. The first technique, Fourier-Transform-Based NAH, is the method developed 

and used by Maynard. While computationally the easiest method to implement, the main requirement is  

that the geometry is either planar, spherical, or cylindrical. Wu states, “In practice, few structures have 

a level of constant coordinates. Therefore, the Fourier-Transform-Based NAH is limited in its 

applications.”40 

38 Ibid., 1396-1397.
39 Ibid., 1396-1413.
40 Sean F. Wu, “Techniques for Implementing Near-Field Acoustical Holography,” Sound and Vibration, February 2010, 

13.
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To handle more general geometries, Boundary Element Method-based NAH was developed. By 

taking the Helmholtz integral equation, discretizing the source surface, and performing the integrals in  

each discretized region, the boundary element method is an efficient technique to use on any general  

source that can be discretized. Wu states that the main advantages of the boundary element method are,  

“It allows for reconstruction of the acoustic quantities on an arbitrarily shaped structure, there are no 

restrictions on the locations of measurement points on a hologram surface as long as they conform to 

the contour of the target surface in a near field, there are no restrictions on the locations of 

reconstruction points, and it is applicable in both exterior and interior regions.”41 However, the 

boundary element method has one major limitation. “Since the acoustic quantities on an arbitrary  

surface are obtained using a spatial discretization, one must have a minimum number of nodes per 

wavelength to avoid distortions in reconstruction. For a complex structure such as a vehicle, the 

number of discrete nodes required to display surface acoustic quantities accurately may be huge.”42

Two papers have fully described and implemented the boundary element method, “Application 

of Boundary-Element Method Based Acoustic Holography to Radiation Analysis of Sound Sources 

with Arbitrarily Shaped Geometries” by Mingsian Bai, and “3-D Sound Source Reconstruction and 

Field Reprediction using the Helmholtz Integral Equation” by G.T. Kim. In the first paper, Bai derives 

the equations for the boundary element method technique. In addition, since the Helmholtz integral  

equation contain singularities, Bai derives a method so that the equation contains no singularities,  

making the boundary element method easier to solve. Bai's method is the method I chose to use, and a 

full formulation is in Section 2.4. Bai then tests boundary element method-based NAH on a pulsating 

sphere, a pulsating cylinder with two spherical end-caps, and a vibrating piston set in a rigid sphere. 

This method achieved accurate results.43 In the second paper, Kim also develops boundary element-

41 Ibid., 13.
42 Ibid., 13.
43 Bai, “Application of BEM (Boundary Element Method)-Based Acoustic Holography to Radiation Analysis of Sound 

Sources with Arbitrarily Shaped Geometries,” 533-549.
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based NAH. However, Kim focuses more on the discretization of the sound source. Kim states that to 

achieve the desired accuracy, the element dimensions should be less than a quarter of the wavelength of 

the measured frequency.44 Kim then uses NAH to study the vibration of a speaker cabinet.45 

The third technique used to implement NAH is the Least Squares method. According to Wu, 

“The least squares method, unlike the first two methods, does not seek an exact solution to the acoustic 

field generated by an arbitrary surface, but rather an approximation for an acoustic field using an 

expansion of the admissible basis functions with errors minimized by least squares.”46 While this 

method is simple and efficient to implement, Wu states that “the main limitation of least squares  

method is that there are no single set of coordinate systems that can provide a good approximation for 

all surface geometries.”47 In addition, Wu states in his paper “Hybrid Near-field Acoustic Holography,” 

that “test results also indicate that the least squares method is not ideal for a highly irregular surface 

due to a slow convergence of the expansion solution.”48

In addition, these methods have been combined to try to create more accurate results. This is 

shown in the paper “Hybrid Near-field Acoustic Holography,” by Wu. In this paper, Wu combines the 

boundary element method and the least squares method. Wu states, “this hybrid NAH is derived from a 

modified least squares method, which expands the acoustic pressure in terms of outgoing and incoming 

waves, and combines it with the boundary element method. Both the accuracy and efficiency of 

reconstruction are enhanced when the least squares method converges fast on the measurement 

surface.”49 Wu then uses hybrid NAH to study the vibration of an engine block.

44 Kim, “3-D Sound Source Reconstruction and Field Prediction Using the Helmholtz Integral Equation,” 251.
45 Ibid., 254.
46 Wu, “Techniques for Implementing Near-Field Acoustical Holography,” 13.
47 Ibid., 13.
48 Wu, “Hybrid Near-field Acoustic Holography,” 207.
49 Ibid., 208.
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2.2 Applications of NAH

So far, NAH has been used to solve for source pressures and velocities for many objects. As 

previously mentioned, G. Kim used NAH for a loudspeaker cabinet, Wu used NAH on an engine block, 

and Maynard used NAH on a vibrating plate. NAH, therefore, has been used as a tool to evaluate 

radiation of sound coming from an object, and is used primarily for noise control. In a broader context, 

boundary integral formulations used in BEM-based NAH are used to study scattering of waves from 

objects. In the publications of Dr. Alex Barnett50 and Dr. Mahadevan Ganesh51,  pressure fields formed 

by waves scattering from objects were studied by only discretizing the object surfaces and performing 

the boundary integrals.

In addition, NAH has been used to study a few musical instruments. The modes of a frame 

drum were studied using NAH by Gregoire Tronel.52 In addition, a violin was studied by Lily Wang. 

Because the guitar and violin are in the same musical family (chordophones), it is beneficial to see 

what the results of the violin were. “First, the top plate was found to be the dominant source of sound 

energy radiation from the violin. At low frequencies, diffraction of sound radiation from the top plate 

around the violin body produces far-field omnidirectional radiation. At higher frequencies, the regions 

of energy sources become more localized and are distributed asymmetrically on the violin body.” 53 In 

other words, different parts of the violin vibrate depending on the frequency. The guitar should do the 

same, meaning that different microphone techniques may have to be used if the performer is playing a 

variety of notes.

50 Alex Barnett et al., “A New Integral Representation for Quasi-Periodic Scattering Problems in Two Dimensions,” BIT 
Numerical Mathematics 51 (2011): 67-90.

51 Mahadevan Ganesh et al., “A Fully Discrete Galerkin Method for High Frequency Exterior Acoustic Scattering in Three  
Dimensions,” Journal of Computational Physics 230 (2011): 104-125.

52 Gregoire Tronel, “Near-field Acoustic Holography: The Frame Drum,” (Powerpoint Presentation, University of Illinois  
at Urbana-Champaign, 2010) 

53 Lily M. Wang et al., “Acoustic Radiation from Bowed Violins,” Journal of the Acoustical Society of America 110, no. 1 
(2001): 554.

16



2.3 Benefits of NAH

Without NAH, two approaches could be implemented to perform my research. The first 

approach is to empirically observe how my guitar vibrates using the methods of Dr. Russell. The 

second approach is to use mathematical models, like Derveaux, and adjust the equation parameters to 

those of my guitar. I decided not to use empirical methods because that requires the use of specific and 

expensive laboratory equipment. In order for my method to be adopted into the music industry, a cost-

effective approach must be taken. I also decided not to use Derveaux's method because the calculations 

are very laborious, and Derveaux had to make many assumptions. I decided to use NAH because by 

measuring pressures on a hologram, source pressures can be found. In addition, this data is unique to 

my guitar. NAH can also calculate pressure fields at any point surrounding the guitar. Therefore, any 

combination of close miking and distant miking positions can be found.

In reviewing all of the techniques of NAH, Dr. Sussman and I have agreed that the boundary 

element method is the best for our situation. We chose the boundary element method because only the 

mesh of the boundary is required, not a volume mesh, thus reducing the dimension size of the problem 

by 1. This technique also works well with arbitrary, difficult domains, like the surface of a guitar. We 

decided not to do the least squares method, which also reduces the dimension by 1, because the guitar 

body contains irregularities, such as sharp corners, curved surfaces, and a sound-hole on the top plate, 

so it would be more prone to convergence problems.54We also decided to not do any of the hybrid 

boundary element-least squares techniques because, in analyzing the methods, the degree of accuracy 

gained is not worth the computational cost of the added steps. The boundary element method should 

give us accurate results already, since we are dealing with relatively low frequency sounds, which are 

easier to get high resolution results than higher frequencies. Specifically, the main technique that I  

implemented is from Bai's paper. The main advantage of using his boundary element method-based 

54 Wu, “Hybrid Near-field Acoustic Holography,” 207.
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NAH is that he creates a system of equations in matrix form, which is easy to program, and the 

integrands do not contain singularities, which make integration techniques easy to implement.

2.4 Formulation of NAH

The equations for NAH are derived from the wave equation,

utt=c2∇2 u (2)

where c is the speed of the wave. Assuming that u is separable, 

u= p ( x⃗)T (t)  (3)

the separation of variables technique can be used to solve the wave equation. Plugging in eq.(3) into the 

wave equation, eq.(2), gives

p ( x⃗)T ' ' ( t)=c2∇ 2 p( x⃗)T ( t) (4). 

Simplifying gives 

T ' '( t)
c2 T (t)

=
∇ 2 p( x⃗)

p( x⃗)
=−k 2 (5).

Solving for T (t)  gives a second-order ordinary differential equation, 

 T ' ' (t )+ω2T (t)=0 , where ω=kc (6). 

Solving gives 

T (t)=Aeiω t+Be−iω t (7). 

This means that T is time-periodic. Solving for p (x)  gives

∇ 2 p( x⃗)+k2 p( x⃗)=0 where k=ω
c (8).

k is called the wavenumber. Eq.(8) is called the Helmholtz equation, and is the main equation for NAH. 

Because u in eq.(2) is time-periodic, the Helmholtz equation can also be derived from the wave 

equation by using the frequency-time Fourier transform pair. The Fourier transform pair is
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û( x , y , z ,ω)=∫
−∞

∞

u( x , y , z , t)eiω t dt (9) and u( x , y , z , t )= 1
2π∫−∞

∞

û (x , y , z ,ω)e−iω t d ω (10).

By substituting eq.(10) into the wave equation, eq.(2), one derives

1
2π ∫−∞

∞

∇ 2û (x , y , z ,ω)e−iω t d ω− 1

2π c2∫
−∞

∞
∂2

∂ t 2 [ û( x , y , z ,ω)e−iω t ]dω=0 (11)

By simplifying and taking the second partial derivative with respect to time in the second integral, one  

then derives

1
2π∫−∞

∞

e−iω t(∇2 û (x , y , z ,ω)+ω2

c 2 û (x , y , z ,ω))d ω=0 (12)

In order for the integral to equal zero, the integrand must be zero, giving

∇2 û (x , y , z ,ω)+k 2 û( x , y , z ,ω)=0 where k=ω
c (13), 

which is the Helmholtz Equation, eq.(8).

In NAH, the exterior Helmholtz equation is solved,

∇ 2 p+k 2 p=0 in +Ω (14), 

where Ω is the volume enclosed by the surface Γ and with Dirichlet conditions,

u( x , y , z)=ū  on Γ (15).

In order to solve the Helmholtz equation for exterior domains a condition on the solution is imposed, 

lim
r→∞

r( ∂ p
∂ r

+ikp)=0 (16).

This is called the Sommerfeld Radiation condition.55 This condition forces the solution, p, to approach 

zero as the waves get farther from the source (as r approaches infinity).

To understand how the solutions to the Helmholtz equation behave, it is beneficial to solve the 

equation in different dimensions. In one dimension, the Helmholtz equation is

d 2 p

dx2 +k 2 p=0 (17). 

55 Bai, “Application of BEM-Based Acoustic Holography,” 534.
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The characteristic equation to solve this 2nd order homogenous ordinary differential equation is 

λ 2+k 2=0 and λ=±ik (18).

 So, the solution to the 1-D Helmholtz equation is p (x)=Ae ikx+Be−ikx (19), where A and B are 

constants. If we assume that p (x) is a simple wave and that B = 0, A is the amplitude of the wave 

and the wavenumber k has a control over the frequency of the wave. By placing p (x) into eq.(3), 

and assuming that A=0 in the time equation, T, the solution to the wave equation becomes

u( x , t)=Ae i(kx−ω t) (20).

By taking the real part of u in eq.(20), 

u( x , t)=A cos(kx−ω t ) (21).

This solution is a traveling wave.

The Helmholtz equation in 2 dimensions is ∇ 2 p+k 2 p=0 , where the laplacian operator is

∇2= ∂2

∂ x 2+
∂2

∂ y 2 (22). 

It is natural to solve this equation in polar coordinates. Making the transformations, 

x=r cosθ and y=r sinθ (23), 

differentiation and the chain rule is used to derive the laplacian in polar coordinates.

∂ p
∂ x

=∂ p
∂ r

∂ r
∂ x

+∂ p
∂θ

∂θ
∂ x

 (24)

 
∂2 p

∂ x 2=
∂ p
∂ r

∂2 r

∂ x2+
∂ r
∂ x

( ∂
2 p

∂ r 2 +
∂2 p
∂r ∂θ

)+ ∂2θ
∂ x2

∂ p
∂θ

+∂θ
∂ x

( ∂
2 p

∂ r∂θ
+∂2 p

∂θ2 ) (25)

Similarly, 

∂ p
∂ y

=∂ p
∂ r

∂ r
∂ y

+∂ p
∂θ

∂θ
∂ y

(26)

 
∂2 p

∂ y2=
∂ p
∂ r

∂2 r

∂ y 2+
∂ r
∂ y

( ∂
2 p

∂ r2 +
∂2 p
∂ r∂θ

)+ ∂2θ
∂ y2

∂ p
∂θ

+∂θ
∂ y

( ∂
2 p

∂ r∂θ
+∂2 p

∂θ2 ) (27).
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The partial differential equations necessary to solve the above equation are

∂ r
∂ x

= x
r

, 
∂2 r

∂ x2=
1
r
− x2

r3=
x2+ y2−x 2

r3 = y 2

r3 (28), 

∂ r
∂ y

= y
r

, 
∂2 r

∂ y 2=
1
r
− y2

r3=
x2+y 2− y2

r3 = x2

r3 (29),

∂θ
∂ x

=− y

r 2 , 
∂2θ
∂ x2=

2xy

r4 (30),

∂θ
∂ y

= x

r2 , 
∂2θ
∂ y 2=

−2xy

r 4 (31).

By plugging the above partials into 
∂2 p

∂ x 2 and 
∂2 p

∂ y2 and adding the two terms, many cancelations 

result and the laplacian operator becomes 

∇ 2 p=∂2 p

∂r 2 +
1
r
∂ p
∂r

+ 1

r2

∂2 p

∂θ2 (32). 

So, the 2-D Helmholtz equation becomes

∂2 p

∂r 2 +
1
r
∂ p
∂r

+ 1

r2

∂2 p

∂θ2 +k 2 p=0 (33). 

Using separation of variables, P (r ,θ)=R (r)Θ(θ) , the 2-D Helmholtz equation becomes 

R' ' (r)Θ(θ)+1
r

R' (r)Θ(θ)+ 1

r 2 R(r)Θ' ' (θ)+k 2 R(r)Θ(θ)=0 (34). 

Dividing by R(r)Θ(θ) and separating the two functions, the above equation becomes 

Θ ' ' (θ)
Θ(θ)

= −r 2

R(r)
(R' ' (r)+1

r
R' (r))−r 2 k 2=−γ2 (35). 

The theta equation is a 2nd order ordinary differential equation,

 Θ ' ' (θ)+γ2Θ(θ)=0 (36), 

and has a periodic solution, 

Θ(θ)=Aeiγθ+Be−iγθ (37),

21



 where A and B are constants. To solve the nonlinear R equation, a substitution variable, ρ=kr , is 

introduced, making the R derivatives Rr(r)=Rρ
d ρ
dr
=k Rρ (38) and Rrr (r)=k 2 Rρρ (39). Plugging 

in the substitutions give Bessel's differential equation, 

Rρρ+
1
ρ Rρ+(1−

γ2

ρ2 )R=0 (40). 

This differential equation has a special solution called the Bessel function, written as J γ(ρ) .56 The 

Bessel function behaves very much like a damped cosine wave. The amplitude of the wave approaches 

0 as ρ approaches infinity (which happens as r approaches infinity). 

To visualize the complete solution of the 2-D Helmholtz equation, it is easy to imagine a 

stretched circular membrane, like a drum head, that has been struck with a beater. The R equation 

prescribes outward propagating waves from the beater, where the amplitude of the wave decays to zero 

as the wave gets farther from the beater. In addition, the theta equation makes the R waves oscillate  

around the beater. The two dimensional case is very interesting because not only are there waves 

propagating outward, but the waves are moving in a circular direction around the beater. 

The Helmholtz equation in 3 dimensions also has some interesting properties. By making the 

substitutions

x=r sin θcosϕ , y=r sinθ sin ϕ , z=r cosθ (41),

 and using the same techniques as the 2-D case, the Helmholtz equation becomes

p rr+
2
r

p r+
1

r2 [
1

sin2θ
pϕϕ+

1
sin θ

(sinθ pθ)θ]+k 2 p=0 (42).

 Separating only the r variable, p=R(r)Y (θ ,ϕ) , the 3-D Helmholtz equation then becomes,

56 Walter A. Strauss, Partial Differential Equations: An Introduction, Second Edition, (New Jersey: John Wiley & Sons, 
2008), 267.
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k 2 r2+
r 2 Rrr (r)+2r Rr(r)

R(r)
=−1

( 1

sin2θ
)Y ϕ ϕ(θ ,ϕ)+( 1

sin θ
)(sinθY θ(θ ,ϕ))θ

Y (θ ,ϕ)
=−γ2 (43)57

The R equation is then

Rrr+
2
r

Rr+(k
2− γ

r2 )R=0 (44). 

This equation is very similar to Bessel's equation. By making the substitution

w(r)=√r R (r) (45),

the R equation then becomes

wrr+
1
r

wr+(k
2−

γ+ 1
4

r2 )w=0 (46).

The solution is Bessel's equation of order √γ+1
4

, and is written J
√γ+1

4

(kr) .58 Therefore the 

solution to the R equation is 

R(r)=

J
√ γ+ 1

4

(kr)

√r
(47).

To solve the Y equation, Y is separated into Y (θ ,ϕ)=Θ(θ)Φ(ϕ) . Y becomes

Φ' ' (ϕ)
Φ(ϕ)

=−(
sin θ(sin θΘ(θ))θ

Θ(θ)
+γ sin2θ)=−α2 (48). 

The theta equation is then 

(sin θΘ(θ))θ
sin θ

+(γ− α2

sin2θ
)Θ(θ)=0 (49). 

This equation also has a special solution, called the Legendre function, written 

Θ(θ)=P l
α (cosθ) (50).59 

57 Ibid., 271.
58 Ibid.,  272.
59 Ibid., 273.
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This function is a polynomial that acts like the cosine function, and is harmonic. Φ(ϕ)  is a 2nd  order 

homogeneous ordinary differential equation

Φ(ϕ)+α2Φ(ϕ)=0 (51).

The solution is 

Φ(ϕ)=Ae iα ϕ+B e−iαϕ (52). 

If we assume that B = 0 in eq.(52), the full solution to the 3-dimensional Helmholtz equation is

p (r ,θ ,ϕ)=
J

l+
1
2

(kr )

√r
P l
α (cosθ)eiαϕ (53). 

It is very interesting to note that the waves oscillates around the sphere, (θ ,ϕ) , in addition to 

outward propagating waves. Also, the pressure becomes zero as r approaches infinity, satisfying the 

Sommerfeld Radiation condition, eq.(16).

The above solutions to the 1-D, 2-D, and 3-D Helmholtz equations are over simple geometries. 

However, the guitar is not a simple geometric shape. Therefore, it is appropriate to use numerical 

approximation techniques to solve the Helmholtz equation. The approximation technique that will be  

used is the boundary element method. The boundary element method is preferred over other 

techniques, such as the finite element method, because the boundary element method takes a 3 

dimensional problem and reduces it to a 2 dimensional problem. Utilizing Green-Gauss' theorem, the 

boundary element method applied to the Helmholtz equation states that if the solution and the solution  

gradient on the surface of a vibrating object is known, then solutions can be calculated anywhere 

around the surface of the vibrating object. This is an extremely powerful statement because pressures 

can be calculated for any point outside of the guitar body, and is one of the main motivating factors for 

choosing the boundary element method. Two steps are used to implement the boundary element 

method. First, the Helmholtz equation is multiplied by a weighting function and transformed to an 
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integral problem. Then the source surface is discretized into triangular elements and the integrals are  

performed on each triangle.

First, a weighting function is chosen. The weighting function, W, is chosen such that it satisfies 

the inhomogeneous point-source Helmholtz equation, 

∇2 W+k 2 W=δ(ξ−x , η−y ,ζ−z) (54).60

The delta function, δϵ( x , y , z) , is defined as a function which is constant within a sphere of radius 

ϵ centered at the origin, zero outside the sphere, and ∫ δϵ=1 . Then the Dirac delta function is

δ(x , y , z)=lim
ϵ→ 0

δϵ (55)

The Dirac delta function, δ(ξ−x ,η− y ,ζ− z) , has some interesting properties 

δ(ξ−x ,η− y ,ζ−z)=0 if ( x , y , z)≠(ξ , η ,ζ) , and

δ(ξ−x ,η− y ,ζ− z)=∞ if ( x , y , z)=(ξ ,η ,ζ) (56).

Because of these properties, the Dirac delta function has the property that if (ξ ,η , ζ)∈Ω ,

∭
Ω
δ(ξ−x ,η− y ,ζ−z)d Ω=1 (57),

and if (ξ ,η , ζ)∉Ω ,

∭
Ω
δ(ξ−x ,η− y ,ζ−z)d Ω=0  (58).61

Therefore, in order to find a W which satisfies eq.(54), two conditions must be met: W must be a 

function that satisfies the homogeneous Helmholtz equation; and W must contain a singularity at the 

point (ξ ,η , ζ) .62

 To find W, a local coordinate system is then adopted around the singular point 

60 Peter Hunter, “FEM/BEM Notes,” (New Zealand: The University of Auckland, Department of Engineering Science,  
1997), 46.

61 Ibid., 43-45.
62 Ibid., 46.
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r=√(ξ−x)2+(η−y )2+(ζ− z)2 (59).63 

The Helmholtz equation is then transformed as in the 3-D case,

W rr+
2
r

W r+
1

r2 [W θθ+(cot θ)W θ+
1

sin2θ
W θθ]+k 2W=δ(ξ−r sin θcos ϕ ,η−r sin θ sin ϕ ,ζ−r cosθ)  

(60).

Because of symmetry about the singular point, W θ , W θθ , and W ϕϕ are all zero, making eq.(60) 

only dependent on r. For r > 0, δ(ξ−x ,η− y ,ζ− z)=0 and eq.(60) becomes

 W rr+
2
r

W r+k 2W=0 (61).  

The solution for this equation is

 W= eikr

4π r
 (62).64

This solution can be easily shown to solve eq.(61) when r > 0,

W r=
ikeikr

r
− eikr

r2 , W rr=
−k 2 eikr

r
− 2ikeikr

r 2 + 2 eikr

r3 (63).

 Plugging in the above derivatives give 

−k 2 eikr

r
− 2ikeikr

r2 +2 eikr

r 3 +2ike ikr

r2 − 2eikr

r3 +k 2 eikr

r
=0 (64). 

Also, ∭
Ω
(W rr+

2
r

W r+k 2 W )d Ω=1  when W is given by eq.(62). Therefore, the two conditions 

are satisfied for W, making W a valid solution for eq.(54), and a proper weighting function.  In 

addition, W satisfies the Sommerfeld Radiation condition because W →0 and 
∂W
∂ r

→ 0 as 

r→∞ .

63 Ibid., 46.
64 Bai, “Application of BEM-Based Acoustic Holography,” 534. 
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The boundary integral formulation of the Helmholtz equation is found by multiplying eq.(14) 

by W and triple integrating both sides over the exterior region +Ω .

∭
+Ω

∇2 p W d Ω+∭
+Ω

k 2 p W dΩ=0 (65). 

The Green-Gauss Theorem, which is the multi-integral equivalent to integration by parts,

∫
Ω
( f ∇⋅∇ g+∇ f⋅∇ g)dΩ=∫

Γ
f ∂ g
∂n

d Γ (66),65

is used on the first triple integral in eq.(65).

 ∬
Γ

∂ p
∂ n

W d Γ−∭
+Ω

∇ p∇W d Ω+∭
+Ω

k 2 p W dΩ=0 (67). 

Using Green-Gauss theorem again on the second integral in eq.(67) gives 

∬
Γ

∂ p
∂ n

W d Γ−∬
Γ

∂W
∂ n

p d Γ+∭
+Ω

∇2 W p dΩ+∭
+Ω

k 2 p W d Ω=0 (68). 

Combining the last two triple integrals in eq.(68) give 

∬
Γ

∂ p
∂ n

W d Γ−∬
Γ

∂W
∂ n

p d Γ+∭
+Ω

(∇ 2W p+k 2 pW )dΩ=0 (69). 

The last integral in eq.(69) is

 ∭
+Ω

p(∇ 2W+k 2 W )dΩ (70). 

However, because of eq.(57), the integral becomes

 ∭
+Ω

pδ(ξ−x ,η− y ,ζ−z)= p(ξ ,η ,ζ) (71). 

Therefore, the Helmholtz equation becomes

p (ξ ,η ,ζ)=∬
Γ

∂W
∂n

p d Γ−∬
Γ

∂ p
∂ n

W d Γ (72).

This is the Helmholtz integral equation.

Numerical techniques are then employed to solve eq.(72). The surface of the guitar, Γ , is discretized 

65 Hunter, “FEM/BEM Notes,” 33.
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into triangular elements, where

p≡∑
α

N

ϕα pα
and ∂ p

∂n
≡∑

α

N

ϕα
∂ pα

∂n
(73).66 

p  and 
∂ p
∂n

are the pressure and pressure gradient values on the surface,  and pα  and 
∂ pα

∂n
 

are the pressure and pressure gradient values on the nodes α  of the triangles (constants). The linear 

basis functions, ϕα , are defined as

ϕα=∑
j

n

Φ j ( x)ϕ j ,α( x) (74),

where Φ j(x)=0 if x is outside of triangle j, and Φ j(x)=1 if x is inside the triangle j.

 Therefore, ϕα=1 at node α  and ϕα=0  at the other nodes. 

To solve the integrals in eq.(72), each triangle is transformed from ( x , y , z)  space to 

( x ' , y ' , z ' ) space. This is done by forming a tetrahedron with the surface triangle as the base and 

the unit outward normal point from the first point of the triangle as the top of the tetrahedron. The 

cartesian tetrahedron is then transformed to a tetrahedron in ( x ' , y ' , z ' )  space with the coordinates 

(0,0,0), (1,0,0), (1,1,0), (0,0,1). 

Assuming that

x '=a1 x+b1 y+c1 z+d 1

y '=a 2 x+b2 y+c2 z+d 2

      z '=a 3 x+b3 y+c3 z+d 3 (75),

the resulting matrix system is used to determine the coefficients of the transformation

(
Ax A y A z 1
B x B y B z 1

C x C y C z 1
Dx D y D z 1

)(
a 1 a2 a3

b1 b2 b3

c1 c 2 c3

d 1 d 2 d3

)=(0 0 0
1 0 0
1 1 0
0 0 1

) (76),

66 Ibid., 53.
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where the cartesian tetrahedron nodal points are 

(A x , A y , A z) ,(B x , B y , Bz) ,(C x ,C y ,C z) ,(Dx , Dy , D z) . (Dx , D y , D z)  is the unit outward normal 

from the point A and is found by taking the cross product of the two vectors AB and AC and 

normalizing.

By setting z '=0 , one can derive ( x , y , z)  in terms of x ' and y ' , resulting in the 

surface integrals

p (xi , yi , zi)=∑
j=1

J

∑
α=1

N

pα∫
0

1

∫
0

x '

ϕ j ,α( x( x ' , y ' ,0) , y (x ' , y ' , 0) , z (x ' , y ' ,0))

∂W i( x( x ' , y ' ,0) , y( x ' , y ' ,0) , z( x ' , y ' ,0))
∂ n

∣J j∣dy ' dx '

−∑
j=1

J

∑
α=1

N ∂ pα

∂ n ∫0
1

∫
0

x '

ϕ j ,α ( x( x ' , y ' ,0) , y (x ' , y ' ,0) , z (x ' , y ' ,0))

W i ( x( x ' , y ' ,0) , y( x ' , y ' ,0) , z( x ' , y ' ,0))∣J j∣dy ' dx '

 (77)

where W i(x , y , z)= eikr i

4π ri

, and

ri=√(xi−x (x ' , y ' ,0))2+( yi− y( x ' , y ' ,0))2+(z i−z (x ' , y ' ,0))2 (78).

The Jacobian, ∣J∣ , can be derived by the fact that the area of the pre-transformed triangle in 

( x , y , z) space equals the surface integral of the Jacobian over the region of the transformed triangle 

in ( x ' , y ' )  space,

∫
0

1

∫
0

x '

∣J∣dy ' dx '=Area (79). 

The Jacobian is a constant in this case, so it can be pulled out of the integrand. The double integral can 

then be easily solved to figure out the Jacobian.

∣J∣∫
0

1

∫
0

x'

dy ' dx '=Area
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∣J∣∫
0

1

x ' dx '=Area

∣J∣
2
=Area

∣J∣=2⋅Area (80)

Therefore, the Jacobian is equal to twice the area of the pre-transformed triangle.

If there are N nodes on the surface, and one solves eq.(77) for N points, one can create a system 

of equations and form the following matrix equation,

U ext=DS ,ext∗PS−S S ,ext∗QS  (81),

where U ext  is a Nx1 matrix containing the solution values p at ( xi , yi , zi) on the hologram 

(exterior) surface. The superscript S,ext in the D and S matrices denote that the integrals are being 

performed on the source surface, and the r variable in W and 
∂W
∂ n

 is the distance between the 

evaluated surface point and the exterior point of interest. Specifically, DS ,ext  is a NxN matrix 

containing

Di ,α
S ,ext=∑

j=1

J

∫
0

1

∫
0

x '

ϕ j ,α( x( x ' , y ' ,0) , y ( x ' , y ' ,0) , z (x ' , y ' , 0))

∂W i(x( x ' , y ' ,0) , y( x ' , y ' ,0) , z( x ' , y ' ,0))
∂ n

∣J j∣dy ' dx '

 (82)

 PS is a Nx1 matrix containing the surface pressure values pα , S S , ext  is a NxN matrix 

containing 

S i ,α
S , ext=∑

j=1

J

∫
0

1

∫
0

x'

ϕ j ,α (x (x ' , y ' ,0) , y( x ' , y ' ,0) , z( x ' , y ' ,0))

W i(x (x ' , y ' ,0) , y( x ' , y ' ,0) , z( x ' , y ' ,0))∣J j∣dy ' dx '

(83)

 and QS is a Nx1 matrix containing the surface velocity values 
∂ pα

∂n
.
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It is important that the number of points solved for is the same as the number of points on the surface 

because some matrices must be inverted at later steps, and therefore the matrices must be square.

To investigate what each element contains in the matrices D S ,ext  and S S , ext , a simple 

example discretization of a surface is studied, focused at the node α= p2 .

 

                                                                                                 fig.1

The linearized boundary elements of each triangle are assumed to have the form

ϕ j ,α=ax+by+cz+d , ϕ j ,α ( p2)=1 and ϕ j ,α=0 (84) for the other nodes.

A basis function can then be defined for each triangular region by solving a matrix system. For 

example, in region 1 (j=1), 

ϕ1,2( p 2)=1

ϕ1,2( p1)=0

ϕ1,2( p3)=0

ϕ1,2( ṕ 2)=0 (85),

where ṕ 2  is the unit outward normal point from p 2 . The above equations can be written in a 
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matrix system to solve for the coefficients a,b,c,d in eq.(84)

(
p2x p2y p2z 1
p1x p1y p1z 1

p3x p3y p3z 1
ṕ2x ṕ2y ṕ2z 1

)(a
b
c
d
)=(100

0
) (86).

Each region that has p2  as a nodal point is then transformed to ( x ' , y ' , z ' )  space using eqns.

(75-76). Therefore, the resulting matrix elements for row 2 and column i are the summation of the 

surface integrals over the triangles.

Di ,2
S ,ext=∫

0

1

∫
0

x'

ϕ1,2

∂W i

∂n
∣J 1∣+ϕ2,2

∂W i

∂n
∣J 2∣+ϕ3,2

∂W i

∂n
∣J 3∣+ϕ4,2

∂W i

∂ n
∣J 4∣

+ϕ5,2

∂W i

∂n
∣J 5∣+ϕ6,2

∂W i

∂n
∣J 6∣dy ' dx '

 (87)

 The variable r in 
∂W
∂ n

 is defined as in eq.(78).

Similarly, 

S i ,2
S , ext=∫

0

1

∫
0

x '

ϕ1,2W i∣J 1∣+ϕ2,2 W i∣J 2∣+ϕ3,2 W i∣J 3∣+ϕ4,2 W i∣J 4∣+ϕ5,2W i∣J 5∣+ϕ6,2∣J 6∣W i dy ' dx ' (88).

To numerically solve the integrals in eq.(77),  the functions W and 
∂W
∂ n

are separated into their real 

and imaginary parts. 

W= eikr

4π r
= 1

4π
(
cos (kr )

r
+i

sin (kr)
r

) (89)

Using the chain rule, 
∂W
∂ n

=∂W
∂ r

∂ r
∂n

,

 
∂w
∂ r

= 1
4π

(
−cos(kr)

r 2 −
k sin (kr )

r
−i

sin (kr)
r 2 +i

k cos(kr)
r

) (90)
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and

∂ r
∂n

=∇ r⋅n̂=
( x( x ' , y ' ,0)−xi) Ax

r
+
( y( x ' , y ' ,0)− yi) A y

r
+
( z( x ' , y ' ,0)−zi) Az

r
(91)

where n̂=A x î+A y ĵ+Az k̂ and is the unit outward normal vector to the current triangle j being 

integrated.67

Because the real and imaginary parts can be linearly separated from eqns.(89-91), it is beneficial 

to carry out the matrix equation eq.(81), twice, one for the real part and one for the imaginary part. The 

answers can be combined to form the solution, i.e.

U I
real=Dreal∗P S−S real∗QS  and U I

img=Dimg∗PS−S img∗QS (92), 

where the solution to the Helmholtz equation at the point ( xi , yi , zi) is p (xi , yi , zi)=U I
real+U I

img .

Eqns.(89-91) can then be substituted into the integrals in eq.(77) and calculated using Gaussian 

Quadrature. 

Gaussian Quadrature can be used to solve a general double integral

F (x , y)=∫
a

b

∫
c(x)

d (x)

f (x , y)dy dx (93).

Define

xi=
(a−b)

2
ri+

(a+b)
2

(94)

and

y j=(
d (xi)−c (xi)

2
)r j+(

d (xi)+c(xi)
2

) (95).

Then the Gaussian Quadrature equation to solve eq.(93) is

67 Ibid., 58.
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F (x , y)=( b−a
2

)(∑i=1

m

(
d ( xi)−c( xi)

2
)ci(∑

j=1

n

c j f ( xi , y j))) (96),

To achieve the most accurate approximation, 25-point Gaussian Quadrature was chosen (m=n=5) , 

with

r1=0.9061798459
r 2=0.5384693101
r3=0.0000000000

   r 4=−0.5384693101
    r5=−0.9061798459

c1=0.2369268850
c2=0.4786286705
c3=0.5688888889
c4=0.4786286705

                    c5=0.2369268850          (97).68

Because the pressures are being measured on a holographic surface above the source, the values 

for the matrix U ext in eq.(81) are known. However, there are two unknowns, PS  and QS , so a 

constraint equation is required to find both matrices. Using the property of the Dirac delta function 

described in eq.(58), a fictitious surface is created in the domain −Ω  such that it closely conforms 

to the surface. Because the exterior Helmholtz equation is not defined in this region, the Dirac delta  

function is zero. Therefore the matrix U interior  is zero, creating the constraint equation,

0=DS ,interior PS−S S ,interior QS ,  DS , interior PS=S S ,interior QS (98)

where DS , interior and S S , interior are derived in the same manner as DS ,ext  and S S , ext  in eq.(81), 

with the variable r as the distance between the current evaluated surface point and an interior surface 

point in −Ω . This constraint equation is a method developed by Bai to avoid singularities in eq.

(77). According to Bai, the choice for interior points are arbitrary, they do not have to be physically 

68 Richard L. Burden and J. Douglas Faires, Numerical Analysis Ninth Edition, (Boston: Brooks/Cole Cengage Learning, 
2011), 243.
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accessible in field measurement, and there must be the same number of interior points as the number of 

nodes on the source surface. Bai states, “Interior points are usually located on a surface that almost 

conforms to the source surface.”69

Solving eq.(98) for QS  gives

 QS=[S
S , interior]−1 DS , interior PS (99).

Substituting QS  into eq.(81) gives

U ext=[DS ,ext−S S ,ext∗[S S , interior ]−1∗DS , interior ]∗P S (100).

If C=[DS ,ext−S S , ext∗[S S , interior]−1∗DS , interior] , then the surface pressures are

 P s=C−1 U ext (101). 

Once P s  is found, any far-field surfaces can be calculated using the equation

U ext=C P s (102).   

A c++ program is then written to perform eq.(100).

2.5 Implementation of NAH to my Research

As mentioned earlier, guitarists usually play chords, which are three or more harmonically-

related notes that sound at the same time. Because solving the Helmholtz equation and studying the 

modes of the guitar is monochromatic, no studies exist on the analysis of the vibrating surface of a 

guitar when a chord is played. The superposition of waves principle states that any complex waveform 

(waves with multiple frequencies) is the summation of the individual frequency waves.70 Because 

acoustic pressures are waves, the superposition principle can be applied to study a chord by summing 

the three frequency waves of a chord. I chose to investigate how an E chord vibrates by using NAH for 

each of the three notes in an E chord, E, G#, and B. The three pressure waves are then added to create a 

69 Bai, “Application of BEM-Based Acoustic Holography,” 537.
70 Richard Wolfson, Essential University Physics: Volume I (San Francisco: Pearson Education, 2007), 230.
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unique vibratory pattern. By studying the unique vibratory pattern, the current microphone patterns can 

be justified, or a new, more optimal microphone pattern can be created to fully optimize the sound. In 

addition, cost-effective approaches must be utilized if my research is to be used in a recording studio or 

a commercial setting. Therefore, I am going to perform NAH in my apartment room and use a 

Radioshack sound pressure level meter to obtain pressure data on the hologram to see if I can achieve 

accurate results comparable to the research done in laboratories.
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Chapter 3: Experimental Procedure

3.1 Assumptions

The guitar that is being measured is a Yamaha FG-430. The guitar's dimensions are 16 inches by 

19.5625 inches, and is 4.5 inches thick (from back plate to top plate). The surface discretization triangle 

base lengths range from 0.5 inches to 1.3 inches wide, and the hologram surface is at a half-inch above 

the guitar surface. I chose these values because the maximum wavelength measured is 

λmax=27.5406 inches, and having the triangles be an inch wide means that the elements are 

~
1
27

λmax . This within the quarter of the wavelength restriction proposed by G.T. Kim, and therefore 

the program should be very accurate. The hologram pressure measurements were performed in my 

apartment, therefore some uncertainties in the data acquirement caused by room reflections and 

standing waves may be present. To avoid these reflections as much as possible, absorptive materials, 

such as carpets and blankets, were put on the floors and walls to absorb sound. Because a sound 

pressure level meter was used, only the magnitude of the pressure can be inputted into the program. 

Therefore, I want to see if accurate data can be acquired without knowledge of the phase and in an 

untreated environment. I am also assuming that the optimal microphone placements are areas of high 

pressure magnitude, since these areas have the most effect on microphones.

3.2 Experimental Tools and Implementation

The experimental tools used were the Ebow and the sound pressure level meter. The Ebow is a 

electromagnetic device that vibrates a string at a constant rate. Its original purpose and function is to  

create a purely musical effect by simulating the sound of playing a guitar with a violin bow. However, 

it can be used to vibrate the guitar at a constant rate, providing stable measurements and satisfying the 
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time-periodic conditions of the Helmholtz equation. The guitar was able to freely vibrate by taking a  

guitar stand and suspending it between two microphone stands, which held it in place with rubber 

bands. The guitar was then placed on the guitar stand with the top plate facing the ceiling, allowing the 

guitar to freely vibrate. A guitar string was then tuned to the correct frequency and the Ebow was 

placed on the guitar string. The sound pressure level meter was then placed on a microphone stand, 

allowing for the pressure meter to be placed accurately over the nodes at the correct height above the 

surface. For each node, the pressure was recorded by writing down the decibels. This procedure was 

implemented for each frequency.

3.3 Program Algorithm

The program used to implement NAH was written in c++. I programmed it so that it can handle 

general domains, so that the program can be used in the future for any vibrating source. The program 

has four input files. The first is a file containing a vertical list of the x,y,z coordinates of the surface 

nodes, followed by a space, then the list of node indexes that form a triangle on the surface. The nodes 

were computed by uploading a picture of my guitar into the graphic program xfig, scaling the picture so 

that an inch in xfig matches an inch of the guitar surface, and by drawing points approximately an inch 

apart. The triangles were then drawn by connecting the points, and the coordinates and triangle indexes 

were typed into the file. The second file is a vertical list of the measured pressures in decibels. It is  

important that the pressures are listed in the same order as the surface nodes in the first file. The 

program converts the decibels to pascals using eq.(1). The third file is a vertical list of the x,y,z 

coordinates of the interior surface. The interior surface was created by taking the guitar surface nodes 

and translating it into the interior by adding or subtracting 0.25 inches from either the x,y, or z surface 

coordinate. The fourth input file is a vertical list of the coordinates of the hologram surface. This is  

created in the same fashion as the interior surface, except the surface nodes are translated by 0.5 inches.
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Firstly, the program reads in the first file and stores the data in an array of a struct named 

“triangles.” This struct contains the x,y,z coordinates of each of the triangle's three vertices, plus the 

index number for each vertex. Then, the area of each triangle is calculated, which is used to calculate 

the Jacobian. This is done by treating the triangle as a composition of two vectors; if the triangle has 

vertices A, B, and C, then the two vectors are AB and AC. The area of the triangle is then found by 

taking the cross product of the two vectors, taking the magnitude of the resulting vector, and dividing 

the magnitude by 2.71 

Next, the DS ,ext  matrix in eq.(100) is calculated. The program reads in the first holographic 

point coordinate from file four. Then the program focuses on the first surface node from file one. The 

program scans through all the surface triangles until it gets to a triangle that has the current surface 

node. A basis function is then defined for the triangle by using eq.(86). Then the triangle is transformed 

to (x', y', z') by using eqns.(75-76). Gaussian Quadrature, eqns.(93-97), is performed on the integrals, 

where the variable r is the distance from the evaluated gaussian point and the hologram point. The 

program then stores the integral answer in the correct row and column in the DS ,ext  matrix. This 

process is repeated until all integrals with the triangles containing the current surface node are 

evaluated. The next surface node in file one is then focused on, and the program sweeps for any 

triangle that contains the surface node, translates that triangle, and performs Gaussian Quadrature. 

Once the last surface node is reached in file one, the program moves to the next holographic point in 

file four, and the program starts over with the first surface node in file one. This process continues until 

the last holographic point in file four is reached. The same process is done for the S S , ext  matrix. 

For the DS , interior  and S S , interior  matrices in eq.(100), the same algorithm in finding the 

matrices DS ,ext  and S S , ext is used, except the holographic surface is replaced with the interior 

71 John Taylor, “Area of a Triangle via the Cross product,” 
http://www.jtaylor1142001.net/calcjat/Solutions/VCrossProduct/Cross-Product/Area-
Triangle/CPAreaTri/CPAreaTri_Layers.htm (accessed March 5, 2012).
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surface, file three. Once all the matrices are filled, the C matrix in eq.(101) is found by matrix 

multiplication and subtraction subroutines. The U ext matrix is then filled with the converted pascal 

measurements from file two. The matrix C−1 is then found by using the LU factorization function in 

the c++ library TNT.72 The surface pressures, in the order of the evaluated nodes, are then listed as the 

program output. Once all the frequency pressures are calculated, the magnitudes are summed to derive 

the pressure magnitudes for an E chord.

A vibrating sphere was used to test the program. A uniformly vibrating sphere (which only 

relies on the distance r) is governed by the equation

P (r)=( a
r
)ρc U a (

ika
ika−1

)exp[ ik (r−a)] (103)

where a is the sphere radius, ρ is the air density, c is the speed of sound in air, U a is the 

vibrational velocity of the sphere surface, and k is the wavenumber.73 If P0 is the source pressure, 

then solving eq.(103) with r=a gives,

P0=ρc U a (
ika

ika−1
) (104).

Therefore, 

P (r)=P0(
a
r
)exp[ ik (r−a)] (105).

First, the construction of the surface pressures from the hologram using eq.(101) was tested. The 

parameters for this test are P0=1.0  pascal, a=0.1 inches, a hologram surface 0.1 inches above 

the sphere ( r=0.2  inches), and k=0.046193 (100Hz when c=13601.784 inches per second, 

which is the speed of sound in air at a temperature of 75 degrees Fahrenheit).74 The interior surface was 

72 Roldan Pozo, “Template Numerical Toolkit, An Interface for Scientific Computing in C++,” Mathematical and 
Computational Sciences Division National Institute of Standards and Technology, http://math.nist.gov/tnt/ (accessed 
August 1, 2011).

73 Bai, “Application of BEM-Based Acoustic Holography,” 538.
74 Eberhard Sengpiel, “Calculation of the Speed of Sound c in Air and the Effective Temperature,” sengpielaudio 

http://www.sengpielaudio.com/calculator-speedsound.htm (accessed December 1, 2011).
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a conformal sphere with a=0.09 inches. Solving eq.(105) with the above parameters, the pressure at the 

hologram is ~0.5 pascals. 0.5 pascals was then inputted into the U ext matrix in eq.(100) and solved 

for P s , expecting values around P0 . The sphere was discretized into 338 triangles, with 171 

surface nodes. The sphere discretization was obtained online.75 The calculated pressures at the surface 

nodes are represented in fig.2. Most of the pressures lie within ±0.1 pascals of the correct value, 1.0 

pascal, and the average error was 5.75%. However, some points had a significant amount of error. The 

minimum calculated pressure value was 0.637 pascals, the maximum calculated pressure value was 

1.266 pascals, and the maximum pressure error for a point was 36.25%. 

The NAH program was tested for different values of k that represented the entire fundamental 

frequency spectrum of the guitar. The program results for different k's are represented in figs.3 and 4. 

As figs.3 and 4 show, the NAH algorithm is very stable between 100-1,000Hz. This is easily shown in 

the average errors for each test. For 400Hz, the average error was 5.76%, with the minimum calculated 

pressure value being 0.637 pascals, the maximum calculated pressure value being 1.267pascals, and the 

maximum error for a point being 36.26%. For 1,000Hz, the average error was 5.81%, with the 

minimum calculated pressure value being 0.636 pascals, the maximum calculated pressure value being 

1.271 pascals, and the maximum pressure error for a point being 36.36%. Notice the average error 

increases as k increases, but not by a significant amount, meaning that the program is stable in 

determining source pressures for 100-1,000Hz within an average error of less than 6%. Fig.6 shows the 

same results as fig.3, except using the visualization software Medit, which will be used to observe the 

pressure spots on the guitar. Unfortunately, I was not able to obtain a discretization of a sphere with 

more triangles to see if the error is significantly reduced. In addition, the distance between the 

hologram and the source surface contributes to the accuracy of the data. It is a general rule of thumb to 

75 National Science Foundation, “A Finite Volume PDE Solver using Python,” National Science Foundation, 
http://matforge.org/fipy/wiki/SurfaceOfSphere (accessed January 15, 2012).
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have the hologram as close to the source surface as possible.76

 Forward propagation, eq.(102), was then tested. Using P0=1.0 pascal, the pressures were 

found at r=1.0 (a surface 0.9 inches from the sphere). Using eq.(105), the expected pressure at 

r=1  is p (1)=0.098621 pascals. Fig.5 shows the program performance of forward propagation. 

The program is more accurate at calculating forward propagations, with the average error being 1.43%. 

The maximum calculated pressure value is 0.098621 pascals, the minimum calculated pressure value is  

0.0972032 pascals, and the maximum pressure error for a point is 1.44%.

fig.2

76 Maynard, “Nearfield Acoustic Holography: I. Theory of Generalized Holography and the Development of NAH,”  1405.
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fig.3

fig.4

43



fig.5

fig.6

44



Chapter 4

4.1 Results

fig.7 Acoustic Pressure magnitudes of a E_4 note (329.63 Hz)
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fig.8 Acoustic pressure magnitudes of a G#_4 note (415.30 Hz)
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fig.9 Acoustic pressure magnitudes of a B_4 note (493.88 Hz)
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fig.10 Acoustic pressure magnitudes of an E chord
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Forward Propagation from the guitar surface results at one foot above the guitar for E_4 (z=16.5)

x y Calculated (dB) Real (dB) Error (%)

7.94 6.31 82 84 2.38

8.56 15.62 83 82 1.21

2.56 2.35 83 79 5.06
fig.11

Forward propagation from the guitar surface results at one foot above the guitar for G#_4 (z=16.5)

x y Calculated (dB) Real (dB) Error (%)

7.94 6.31 93 74 25.67

8.56 15.62 91 70 30

2.56 2.35 92 66 39.4
fig.12

Forward propagation from the guitar surface results at one foot above the guitar for B_4 (z=16.5)

x y Calculated (dB) Real (dB) Error (%)

7.94 6.31 84 73 15.06

8.56 15.62 81 60 35

2.56 2.35 78 57 36.84
Fig.13
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4.2 Interpretation of Results

After running the NAH algorithm to determine the source pressures, eq.(101), I used the 

“feeling test” to verify the results of the program. By placing one's hand on the guitar surface, one can 

feel the areas of most and least vibration. While this test gives no accuracy to the actual pressure 

values, it gives an indication on whether the program was able to find the correct spots of most and 

least vibration. Performing the “feeling test” showed good agreement with what the program calculated 

(figs. 7-10). 

I then ran the program for an isosurface located one foot above the guitar to study the far-field. 

The isosurface was a rectangle with coordinates −2.3125≤x≤20.5 , −2.3125≤ y≤23.5625 , 

z=16.5 (z at the top plate is z=4.5 ). The isosurface had the same number of nodes as the guitar 

surface, so eq.(102) could be used. The isosurface was then calculated based on the surface pressures. 

However, the program did not agree with experimental measures one foot above the guitar. I carried 

this out by selecting three isosurface points and finding the pressure data using the sound pressure level 

meter. I first carried out this test with the E note. This is shown in fig.11. The maximum error for an 

evaluated isosurface point is 5.06%, which is an acceptable amount of error. However, when repeated 

for the G# and B note, the points measured on the isosurface did not agree with the program results, 

which is shown in figs.12-13. Most of the errors on the evaluated isosurface points were between 30-

40%. This is a significant and unacceptable amount of error. Therefore, the program failed to calculate  

accurate pressures in the far-field.

As the test problems on the sphere show, the program should be very accurate in calculating far-

field pressures (below 2% error). Therefore, the significant errors in calculating the far-field are a result 

of the measuring process. I postulate that the two factors I did not take into account, the room acoustics 

and the phase, contributed to inaccurate far-field predictions.

 Firstly, the guitar measurements were not taken in an acoustically treated room. The room has 
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hard, parallel walls with some absorptive material, but not acoustically treated absorptive material that  

absorbs all frequencies, so therefore the room is prone to standing and reflecting waves. These second-

order waves can have a drastic effect on the initial sound wave coming from the guitar. Since these 

waves are at the same frequency as the incident waves, and they are delayed from the incident wave by 

the time is takes to reflect off a wall, the reflective waves can either boost the incident wave at one  

point (constructive interference) or reduce the incident wave or even cancel portions of it out 

(destructive interference). These reflections and standing waves can alter sound waves by as much as 

20dB or more.77 Since solving the Helmholtz equation only takes into account incident waves, these 

reflective waves can alter both the initial hologram measurements and the isosurface measurements. 

 In addition, phase relations were not taken into account, since a sound pressure level meter 

does not consider phase. For example, parts of the measured hologram could have been in the 

compression part of a wave (positive pascals), or in a refractive part of a wave (negative pascals) at a 

particular time. Usually, NAH is performed with both pressure-sensitive and phase-sensitive 

microphones. These microphones are used with Lock-in amplifiers, which measure the pressure and the 

phase by comparing the wave to a sine wave vibrating at the same frequency as the source. Therefore, 

my goal of seeing if accurate results could still be obtained using a sound pressure level meter in my 

apartment mostly failed.

There may also be additional factors that contributed to the measurement error. Firstly, my 

accuracy of placing the sound pressure level meter at the exact hologram coordinate above the guitar  

may have been off. I marked the nodal areas on my guitar, and used it as a sight to aim the sound level 

meter. Therefore, it is very possible that I would have been off in some of my measurements by around 

half of the element size. Because more nodal activities occur on the surface of a guitar at higher  

frequencies, the inaccuracy of the measurement locations can significantly contribute to the error and 
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51



be a probable cause on why the errors were significant for the higher frequencies. In addition, guitar 

strings contain many overtones. While I did my best to subdue the overtones and make the fundamental 

frequency the most prominent, the overtones are still present and contribute to the vibratory pattern of 

the guitar. Since the main assumption of solving the Helmholtz equation is that the source is only 

vibrating at one frequency, the fact that the present overtones were not taken into account can 

contribute to the error.

However, the program was good at determining surface vibration spots. I hypothesize that this 

worked because since the hologram was recorded at such close distances to the surface, the surface 

node right below it has the most influence on the hologram pressure level. This is in direct contrast to 

the far-field, where many points on the surface affect the pressure level on one point of the isosurface. 

Because the hologram was recorded at a very close distance, the signal to noise ratio on the sound level 

meter was very high at points of high vibrations, so room reflections have a significantly less effect on 

the measured data (since the incident signal is significantly louder than the reflective signal). This,  

however, cannot be said around areas that have lower pressure values, since the reflective waves are 

not as masked by the incident waves, as in the high pressure case. Therefore, the points of relatively 

low pressure can be distorted by the room acoustics.

 Since only the positive pascal values were inputted into the program, no inferences on phase 

can be made at the source surface. In addition, since the program failed to predict the far-field, the 

actual pressure values on the source surface may not be correct. While obtaining correct pressure 

values is very important in the mathematical sense, the guitar is an extremely dynamic instrument,  

meaning it does not vibrate at a constant pressure level as does an engine, or a loudspeaker set to output 

at a specific volume. A guitarist is constantly changing dynamics by playing both loud and soft in 

different musical passages. Therefore the actual pressure values are not very important since they are 

constantly changing when a performer plays. Finding the areas of vibration are more important for 
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recording purposes than knowing the pressure values, and the program did succeed in finding these 

spots. However, precise pressure values may be important for a guitar luthier, since the luthier may 

want the guitar to vibrate at a specific decibel level to ensure that the guitar is loud enough to project to  

the audience.

Unfortunately, a major aspect of NAH, the ability to study the far-field by only knowing the 

surface pressures, was not able to be utilized. Therefore, far-field predictions cannot be made with a 

sound pressure level meter in an untreated room. However, recording studios could still implement 

these techniques because studios are acoustically treated and have accurate microphones that are also 

sensitive to phase. Using current recording software, such as Pro Tools or Logic, studios can accurately 

analyze a waveform's magnitude and phase, and be able to carry out the NAH algorithm successfully.

4.3 Optimal Microphone Placements

Since the program predicted the surface vibration spots accurately, close microphone 

placements can be determined. The first important general conclusion made is that high vibrational  

areas on the guitar change per frequency, as we saw for the violin. Therefore, microphones need to be 

placed according to what frequencies the guitarist is playing. If the guitarist is utilizing the entire  

frequency spectrum, then a compromise may have to be made on where to place the microphones. 

Observing fig.7, a E_4 note mostly vibrates in two places, around the sound-hole and on the 

lower-right of the guitar (all references to guitar locations will be made based on the perspective of the 

figure). Observing fig.8, a G#_4 vibrates more on the top part of the guitar than on the bottom part, 

unlike the E_4 note. Observing fig.9, a B_4 note vibrates more at the left part of the sound-hole and 

around the pick guard, and on the lower-right part of the guitar. It is interesting to note that the bottom-

left does not vibrate significantly for all three of the frequencies.

Fig.10 shows the vibrational magnitudes of an E chord, which was created by summing the 
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three frequency magnitudes. Observing fig.10, the area of most vibration is around the sound-hole, in 

particular the left side (which was significantly confirmed by the “feeling test”). The next area of 

vibration is the lower-right part of the guitar. Using these results, a new, optimal microphone placement 

would then be to place a microphone aiming at the left part of the sound hole, and at the lower right 

part of the body. Because the bottom-left of the guitar does not significantly vibrate, a microphone 

should not be placed around that spot.

4.4 Future Research

As previously discussed, obtaining more accurate data will fully utilize the power of NAH, and 

far-field predictions can be made. However, NAH can be used to extensively study parts of the guitar 

that I was not able to cover. First of all, I have shown that guitar surface vibrational patterns change 

depending on the frequency. Therefore, if one had the proper equipment to implement NAH quickly 

and effectively, one could observe how a guitar vibrates for each note in the entire guitar spectrum (E_2 

to D_6). Then, one can simply add any combination of notes to see the vibrational patterns for a 

multitude of chords. Implementing this would be more realistic in recording situations because a 

guitarist usually utilizes all six strings when playing a chord by playing the three fundamental chord 

notes in different octaves. In addition, one could analyze more complex chords, such as seventh and 

ninth chords. Also, because NAH was used, the notes and chords can also be analyzed in the far-field. 

Because using a sound pressure level meter in an untreated environment did not fully work, research 

done with other cost-effective measuring devices and technology can be conducted to see if more 

accurate results can be obtained. Another area where NAH can be used is in guitar construction. By 

analyzing a sonically decent guitar, one can then build a guitar by mimicking the vibrational patterns.
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