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This paper presents results of a multiphase computational fluid dynamics code utilizing a

coupled level-set/volume-of-fluid method to simulate liquid fuel atomization. The coupled

approach combines the mass conservation properties of the volume-of-fluid (VOF) method

with the accurate surface reconstruction properties of the level-set (LS) method, and

includes surface tension as a volume force calculated with second-order accuracy. The

multiphase code builds upon a methodology developed by Sussman et al. [1] which enables

bubbly flow, liquid breakup, and phase change simulations. Extensions to the model

presented in this paper include coupling to a Lagrangian dispersed phase model for post-

breakup tracking of droplets and multiple level-sets for tracking of surfaces and droplets of

multiple species. Two simulations of like-on-like jet impingement of relevance to liquid

rocket engine combustion are presented here, at low and high injection velocity, with

comparison to validation data. Also shown is the first-ever demonstration simulation of

unlike impinging jets.
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Nomenclature

 = drop sphericity

 = spray concentration

fa = atomization frequency: fa = vjet/l

l = ligament spacing

lj = jet pre-impingement length

m = x multiple of critical radius

criR = critical drop radius for Lagrangian transformation

Re = l vjet d0/lReynolds number based on liquid properties

LV = blob volume

criV = critical drop volume for Lagrangian transformation

We = l vjet
2 d0/ Weber number based on liquid properties

I. Introduction

mpinging jet injectors rely on the mutual impact of two or more high-velocity jets to atomize the propellants.

The elements may flow either a single propellant (like impinging) or fuel and oxidizer (unlike impinging), and

typical geometries involve two, three or five streams (from doublet, triplet and pentad elements). This impingement

results in a highly directional distribution of propellant(s) that must be managed to provide good mixing efficiency

and combustor wall thermal compatibility. In the case of the doublet element, the distribution is that of a “fan” of

pre-atomized liquid material which is at right angles to the common plane of the two liquid streams. For like

impinging doublets, these fans must be interwoven in the overall injection pattern to insure sufficient mixing of fuel

and oxidizer. Injection velocity and stream diameter control the droplet size distribution. The fans break up in

various modes, but usually exhibit waves that separate into liquid ligaments in the plane of the fan [2]. These

ligaments then fracture into droplets typically through Rayleigh breakup.

Because the atomization and mixing processes of such injectors are complex and strongly three-dimensional,

impinging injector sprays have mainly been characterized experimentally, like most other similar atomization

systems [3, 4]. An example is the study carried out at the United Technology Research Center (UTRC) High
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Pressure Spray Facility [5], where the effects of liquid properties and chamber conditions on the spray

characteristics were investigated using a Malvern Droplet Size Analyzer. Reynolds numbers were between 7.3·104

and 8.4·104 for the oxidizer and between 1.7·104 and 1.9·105 for the fuel. Photographs of the injection displayed the

two jets crossing each other’s path at the impinging point and forming quite a dense spray in the streams plane,

suggesting a loss of cohesion of the streams before contact. Drop sizes from an Aerometrics Phase Doppler Particle

Analyzer (PDPA) were found to decrease with increasing liquid flow rate, decreasing surface tension and increasing

chamber density.

The formation of a liquid sheet which ruptures in increasingly less coherent ligaments with higher jet velocity

has been described in impinging water jets experiments by Anderson et al. [6] and Ryan et al. [7]. In their study,

from now on referred to with the acronym AR for ease of notation, the Weber number was increased from 350 to

6,600, with Reynolds numbers between 2.8·103 and 2.6·104. The measured breakup length along the centerline in

that study showed a strong dependence on the turbulent condition of the jet at injection. In the turbulent case, the

decrease of the core breakup length and the ligament frequency was correlated with the stability parameter d0/vjet.

These data, as well as the average distance between adjacent ligaments and the PDPA characterization of the spray

fan, are used for validation purposes in the work presented here.

Recently, interface capturing simulation techniques have been applied to simulate the primary atomization of

impinging jets. In a set-up similar to the AR experiment, Inoue et al. [8, 9] used a cubic-interpolated propagation

hybrid level set method (CIP-LSM) and a multi-interface advection and reconstruction solver (MARS) technique to

capture the liquid surface and show the formation of the characteristic fan-shaped sheet. The sheet appeared to

rapidly develop a flapping mode leading to its breakup. While the calculations [8, 9] were based on a fixed,

orthogonally stretched computational grid, Li et al. [10] demonstrated the effectiveness of coupling the Combined

Level Set Volume of Fluid (CLSVOF) formulation [1] with the Lagrangian tracking of the spray on a dynamically

adaptive, block-structured grid. This adaptive approach selectively enables high grid density at the liquid interface,

therefore increasing the accuracy of the primary breakup calculation. High-density grid boxes are embedded in a

coarser (compared to the scales of primary atomization) computational domain for the Lagrangian representation of

the dilute spray.

Highlights of the numerical method are provided in the next Section. If the domain is sufficiently broad to

include where spray measurements are actually taken, it becomes possible to carry out a validation study of jet
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impingement atomization at the same conditions of the AR experiment. This comparison constitutes the main body

of the paper for a low and a high injection velocity case. See Table 1.

Table 1. Simulated impinging spray conditions. Data on the third and fourth column are taken from the

diagrams in [6]. The values of fa in parenthesis are from the uncertainty bars shown in the same picture.

vjet [m/s] d0 /vjet·10-4 [s] xb/d0 [·] fa [Hz] xb,calc./d0 [·] fa,calc. [Hz]

6.4 1 16±2 3,900 (2,000-4,800) 12.4±2 3,300

18.5 0.343 27.5±2 6,800 (5,700-8,000) 16 4,400-5,900

II. Numerical method

The description of the CLSVOF method can be found elsewhere [1], together with several validation studies.

Briefly, the Navier-Stokes equations for incompressible flow of two immiscible fluids (such as liquid and gas) are

written in terms of a smooth level set function , whose zero level represents the time-evolving interface. In addition

to the evolution equation for , the transport equation for the cell liquid volume fraction (the volume-of-fluid

function, F) is solved. The interface normals in the VOF reconstruction step are determined from the level set

function. The volume fractions are then used with the normals to construct a volume preserving distance function .

In this way, volume is preserved by implementing a ‘‘local’’ mass fix at every iteration. Second-order accurate

curvature is calculated from F by the method of height fraction. The Navier-Stokes equations are solved with the

one-fluid approach, that is, the properties of density and dynamic viscosity are function of  everywhere in the

computational domain. Finally, velocity extrapolation based on  from the liquid phase is used to approach the

solution of the corresponding one-phase method in the limit of uniform gas pressure at large liquid-to-gas density

ratios.

With adaptive mesh refinement (AMR), the cells that are crossed by the liquid-gas interface are tagged for

refinement. Starting from the base level, boxes (with a minimum size of, say, 323 cells) are combined to cover all the

tagged cells within assigned coverage efficiency. This set of blocks with the same grid spacing forms level 1. This

level is in turn tagged for refinement at the interface, and the process is repeated until the input grid resolution is

achieved. During the simulation, the data on the fine level are either copied from a previous time step or, when the
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grid structure has changed locally, conservatively interpolated from the underlying coarse level. The interface,

however, is always embedded in the finest grid level to avoid gross interpolation errors. In a time step, the

calculation is carried out on all levels, and the updated data on a fine level are averaged to the underlying coarser

one. For a given minimum grid spacing, a higher granularity of the coverage (i.e., the prescription of many small

AMR boxes) minimizes the grid count but maximizes data communication between boxes, and vice-versa.

Assuming the optimal coverage closely follow the interface, it is reasonable to estimate that doubling the grid

density in a three-dimensional simulation corresponds to increasing the storage and the execution time by a 23

factor, instead of the 24 factor (three dimensions plus time) required by a grid without AMR. This saving in

resources is repeated at every new refinement level.

Following the approach by Herrmann [11], droplets in dilute spray regions are converted into Lagrangian

particles. Because such droplets are removed from the Eulerian description, in the region interested by the

transformation the hierarchy of refinement levels quickly reverts to the underlying base level. Thus, the grid

refinement remains localized to a small volume around the jet, and the simulation cost can be eased by a relatively

coarse grid far from injection.

The removal of liquid structures from the Eulerian description is based on criteria of droplet size, sphericity and

local droplet concentration, as described in [10]. The volume of a candidate liquid structure is constrained to be less

or equal to a critical value,

,
3

4 3
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where Rmax is the maximum distance from the center of mass of the liquid blob of a cell centroid, and VL is the blob

volume. Largely deformed blobs are more probable to experience further break-up, which should be captured in the

Eulerian representation. So we ensure that the transformation can occur only when cri.

A maximum local spray concentration cri is also defined, below which the transformation to the Lagrangian

phase can occur. The local concentration is defined as the ratio of the total liquid volume in an AMR box to the

volume of the box. For the cases examined in the following Section, we observed limited sensitivity of the results to

variations of this parameter if cri ~ 0.01. The values used in this work are m = 4 and cri = 2.

The Lagrangian trajectories of the particles are tracked on the base grid flow velocity using a simple drag model

[12].

III. Results

The AR experiment used precision bore glass tubes to minimize the effects of surface roughness, with internal

diameter d0 = 0.635 mm. The impingement angle was 60° and the pre-impingement length lj = 25.4 mm. The PDPA

measurements at the spray fan centerline were taken 16 and 41 mm downstream of the impingement point. The

PDPA optical configuration was set to provide a 40 to 1,400 m range of drop diameters. The test liquid was water

(l = 998 kg/m3, surface tension = 0.076 N/m, and dynamic viscosity l = 0.0010 kg/m/s). The breakup length,

from the impingement point to the perceived breakup of the intact sheet, and the distance between adjacent

ligaments were estimated as averages extracted from 17 instantaneous images of the spray field, each image taken

with a diffuse strobe light and time duration of 5 s.

A snapshot of the simulation is shown in Figure 1, including the rendered zero level set iso-surface and the

Lagrangian droplets (in lighter color). In the plot, these point-like particles are given a spherical shape and rendered

with their effective diameter. Injection occurs in the y-z plane, with the z axis aligned in the common direction of the

two jets. To reduce the overall size of the computational domain, the bottom plane (at z = 0) is not the injection wall

of the experiment, but rather truncates the two liquid columns at the pre-impingement length lj = 4 mm. Outflow

boundary conditions are enforced on all the other planes. The injection velocity consists of a plug flow profile,

without inner turbulence effects. While the effects of injection turbulence should be examined in more detail, the

exclusion of its effects isolates the role of fluid dynamic instability in sheet breakup. The overall box size is 16 by

12 by 24 mm, and droplets are sampled at a plane 16 mm past the impingement point.
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Figure 1. Isometric view of the impinging jets.

A. Low- velocity injection case

The injection velocity in this case is vjet = 6.4 m/s. In Figure 2, the snapshot side view of the liquid sheet past the

impingement (left) can be compared with a snapshot of the experiment (right) at the same conditions and on the

same length scale. The calculation is carried out with two levels of refinement, corresponding to a minimum grid

spacing of 31.25 m. In both pictures, waves propagate radially from the impingement point, with tears along the

intact sheet that deepen until they detach thin ligaments from the periphery of the sheet. The rendered zero level set

iso-surface in Figure 2a does not actually provide a sense of the thickness of the sheet, but further inspection and the

comparison with snapshots from the experiment reveals the existence of very thin membranes, where tearing

initiates, and of thicker crests between them.

It can be expected that a breakup length based on the perception of continuity of the liquid sheet is strongly

dependent on the capability by the interface-capturing algorithm of resolving a very thin membrane. The measured

sheet breakup length reported in the AR paper was 10 mm, with standard deviation of ±2.5 mm. The average length

estimated from 12 simulation snapshots is 7.9 ±1 mm. This value is at the low end of the range of measured sheet

breakup lengths.
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The atomization frequency in the AR results was defined as the ratio of sheet velocity to the spacing of detached

ligaments. Since the maximum ligament spacing found from the calculation snapshots is 1.9 mm, the corresponding

frequency, 3,400 Hz, falls well within the error band reported for this injection velocity.

The ligaments fracture rather quickly after forming, and their fragments equilibrate into almost spherical droplets

that carry the residual momentum of the jet. The largest drops can be found near the centerline of the fan, while

smaller droplets are located at its periphery. Because of the parameters used in the simulation (cri ~ 0.01; m = 4; cri

= 2), several droplets near the centerline are never switched to Lagrangian particles.

(a) (b)

Figure 2. Low-velocity injection case. A side view of the liquid sheet past the impingement point is shown.

B. High-velocity injection

The injection velocity in this case is vjet = 18.5 m/s. A snapshot side view of the liquid sheet past the

impingement point is shown in Figure 3, where calculation with decreasing xeff (the minimum x from the given

number of refinement levels) in frames (a), (b), and (c) can be compared with a snapshot of the experiment at the

same conditions and on the same length scale in frame (d). The calculation in frame (a) shows a very modest liquid

sheet and almost no ligaments, substituted by the large spherical particles of their Lagrangian representation. It can

be argued that such a low grid resolution is insufficient to capture the basic atomization mechanism of sheet

formation and breakup. The addition of a refinement levels leads to a substantial improvement in the appearance of

the liquid sheet, which is now longer and broader. To give an idea of the computational cost involved, at the steady-
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state conditions where the snapshot was taken the central processor unit (CPU) time was approximately 150 seconds

per time step (t = 0.66 s) on two 8-core, 32 Gb, 3,000 MHz nodes with InfiniBand switch. By adding one more

refinement level, the appearance of the calculation still evolves and reveals longer and more arched ligaments.

However, the droplet sizes near the measurement plane, at the right-hand side of the plots, appear very similar in

frames (b) and (c). This suggests that, as far as the far-field spray is concerned, the size distribution could be

approaching convergence. This outcome is confirmed by the following analysis.

(a) (b)

(c) (d)

Figure 3. High-velocity injection case. Side view snapshots of the simulation are shown with (a) minimum x

= 62.5 m (1 level of refinement), (b) x = 31.25 m (2 levels of refinement) and (c) x = 15.625 m (3 levels of

refinement). Frame (d) is a snapshot of the AR experiment at the same injection condition.
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In Figure 4, the normalized histograms of droplet size distribution at the center of the z = 20 mm sampling plane

are compared with the PDPA measurements at z = 41 mm from [6]. The three frames in the figure correspond to the

three refinement levels discussed above. As expected, the droplets resulting from the coarsest simulation are too

large, peaking at around 200 m, whereas the distributions in frames (b) and (c) are in good agreement with the

data. In frame (b), droplets were sampled between 5.24 and 6.58 ms to exclude initial startup effects, for a total of

1086 samples. A lower number of samples (480) is currently available for the highest resolution calculation in frame

(c).
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Figure 4. High-velocity injection. Comparison of the density distribution of droplet size from the AR

experiment (symbols) and from the simulation: (a) 1 level of refinement with minimum x = 62.5 m; (b) 2

levels of refinement with minimum x = 31.25 m; (c) 3 levels of refinement with minimum x = 15.625 m.

Compared to the low-velocity case, the ligaments still display a somewhat regular spacing near the core, whereas

droplets tend to disperse in an apparently more disorganized pattern in the far field. To establish whether the spray

flow rate exhibits any natural coherence, the field pressure was monitored at z = 8 mm (Probe 1) and z = 10 mm

(Probe 2) along the spray centerline. The resulting pressure time history, shown in Figure 5, registers an increase in

gauge pressure every time a liquid element crosses the probe point. The sequence of peaks in the two plots is

somewhat irregular, but still suggests a periodicity that is best revealed by the Fast Fourier Transform (FFT) of the

two signals, displayed in Figure 6. The largest peak for Probe 1 is found at 5,900 Hz, whereas the largest peak for

Probe 2 is at 4,400 Hz. These two values are at the lower end of the 6,000 to 8,000 Hz range that is reported for



American Institute of Aeronautics and Astronautics
11

atomization frequency. Based on the average value of this range and on the injection jet velocity, one finds a value

of ligament spacing of 2.6 mm. This length is marked as a white segment on the experiment snapshot of Figure 3d.
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Figure 5. Pressure time history at two centerline locations past film breakup: z = 8 (a) and z = 10 mm (b).
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Figure 6. FFT of the two pressure signals of the high-velocity AR experiment at z = 8 (a) and z = 10 mm (b).

The sampling frequency is 1.5·106 Hz.

Concluding the results analysis is a consideration on the predicted breakup length of the sheet. The AR value is

17.5 mm, almost twice the length of the low-velocity injection case, with an uncertainty band of ±2.5 mm. On the

snapshot of Figure 3d, the sheet extends from the impingement point for about two thirds of the field of view,

spanning what could possibly be disconnected ligaments. Based on the same criterion, the intact sheet length from
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the calculation increases to 10, possibly 11 mm at the highest grid resolution. These values are at the low end of the

AR uncertainty band, and this is encouraging, considering the somewhat subjective nature of the estimated length.

IV. Remarks and conclusion

The apparent periodic nature of liquid sheet breakup suggests a form of fluid dynamic instability. The linear

temporal stability analysis by Dombroski and Johns [13] – as applied to a thinning, two dimensional viscous liquid

sheet – leads to a quadratic dispersion relation including surface tension and aerodynamic forces.

High-fidelity calculations can assist in the analysis by providing a reference thickness and sheet velocity. In

examining slices cut along the mid-plane of the computational domain, the sheet velocity appears remarkably close

to the injection value. See Figure 7. Also close are the thicknesses of the two cases – approximately 0.2 mm in the

low-velocity case and 0.25 mm in the high-velocity case. Clearly visible are long waves (larger than thickness) sheet

oscillations that could be linked to ligament formation. Estimates of sheet velocity and thickness from the

simulations are sufficient to determine the most unstable wave length in the inviscid analysis of a constant thickness,

infinite sheet undergoing a sinuous mode [14]. The values calculated at the nominal jet injection velocity and for the

thicknesses reported above are 1.2 and 1.5 mm, for the low- and high- velocity case, respectively. While these

values are smaller than the spacing reported in the AR papers as derived from the atomization frequencies on Table

1 (approximately 1.6 and 2.7 mm), they seem to capture the correct increasing trend with increasing injection

velocity.

As the last result, a demonstration of two immiscible liquid jets (water and oil) impinging at 60° is shown in

Figure 8. As it is apparent from the bottom row of the figure, the lower momentum of the oil – since the injection

velocities are the same and oil = 910 kg/m3 – causes the tilting of the spray fan away from the water side. The

droplet penetration to the far side of the opposing species illustrates the mixing potential of such atomizers. Whether

waves develop in the spray fan similar to those in the like-on-like case needs to be further investigated.

Computationally, this calculation requires the simultaneous update of two independent sets of the level set and

volume of fluid functions, as well as the tracking of the Lagrangian droplets for both liquids. In addition to the

properties of the two liquids, the surface tension of one liquid with respect to the other needs to be input in the

calculation. The values used in the calculation are water = 72.6 mN/m, oil = 28.2 mN/m, and w-o = 44.5 mN/m.

Note that in this formulation the flow field of the gas phase is still included in the simulation. Also, without
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modifications of the original CLSVOF algorithm, the sum of the volume fraction of the two liquids is found to be

bounded by unity with good approximation. To the author’s knowledge, this is the first demonstration of such multi-

material capability in the spray modeling area.

(a) (b)

Figure 7. Contour plot of vertical velocity along the center plane slice for the low- and high-injection velocity

cases (frames (a) and (b), respectively). Velocities are normalized by 10 m/s.

This case concludes for the moment the description of the effort in applying the CLSVOF methodology as a

tool for predicting impinging spray atomization, through addition of new physics and its validation. Extensions

presented in this paper include coupling to a Lagrangian dispersed phase model for post-breakup tracking of

droplets, and multiple level-set / volume-of-fluid functions for tracking of surfaces from multiple species. So far, the

salient features of the spray fan breakup and ligament frequencies have shown agreement with both the trends and

magnitudes of the corresponding experimental results.
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Figure 8. Two jets of immiscible liquids – water (blue) and oil (orange) – impinging at the same velocity with

60° angle.
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