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Abstract

A moment of fluid method is presented for computing solutions to incom-
pressible multiphase flows in which the number of materials can be greater
than two. In this work, the multimaterial moment-of-fluid interface repre-
sentation technique is applied to simulating surface tension effects at points
where three materials meet. The advection terms are solved using a direc-
tionally split cell integrated semi-Lagrangian algorithm and the projection
method is used to evaluate the pressure gradient force term. The underlying
computational grid is a dynamic block structured adaptive grid. The new
method is applied to multiphase problems illustrating contact line dynamics,
triple junctions, and encapsulation in order to demonstrate its capabilities.
Examples are given in 2D, 3D axisymmetric (R-Z), and 3D (X-Y-Z) coordi-
nate systems.
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reconstruction, Interface advection, contact line dynamics, triple junctions,
gas-liquid jet flow, droplet impact, droplet collision

1. Introduction

Multiphase flow plays an important role in many technical applications
including ink-jet printing, spray cooling, icing, combustion and agricultural
irrigation. The instability of the interface, mass and heat transfer across
the interface, and phase change make multiphase flow problems challeng-
ing. Theoretical studies of multiphase flows are mainly based on linear the-
ories (Rayleigh, 1878; Taylor, 1963) but yet most phenomena in multiphase
flows display nonlinear feedback mechanisms. Modern experimental studies
employ high-speed cameras, pulsed shadowgraph, and holograph techniques
(Sallam et al., 1999, 2004; Palacios et al., 2010) in order to understand the
complex processes in multiphase flows, nonetheless, it is still very difficult to
capture the detailed flow fields.

Computational fluid dynamics (CFD) has the potential to increase ones’
understanding of multiphase flow phenomena by allowing one to investigate
flow fields deeply embedded within materials, study the effect of random fluc-
tuations, and allowing one to precisely control initial and boundary condi-
tions. Quantities such as interface surface area, streamlines, stress fields, and
vorticity are easily extracted from CFD simulations. Three major challenges
exist for the accurate and efficient computation of multiphase flows. First,
the density and viscosity ratios between different phases can be high and it
is difficult to accurately calculate the flux during the momentum advection
(Raessi, 2008; Raessi and Pitsch, 2009). Second, surface tension takes effect
only at the interface between different phases and this singularity may cause
problems when solving the Navier-Stokes equations (Brackbill et al., 1992;
Desjardins et al., 2008). Third, the drastic change of interface topology and
disparity in length scales make interface capturing and interface advection
challenging (Ménard et al., 2007; Li et al., 2010).

Among the different interface capturing methods, the volume-of-fluid
(VOF) method (Hirt and Nichols, 1981; Brackbill et al., 1992; Pilliod Jr
and Puckett, 2004) , the level set method (Osher and Sethian, 1988; Suss-
man et al., 1994, 1998, 1999; Osher and Fedkiw, 2001) and their derivatives
are widely used.

The VOF method tracks the volume fraction function within each com-
putational grid cell. The interface is reconstructed and advected based on
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the volume fraction function information. The benefit of VOF methods is
that there have been devised either directionally split advection algorithms
Rudman (1998); Scardovelli and Zaleski (2003); Jemison et al. (2013); Wey-
mouth and Yue (2010) or unsplit advection algorithms (Liovic et al., 2006;
Chenadec and Pitsch, 2013; Jemison et al., 2015) which have excellent volume
preservation properties.

The level set method uses a smooth distance function to implicitly rep-
resent the interface. On the one hand, the level set method is amenable to
computing flows with surface tension effects since the distance function is
smooth across the interface, on the other hand, volume conservation for the
level set method is not guaranteed, even if the level set advection equation is
discretized in conservation form. The coupled level set and volume-of-fluid
(CLSVOF) method (Sussman and Puckett, 2000; Son and Hur, 2002; Suss-
man, 2003; Ménard et al., 2007; Wang et al., 2009) has also been developed.
Even though the specific implementations of CLSVOF methods vary, the
overriding theme of CLSVOF methods is that they maintain the advantages
of both the level set method and the VOF method in simultaneously con-
serving volume and accurately capturing the interface (Sussman and Puckett,
2000; Wang et al., 2009).

Recently, the moment of fluid (MOF) method (Dyadechko and Shashkov,
2005; Ahn and Shashkov, 2007; Dyadechko and Shashkov, 2008; Ahn and
Shashkov, 2009; Ahn et al., 2009; Jemison et al., 2013, 2014, 2015) has been
developed. In addition to the volume fraction function used in the VOF
method, the MOF method considers the material centroid information in
the interface reconstruction process and can be considered a generalization
of the VOF method. The MOF interface reconstruction is completely local
because of the introduction of centroid information. This feature enables the
MOF method to capture corners and sheets significantly better than the VOF
method for passively advected flows. Results of benchmark tests comparing
MOF to VOF and CLSVOF are reported in (Kucharik et al., 2010; Wang
et al., 2012; Jemison et al., 2013). A further advantage of the moment of
fluid representation is that the added centroid information enables the MOF
method to straightforwardly reconstruct any number of materials, i.e. two or
more, in a given cell, conserving volume of each material (Ahn and Shashkov,
2007; Jemison et al., 2015).

We remark that there have previously been developed the following VOF
triple junction reconstruction algorithms: the “onion skin” approach in which
the materials do not intersect (Sijoy and Chaturvedi, 2010), the material or-
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der independent weighted Voronoi diagram (also known as a power diagram)
approach for 2D reconstruction of triple points applied to static configura-
tions (Schofield et al., 2008), an optimization method for the localization of
the triple point applied to 2D passive transport problems (Caboussat et al.,
2008), and an improved material order independent weighted Voronoi dia-
gram approach in which a novel optimization procedure was developed for
determining interface(s) normals (Schofield et al., 2009).

We have taken the “nested dissection” MOF approach; if a computational
cell contains M materials, then there will be M − 1 linear cuts in the cell,
some cuts potentially intersecting previous cuts. The MOF algorithm can
reconstruct interface configurations where 3 materials meet at a single point,
albeit one of the angles separating 2 of the materials must be 90 degrees.

In this paper, we describe a novel method in which we use the MOF
multimaterial reconstruction algorithm in order to simulate incompressible
multiphase flow in two or three dimensions in which (i) two fluids with dis-
parate material properties can meet at a third rigid material (contact line
dynamics) and (ii) three fluids with disparate material properties meet at a
triple junction. As in (Jemison et al., 2014), we maintain and update the
velocity at both cell centers and face centers. The velocity is interpolated
from cell centers to face centers using mass weighting where the MOF recon-
struction determines the weights. Pressure is interpolated from cell centers to
face centers using the condition of constant contact, where again the weights
depend on the MOF reconstructed interface.

In what follows we describe our incompressible multi-phase MOF method,
and we describe the algorithm that we have developed for the simulation of
contact line dynamics and triple point dynamics. Example simulations are
given with validations through grid refinement studies and comparisons with
experiments and finally conclusions are drawn.

2. Governing equations

The governing equations for incompressible, immiscible, multiphase flows
are:

∇ · u = 0 (1)

∂φm
∂t

+ u · ∇φm = 0, m = 1, . . . ,M (2)
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∂u

∂t
+ u · ∇u = −∇pm

ρm
+
∇ · (2µmD)

ρm
+ g if φm(x, t) > 0 (3)

where φm is a level set function for material m and satisfies,

φm(x, t) =

{
> 0 x ∈ material m
≤ 0 otherwise

u = (u, v, w) is the velocity vector, t is the time, pm is the pressure for mate-
rial m, g is the gravitational acceleration vector, D is the rate of deformation
tensor,

D =
∇u + (∇u)T

2
,

and µm and ρm are the viscosity and density respectively for material m.
At material interfaces, if there is no mass transfer, the velocity for all

materials are the same. For two phase flow problems (M = 2), at a material
interface that separates material m1 from m2 (i.e. φm1(x, t) = φm2(x, t) = 0),
the stress will have the following jump condition due to the effect of the
surface tension force,

((−pm1I + 2µm1D)− (−pm2I + 2µm2D)) · nm1 = σm1,m2κm1nm1

where σm1,m2 is the surface tension coefficient, the normal that points from
material m2 into m1 is,

nm1 =
∇φm1

|∇φm1|
,

and the curvature is,

κm1 = ∇ · ∇φm1

|∇φm1|
.

An one-fluid formulation of (3) can be written as follows (Kim, 2007):

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (2µD) + ρg −

M∑
m=1

γmκm∇H(φm) (4)

where H(φ) is the Heaviside function defined as,

H(φ) =

{
1 φ ≥ 0
0 otherwise

, (5)
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the combined density ρ is,

ρ =
M∑
m=1

ρmH(φm),

the combined viscosity, µ, is,

µ =
M∑
m=1

µmH(φm),

and (3 material case):

γ1 =
σ12 + σ13 − σ23

2
(6)

γ2 =
σ12 + σ23 − σ13

2
(7)

γ3 =
σ13 + σ23 − σ12

2
(8)

3. Numerical method

We describe our numerical method for two dimensional problems, but the
method is straightforwardly generalizable to three dimensions.

3.1. Overview of the method

The numerical method, which is based on an approximate projection
method (Jemison et al., 2013), is given in the following list of steps. The
spatial discretization details for each step are explained in the ensuing sec-
tions.

1. At the beginning of the time step t = tn, and in each computational cell,

Ωi,j = {x : xi −∆x/2 < x < xi + ∆x/2, yj −∆y/2 < y < yj + ∆y/2},

the following variables are given: mass weighted average of velocity
(un

i,j), Discretely, divergence free velocity on MAC grid,

uMAC,n
i+1/2,j − u

MAC,n
i−1/2,j

∆x
+
vMAC,n
i,j+1/2 − v

MAC,n
i,j−1/2

∆y
= 0,

volume fraction, F n
m,i,j, and centroid, xnm,i,j, for each material m. Figure

1 illustrates our discretization.
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2.Advection: Referring to (4) and (2), the directionally split cell integrated
semi-Lagrangian (CISL) method is used to solve the following equa-
tions:

(ρu)t +∇ · (ρu⊗ u) = 0 (9)

(Fm)t +∇ · (uFm) = 0 (10)

The details of CISL advection are given in section 3.2.

3. Distance functions: Distance functions, φn+1
m,i,j, are derived from the

non-tessellating MOF reconstructed interface for each material m =
1, . . . ,M . The distance functions are used to approximate interface
curvature. See section 3.3.

4. Viscosity, gravity, surface tension: Referring to (4),

V = uadvect + ∆t
1

ρ

(
∇ · (2µD) + ρg −

M∑
m=1

γmκm∇H(φm)

)
(11)

See sections 3.4 and 3.5.

5. Approximate projection: A variable density approximate projection
algorithm is used to discretize the pressure gradient force,

un+1 = V −∆t
∇p
ρ
,

where p solves,

∇ · ∇p
ρ

=
1

∆t
∇ · V .

See section 3.6

6. The block structured adaptive grid is regenerated depending on the new
locations of material interfaces and then the algorithm returns back to
step 2.
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Figure 1: The volume fractions Fm, centroids xm (filled in circles), and cell
centered velocity, u, are cell averaged quantities, and the face centered veloc-
ity (filled in rectangles), uMAC , vMAC are face averaged quantities. There are
3 materials illustrated in this figure. The center coordinate of the illustrated
3x3 block of cells is (xi, yj).
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3.2. Directionally Split CISL Multiphase Advection

The CISL algorithm has three parts: (i) interface reconstruction, (ii)
momentum reconstruction, and (ii) mapping of reconstructed solution into
computational cells from a given cells’ preimage.

3.2.1. Moment of Fluid Interface Reconstruction

The moment-of-fluid method(Dyadechko and Shashkov, 2005; Ahn and
Shashkov, 2007; Dyadechko and Shashkov, 2008; Ahn and Shashkov, 2009;
Jemison et al., 2013) is used to represent material interfaces. For a compu-
tational cell Ωi,j, the volume fraction (zeroth order moment) and centroid
(first order moment) are:

Fm =
1

|Ωi,j|

∫
Ωi,j

H(φm(x))dx,

xm =

∫
Ωi,j

H(φm(x))xdx∫
Ωi,j

H(φm(x))dx
.

When there are two materials in a cell, the material interface is recon-
structed as a plane in three-dimensions (3D) and a line in two-dimensions
(2D). This interface representation is called the piecewise linear interface cal-
culation (PLIC). Take a 2D case for example, an interface Γ in cell Ωi,j is
represented by a straight line as shown in Fig. 2 using the following vector
form equation:

Γ = Ωi,j ∩ {x|n · (x− xi,j) + b = 0} (12)

where n is the interface unit normal vector, xi,j is the cell center of Ωi,j

and b is the distance from xi,j to the interface. Thus, the interface can be
constructed when the normal vector n and distance b are known.

In order to find the slope and intercept of the reconstructed plane (line in
2D), we use the reference volume fraction, Fref , and the reference centroid,
xcref . The reference volume fraction and centroid correspond to the real
interface which is not necessarily a straight line. The slope n and intercept
b are selected so that the actual volume fraction function Fact = Fact(n, b)
is equal to Fref and the actual centroid, xcact(n, b) is as close as possible to
xcref . In other words, n and b are chosen in order to minimize EMOF (13)
subject to the volume fraction constraint given in (14):

EMOF = ‖xcref − xcact(n, b)‖2 (13)
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n 

xi,j 

0 

y 

x 

Figure 2: The gas-liquid interface is represented by a straight line in 2D. The
square represents a computational cell and xi,j is the coordinate of the cell
center.
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|Fref − Fact(n, b)| = 0 (14)

An example of a real interface and the corresponding reconstructed inter-
face is illustrated in Fig. 3. The curved solid line in the left figure represents
the true interface and the dashed line in the right figure is the reconstructed
interface. In Fig. 3 xcref is the centroid of the reference interface whose vol-
ume fraction Fref is the blue area under the solid curved line, and xcact is
the computed centroid of the actual reconstructed interface whose volume
fraction Fact is the blue area under the dashed straight line.

 

n 

  

 x
c
act x

c
ref 

n 

  

 

(a)                                  (b) 

Figure 3: MOF interface reconstruction. The solid curved line on the left
represents the real interface and the dashed straight line on the right is the
reconstructed interface.

Since the normal vector n can be parametrized using the following equa-
tion

n =

 sin(Φ)cos(Θ)
sin(Φ)sin(Θ)

cos(Φ)

 (15)

EMOF becomes a function of angles Φ and Θ. Therefore, we need to find
(Φ∗,Θ∗) such that

EMOF (Φ∗,Θ∗) = ‖f(Φ∗,Θ∗)‖2 = min‖f(Φ,Θ)‖2 (16)
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where
f(Φ,Θ) = xcref − xcact(Φ,Θ)

The problem becomes a non-linear least square problem for (Φ,Θ). Eq. 16
is solved numerically by the Gauss-Newton algorithm and the detailed step-
by-step procedure is as follows:

0. choose initial angles (Φ0,Θ0) and set tolerance tol = 10−8∆x with ∆x
the grid size.

while not converged set k = 1

1. find bk(Φk,Θk) such that Eq. 14 holds

2. find centroid xck(bk,Φk,Θk)

3. find Jacobian matrix Jk of f evaluated at (Φk,Θk) and fk = f(Φk,Θk)

4. stop if one of the three conditions is fulfilled:

• ‖JTk · fk‖ < tol · 10−2∆x

• ‖fk‖ < tol

• k = 11

5. solve the linear least squares problem,

sk = argmins|Jks+ fk|2,

using the normal equations: JTk Jksk = JTk fk.

6. update the angles: (Φk+1,Θk+1) = (Φk,Θk) + sk
7. k := k + 1 and go back to step 1.

The detailed process for the minimization of Eq. 13 can be found in (Jemi-
son et al., 2013). Unlike the VOF method, the MOF interface reconstruction
method only uses information from the computational cell under consider-
ation. This property makes the MOF method more suitable for deforming
boundary problems with sharp corners, with slender filaments, or containing
greater than two materials. Also, the MOF reconstruction algorithm makes
itself more suitable for block structured dynamic adaptive mesh refinement
since conditions at coarse/fine grid interface can be interpolated from the
coarse grid using a stencil that does not depend circularly on the neighbor-
ing fine grid.

When there are greater than two materials in cell (M > 2) Ωi,j, the follow-
ing extension of the two-material MOF reconstruction procedure determines
M polygonal regions, Ωm, that tessellate Ωi,j (see Figure 4):
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1. Initialize p = 0 where p is a counter that represents, at any given iter-
ation, the number of materials (polygons) that have already been re-
constructed in cell Ωi,j. The uncaptured space in this cell is initialized
as,

Ωp
u = Ωi,j, (17)

where Ωi,j represents cell (i, j). The centroid of Ωp
u is denoted as xpu.

Tag all materials as “not defined.”

2. In the cell identify the material whose centroid (xmi,j) is furthest to the
uncaptured centroid xpu among all “not defined” materials, i.e.,

mp = argmax
m,Fmi,j>0,mnot defined|x

m
i,j − xpu|. (18)

3. Calculate the slope n̂ and intercept b that minimizes the centroid error
with the constraint that |Fmp

act (n̂, b)−Fmp

ref | = 0 and construct the MOF
interface. Ωmp is defined as:

Ωmp = Ωp
u ∩ {x|n̂ · (x− xi,j) + b ≥ 0} (19)

The Gauss-Newton method as written for the 2-material scenario is
used to solve the optimization problem. Tag material m as “defined.”

4. Update Ωp+1
u

Ωp+1
u = Ωp

u ∩ ΩComplement
mp (20)

5. Let p = p+ 1 and go back to step 2.

As a remark on determining volumes and moments of polygonal regions,
in contrast to earlier implementations of the Moment-of-Fluid Interface Re-
construction method that used a Gauss-Green discretization to compute vol-
umes and moments of polygonal regions (Ahn and Shashkov, 2007), our im-
plementation makes use of triangulation (tetrahedralization in 3D) to com-
pute reference volumes and reference centroids. Rectangular cells are sub-
divided into triangles. The intersection of two triangular (tetrahedral) re-
gions is expressed as the union of multiple triangular (tetrahedral) regions.
A lookup table is utilized to efficiently cut a triangle (tetrahedron) with a
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Figure 4: Illustration of volume preserving and tessellating MOF reconstruc-
tion with three materials; in order to conserve volume, the MOF reconstruc-
tion must tessellate a cell when it is used for advection (section 3.2.3). The
uncaptured region is initialized as the whole cell, Ω0

u = Ωi,j, and then progres-

sively reduced as each new material m fills the cell: Ωp+1
u = Ωp

u∩ΩComplement
mp .

The solid circles are the reference first order moments for each material.

linear (planar) interface and triangulate (tetrahedralize) the cut region. Vol-
ume of the cut region is then computed as the sum of the volumes of the
constituent triangles (tetrahedra). Since all polygonal (polyhedral) regions
are decomposed into triangles (tetrahedra), it is easy to compute moments.
For a given triangle (tetrahedra) T , the centroid xT is the average of its
vertices xj shown as follows:

xT =

∫
T x · dx∫
T dx

=
1

3

3∑
j=1

xj (21)

Any polygonal region P that we consider can be written as the union of N
triangles Ti,

P =
N⋃
i=1

Ti. (22)

If each triangle has volume Vi and centroid xTi , then the volume VP of the
region P is equal to the sum of the volumes of Ti and the centroid xP of P
is the volume-weighted sum of the centroids:

VP =
N∑
i=1

Vi (23)

xP =

∫
P x · dx∫
P dx

=

N∑
i=1

VixTi

VP
(24)
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3.2.2. MINMOD piecewise linear reconstruction of the momentum for each
material

Without loss of generality, we describe the piecewise linear, MINMOD
slope limited, momentum reconstruction procedure for directionally split
CISL advection in the x direction in cell Ωi,j:

1. Initialize momentum for material m from density and velocity:

Un
m,i′,j ≡ ρmun

i′,j i′ = i− 1, i, i+ 1

2. Initialize the slope for the linear reconstruction:

U ′i,j =

{
0 (D+U i,j)(D−U i,j) ≤ 0

SGN ·min(|D+U i,j

∆x
|, |D−U i,j

∆x
|) otherwise

D+U i,j ≡ U i+1,j −U i,j D−U i,j ≡ U i,j −U i−1,j SGN ≡ D+U i,j

|D+U i,j|

3. The slope limited reconstruction of the momentum for material m is
now:

Un
m,i,j(x) = (U ′)nm,i,j(x− xnm,i,j) + Un

m,i,j (25)

3.2.3. Directionally split mapping of reconstructed solution into a target cell
Ωi,j

We have implemented two different directional splitting advection algo-
rithms. The first directionally split algorithm that we implemented is based
on the alternating Eulerian-Implicit Lagrangian Explicit (EI-LE) algorithm
described in (Scardovelli and Zaleski, 2003) and (Aulisa et al., 2007). In two-
dimensions, we advect in the X direction first using Eulerian-Implicit (EI)
time discretization (backwards tracing) and then we advect in the Y direction
using the Lagrangian-Explicit (LE - forwards tracing) time discretization. In
3D, the advection ordering is X (EI), Y (LE), and Z (EI). The ordering is
reversed every time step so that in 2D, for this example, the next time step
would involve (EI) advection in the Y direction, followed by (LE) advection
in the X direction. The alternating approach exactly conserves volume for
each material in two dimensions, but not in three dimensions and not using
an axisymmetric R-Z coordinate system.

The second directionally split algorithm that we implemented follows the
algorithm described in (Weymouth and Yue, 2010). The approach advects
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in the X and Y (X-Y -Z in 3D) directions using the Eulerian Implicit (EI
- backwards tracing) scheme and then reverses the direction ordering at the
next time step. In a given cell Ωi,j, the Weymouth and Yue algorithm for
advection in 2D solves the following equations in which the initial condition
at time t = tn, F n, is given:

Fτ + (uF )x = 0 0 ≤ τ ≤ ∆t
Fτ + (vF )y = 0 ∆t ≤ τ ≤ 2∆t

if F n
i,j < 1/2

Fτ + (uF )x = ux 0 ≤ τ ≤ ∆t
Fτ + (vF )y = vy ∆t ≤ τ ≤ 2∆t

if F n
i,j ≥ 1/2

Remarks:

• If the face velocity is discretely divergence free, then the EI-LE method
is free stream preserving and conserves volume exactly in 2D.

• If the face velocity is discretely divergence free, then the Weymouth
and Yue algorithm preserves volume exactly in 2D, 3D axisymmetric,
and 3D coordinate systems. Albeit, the Weymouth and Yue algorithm
has a more stringent time step constraint in 3D,

|U |∆t < ∆x

6
,

than for the EI-LE approach,

|U |∆t < ∆x

2
.

Here we illustrate the details for the backwards projection and forwards
projection, but only in the x direction. The CISL algorithm in the y and z
directions is carried out analogously.

For backwards tracing of characteristics, the CISL mapping function is,

TCISLi,j (x, y) = (αx+ β, y)

in which α and β are chosen so that,

TCISLi,j : Ωdepart
i,j → Ωtarget

i,j ,
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where,

xLeft = xi−1/2 −∆tui−1/2

xRight = xi+1/2 −∆tui+1/2

Ωdepart
i,j = {(x, y)|xLeft < x < xRight, yj−1/2 < y < yj+1/2}

Ωtarget
i,j = {(x, y)|xi−1/2 < x < xi+1/2, yj−1/2 < y < yj+1/2}

α =
∆x

xRight − xLeft
β = xi−1/2 − αxLeft.

For forwards tracing of characteristics, the mapping function is a piecewise
linear function broken up into three parts, i′ = −1, 0, 1:

TCISLi,j (x, y) =


T̃CISLi−1,j (x, y) if T̃CISLi−1,j (x, y) ∈ Ωi,j

T̃CISLi,j (x, y) if T̃CISLi,j (x, y) ∈ Ωi,j

T̃CISLi+1,j (x, y) if T̃CISLi+1,j (x, y) ∈ Ωi,j

T̃CISLi+i′,j (x, y) = (αx+ β, y)

xLeft = xi+i′−1/2 + ∆tui+i′−1/2

xRight = xi+i′+1/2 + ∆tui+i′+1/2

α =
xRight − xLeft

∆x
β = xLeft − αxi+i′−1/2.

In Figures (5) and (6) we illustrate the backwards and forwards tracing
of characteristics respectively. In Figure (5), the departure region,

Ωdepart
i,j ≡ (TCISLi,j )−1(Ωi,j),

is intersected with each reconstructed (polygonal) material region in neigh-
boring cells; this is denoted by V n

−1,i and V n
0,i in Figure (5). Then these

material regions, and the momentum within these regions, are mapped for-
ward under the action of TCISLi,j in order to form the material regions at the
new time:

V n+1
−1,i = TCISLi,j (V n

−1,i)

V n+1
0,i = TCISLi,j (V n

0,i)
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So, for either the forwards or backwards tracing algorithm, we solve the
volume fraction equation (10), centroid equation, and momentum advection
equation (9), as follows:

F n+1
m,i,j =

∑1
i′=−1 |TCISLi,j (Ωn

m,i+i′) ∩ Ωi,j|
|Ωi,j|

(26)

xn+1
m,i,j =

∑1
i′=−1

∫
TCISLi,j (Ωn

m,i+i′ )∩Ωi,j
xdx

F n+1
m,i,j|Ωi,j|

(27)

uadvect
m,i,j =

∑1
i′=−1

∫
Ωn
m,i+i′∩(TCISLi,j )−1(Ωi,j)

Un
m,i+i′,j(x)dx∑1

i′=−1 ρm|Ωn
m,i+i′ ∩ (TCISLi,j )−1(Ωi,j)|

(28)

3.3. Distance functions

In order to approximate the curvature of interfaces (see section 3.5),
signed distance functions φm,i,j are constructed. φm,i,j is the signed distance
from the center of cell Ωi,j, xi,j, to the piecewise linear (planar in 3D) “tessel-
lating” (in the vicinity of contact lines) or “non-tessellating” (in the vicinity
of triple junctions) moment of fluid reconstructed material m interface (See
Figure 7). The sign is positive if xi,j ∈ Ωm,i,j and negative otherwise.

At a triple point in cell Ωi,j, the “non-tessellating” moment of fluid re-
constructed interface is formed as follows (see Figure 7):

For each material m (m = 1, . . . ,M) if Fm > 0 then we find the slope n̂
and intercept b that minimizes the centroid error with the constraint
that |Fm

act(n̂, b)− Fm
ref | = 0.

The Gauss-Newton method as written in Section 3.2.1 is used to solve the
optimization problem. The minimization problem is carried out assuming, for
eachm = 1, . . . ,M , that the uncaptured space Ωu (17) is the whole cell: Ωu =
Ωi,j. In comparing Figure 4 to Figure 7, we illustrate the difference between
the MOF reconstruction that tessellates a cell and the MOF reconstruction
that is not required to tessellate a cell.

Once the piecewise linear (planar in 3D) interfaces are reconstructed, then
we find the exact signed distance to these reconstructed interfaces(Sussman
and Puckett, 2000).

Remarks:
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Figure 5: Backward projection for the directionally split method. The dashed
rectangle in (b) represents the departure region (Ωdepart

i ). We denote the
departure region of material m as Ωdepart

m,i = V n
−1,i ∪ V n

0,i which is shaded in
(b). V n

−1,i and V n
0,i are the intersection of the departure region with material

m in cell i−1 and i, respectively, i.e., V n
−1,i ≡ Ωn

m,i−1∩Ωdepart
i and V n

0,i ≡ Ωn
m,i∩

Ωdepart
i . xn−1,i and xn0,i are the centroid of regions V n

−1,i and V n
0,i, respectively.

The target region of material m is denoted as Ωtarget
m,i = V n+1

−1,i ∪ V n+1
0,i which

is shaded in (a). The overall target region in (a) is cell i and we denote this
as Ωtarget

i
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Figure 6: Forward projection for the directionally split method. The dashed
rectangles in (b) represent the target regions (Ωtarget
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i ). The de-

parture regions are cells i− 1 and i in (a). The departure regions of material
m in cells i− 1 and i are Ωn

m,i−1 and Ωn
m,i, respectively. The target regions of

material m are T̃CISLi−1 Ωn
m,i−1 and T̃CISLi Ωn

m,i. Vm,−1 and Vm,0 are the overlap-

ping regions of the target regions with cell i, i.e., Vm,−1 ≡ T̃CISLi−1 (Ωn
m,i−1)∩Ωi,

and Vm,0 ≡ T̃CISLi (Ωn
m,i) ∩ Ωi
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• As in (Arienti and Sussman, 2014), the signed distance functions φm
representing fluid materials are extrapolated into rigid boundaries. When
creating the signed distance to material m, where m represents a fluid,
we ignore interfaces that separate m from rigid boundaries. The ex-
trapolated value of φm,i,j, where xi,j is inside of a rigid body material,
is taken as the value of φm,i′,j′ where xi′,j′ is the closest cell outside of
the rigid body to xi,j. See Figure 8.

• It is possible for φm to be positive for more than one value of m and it is
also possible that φm < 0 for all values of m, so in computational cells
Ωi,j containing a triple junction, we project these distance functions to
tessellating distance functions as follows:

φm ←


φm if φm ≥ 0 and m = argmaxm′Fm′
φm if φm < 0 and m 6= argmaxm′Fm′
−ε∆x if φm ≥ 0 and m 6= argmaxm′Fm′
ε∆x if φm < 0 and m = argmaxm′Fm′

m = 1, . . . ,M(29)

We assign ε = 0.01 in all of our sample calculations.

3.4. Viscosity forces

The viscosity force, F viscous, is discretized using a sub-cycling algorithm
(Wang et al., 2012):

1. Determine the number of sub-cycling steps, K, such that the following
stability condition is satisfied:

∆t

K
≤ max

m=1,...,M

ρm
2DIMµm

∆x2

2. u(0) = uadvect

3. For k = 1, . . . , K,

u(k) = u(k−1) +
∆t

K

∇ · (2µn+1D(k−1))

ρn+1
(30)

4. F viscous = (u(K) − uadvect)/∆t.

Remarks:
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Figure 7: TOP: Signed distance functions φm are the exact signed distance
to the piecewise linear non-tessellating Moment-of-Fluid reconstructed inter-
face. φm are used to find the curvature (section 3.5). MIDDLE: Illustration
of non-tessellating MOF reconstruction. The uncaptured region for each new
material is always the whole cell: Ωu = Ωi,j. The solid circles are the refer-
ence centroids for each material. BOTTOM: The non-tessellating distance
functions are projected onto tessellating distance functions in cells containing
a triple junction (29).
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Figure 8: When constructing the distance functions φ1 and φ2 outside of
the rigid boundary (φ3 < 0), the rigid boundary interface is ignored. The
thin dashed lines represent the closest distance to the interface separating
materials 1 and 2. The values of φ1 and φ2 where φ3 ≥ 0 are extrapolated
from the nearest cell in which φ3 < 0 (thick dashed lines). The extrapolated
fluid interface is the thick solid line.
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• ρn+1 (30) is written in terms of the volume fractions in multimaterial
cells Ωi,j:

ρn+1
i,j =

M∑
m=1

ρmF
n+1
m,i,j (31)

• µn+1 (30) is written in terms of the half volume fractions at multima-
terial faces Ωi+1/2,j:

µi+1/2 =
Ωi+1/2,j∑M

m=1
1
µm

(
|Ωm

i,j ∩ Ωi,R|+ |Ωm
i+1,j ∩ Ωi+1,L|

) .
The regions, Ωi+1/2,j, Ωi,R, and Ωi+1,L are illustrated in Figure 13 below.

• The spatial discretization of D(k−1) = (∇u(k−1) + (∇u(k−1))T )/2 is the
same as that described in section 3 of (Stewart et al., 2008) in which
all terms are discretized using second order central differencing except
for the coupling terms in the vicinity of interface(s) separating multiple
materials.

3.5. Surface Tension

The spatial discretization of the surface tension force corresponds to the
ghost fluid method (Kang et al., 2000) when two materials are present. The
surface tension force,

−∆t
σκ∇H
ρ

,

is discretized at cell faces as,

FMAC,tension
i+1/2,j ≡ −∆t

σκi+1/2,j (H(φi+1,j)−H(φi,j))

ρn+1
i+1/2,j∆x

, (32)

where H(φ) is the Heaviside function (5), φ is a signed distance function and
κi+1/2,j is the curvature at the point on the interface that crosses inbetween
cells Ωi+1,j and Ωi,j. ρn+1

i+1/2,j ≡ (ρi,R + ρi+1,L)/2 is the density for the face
control volume Ωi+1/2,j. ρi,R and ρi+1,L are half cell densities (see (46) and
(47)).
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The surface tension force is discretized at cell centers as,

F tension
i,j ≡

ρi,RFMAC,tension
i+1/2,j + ρi,LF

MAC,tension
i−1/2,j

2ρn+1
i,j

. (33)

The level set height function method (Arienti and Sussman, 2014; Suss-
man and Ohta, 2009) is used to approximate the curvature, κi+1/2,j, away
from triple points and contact lines. Referring to Figure 9, κi+1/2,j in (32) is
approximated as follows:

κi±1/2,j =

{
κi,j |φi,j| < |φi±1,j|
κi±1,j otherwise

(34)

h′′ ≈ hi+1 − 2hi + hi−1

∆x2
h′ ≈ hi+1 − hi−1

2∆x
(35)

κi,j =
−h′′

(1 + (h′)2)3/2
(36)

If the 3x3 stencil about cell (i, j) in (34) contains a third material, then
κi+1/2,j is approximated using central difference techniques:

Stencil contains rigid boundary Referring to Figure 11, if the 3x3 sten-
cil contains a 3rd rigid material, m = 3, then we approximate the
curvature κi,j in (34) as follows:

κi,j = ∇ · (H(φ3)nghost + (1−H(φ3))n) (37)

H(φ3)i+1/2,j+1/2 =

{
0 φ3,i+i′,j+j′ ≤ 0, all i′, j′ = 0, 1
1 otherwise

(38)

nghost is defined as follows (see (Arienti and Sussman, 2014)):

φ̃ ≡ φ1 − φ2

2

n3 = − ∇φ3

|∇φ3|
n =

∇φ̃
|∇φ̃|

t1 = n3 × n t2 = n3 × t1

n̄ghost = sign(n3 · t2) sin(θ)
t2

|t2|
− cos(θ)n nghost =

n̄ghost

|n̄ghost|
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Stencil contains 3rd fluid Referring to Figure 10, if the 3x3 stencil con-
tains a 3rd fluid, m = 3, the distance functions, φ1 and φ2, are linearly
interpolated to the 3x3 stencil centered at the point (i+ θ, j) where,

θ =
|φ̃i,j|

|φ̃i,j|+ |φ̃i+1,j|
φ̃ ≡ φ1 − φ2

2
. (39)

Then we discretize the curvature using central differences,

κi+1/2,j =
γ1∇·

∇φ1
|∇φ1|

−γ2∇·
∇φ2
|∇φ2|

σ12
,

where γ is defined in (6-7). ∇φ is discretized at the nodes surrounding
cell (i+ θ, j); e.g.

(φx)i+θ+1/2,j+1/2 ≈
φi+θ+1,j + φi+θ+1,j+1 − φi+θ,j − φi+θ,j+1

2∆x
(40)

Figure 9: The level set height function method is used to approximate the
curvature of the interface. The square symbols are located at the zero cross-
ings of φ; e.g. hi = (1− θi,j+1/2)yj + θi,j+1/2yj+1 where θi,j+1/2 ≡ |φi,j |

|φi,j |+|φi,j+1| .
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Figure 10: Illustration of the 3x3 stencil used to calculate the curvature
κi+1/2,j when the stencil contains a 3rd fluid material (material 3 in this dia-
gram). (i+θ, j) is the Γ1,2 interface crossing between cells (i, j) and (i+1, j)
(θ = |φ̃i|/(|φ̃i|+ |φ̃i+1|), φ̃ = (1/2)(φ1 − φ2)). Given a 4x3 stencil of distance
function values, φi+i′,j+j′ , i

′ = −1, . . . , 2, j′ = −1, 0, 1 (open circles), the dis-
tance functions are first interpolated to a 3x3 stencil (filled circles) centered
at (i + θ, j). Then given the 3x3 stencil of values for the distance func-
tions φi+θ+i′,j+j′ , i

′ = −1, 0, 1, j′ = −1, 0, 1, the central difference curvature
discretization technique is used (see (40)).

27



Figure 11: Illustration of the 3x3 stencil used to calculate the curvature
κi when the stencil contains a rigid material (material 3). Given the 3x3
stencil of values for the distance function φ̃i+i′,j+j′ , i

′ = −1, 0, 1, j′ = −1, 0, 1
(φ̃ ≡ (1/2)(φ1−φ2)), the central difference curvature discretization technique
is used (see (37)). φ3 and φ̃ are defined at the closed circles and the normals
nghost and ñ are defined at the open circles.
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3.6. Approximate projection method

Given the cell centered velocity field, V ,

V = uadvect + ∆t
(
F viscous + F tension + g

)
we “approximately” project this velocity field onto the space of divergence
free velocity fields.

1. Interpolate V from cell centers to cell faces,

V MAC = I(V − F tension) + FMAC,tension (41)

where I is a momentum preserving interpolation operator (Kwatra
et al., 2009; Jemison et al., 2014) and the discretized surface tension
forces, F tension and FMAC,tension, are defined above by equations (32)
and (33).

2. Project V MAC exactly onto the space of discretely divergence free velocity
fields:

uMAC,n+1 = V MAC −∆t
∇p
ρn+1

(42)

∇ · ∇p
ρn+1

=
∇ · V MAC

∆t
(43)

3. Interpolate the pressure p found in (43) from cell centers to face centers
using the condition of constant contact (Kwatra et al., 2009; Jemison
et al., 2014) and then update the new cell centered velocity:

u = V −∆t
∇pMAC

ρn+1
. (44)

Remarks:

• We call our method an “approximate projection method” (Almgren
et al., 1996; Jemison et al., 2013) because, although the process of
deriving uMAC,n+1 from V MAC is an exact projection(Chorin, 1968;
Bell et al., 1989), i.e.,

uMAC,n+1 ≡ PMACV MAC PMAC = (PMAC)2 PMAC ⊥ I − PMAC ,
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the process of deriving un+1 from V is not an exact projection. In
other words, if we implicitly define P as,

un+1 ≡ PV ,

it is not necessarily true that P = (P)2 or that P ⊥ I − P .

• The interpolation operator I (41) is a mass weighted interpolation from
cell control volumes to face control volumes. The cell, Ωi,j, is separated
into left and right control volumes, e.g., Ωi,L and Ωi,R for interpolating
the horizontal velocity. The interpolation of cell centered velocity to
cell faces should respect conservation of momentum, so it is required
that the integral over all face centered control volumes (45) be equal to
the integral over all cells. We define the face control volume Ωi+1/2 as

Ωi+1/2 = Ωi,R ∪ Ωi+1,L (45)

where Ωi,R is the right half control volume of cell i and Ωi+1,L is the
left half control volume of cell i + 1 as illustrated in Figure 12. The
density over each half control volume is derived from the MOF linearly
reconstructed interface:

ρi,R =
1

|Ωi,R|

M∑
m=1

|Ωm,i ∩ Ωi,R|ρm (46)

ρi+1,L =
1

|Ωi+1,L|

M∑
m=1

|Ωm,i+1 ∩ Ωi+1,L|ρm (47)

The face centered density ρi+1/2 is defined as the mass in the half-
cell regions Ωi,R and Ωi+1,L divided by the volume of the face-centered
control volume Ωi+1/2 (48),

ρi+1/2 =
ρi,R|Ωi,R|+ ρi+1,L|Ωi+1,L|

|Ωi+1/2|
. (48)

The face centered velocity that is to be projected (41) is now defined
as a mass-weighted interpolation of the cell centered velocity that is to
be projected, e.g.,

ui+1/2 =
uiρi,R|Ωi,R|+ ui+1ρi+1,L|Ωi+1,L|

ρi+1/2|Ωi+1/2|
. (49)
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• The finite volume method is used to discretize (43). For example,

(∇ · V MAC)i,j ≈
ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆y

(px/ρ)i+1/2,j ≈
pi+1,j − pi,j
ρi+1/2,j∆x

• The cell-averaged momentum is updated in a conservative fashion (44).
It is required to interpolate the cell centered pressure to the cell faces.
As in (Kwatra et al., 2009; Jemison et al., 2014), we define the momen-
tum equation in each half cell region, Ωi,R and Ωi+1,L:

Dui,R
Dt

=
un+1
i,R − u∗i,R

∆t
= −

pi+1/2 − pi
ρi,R∆x/2

(50)

and

Dui+1,L

Dt
=
un+1
i+1,L − u∗i+1,L

∆t
= −

pn+1
i+1 − pn+1

i+1/2

ρi+1,L∆x/2
. (51)

We apply the constraint that the interface between cells must remain in
contact (Kwatra et al., 2009); i.e.

Dui,R
Dt

=
Dui+1,L

Dt
. Using this constraint

and Equations (50 - 51), the pressure at the cell face pi+1/2 (52) is found:

pi+1/2 =
ρi,Rpi+1 + ρi+1,Lpi
ρi,R + ρi+1,L

(52)

The derivations of the half cell densities, ρi,R and ρi+1,L, are given by
(46) and (47). With pressure defined at cell faces, we can conservatively
update the cell-averaged momentum, e.g. for the horizontal velocity
(53):

un+1
i = u∗i −∆t

pn+1
i+1/2 − p

n+1
i−1/2

ρi∆x
(53)

4. Results and discussion

The time step, ∆t, is chosen according to the following scheme:

∆t = min(∆tadvect,∆ttension) (54)
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1/2i+Ω

iΩ 1i+Ω

,i RΩ 1,i L+Ω

Figure 12: Left and right control volumes Ωi,R, Ωi+1,L, with face-centered
control volume Ωi+1/2. Cell centers are shown as dots, and the boundary of
the face-centered control volume is shown as dashes.
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1/2i+Ω

iΩ 1i+Ω

,m iρ
, 1m iρ +

, ,m i i RΩ Ω , 1 1,m i i R+ +Ω Ω

,i Rρ 1,i Lρ +

Figure 13: To compute the half cell densities ρi,R and ρi+1,L in cut cells, the
MOF reconstructed interface is used to determine the half cell volume frac-
tions Fm, i, R and Fm, i+ 1, L, so that one can derive ρi,R =

∑
m Fm,i,Rρm,i

and ρi+1,L =
∑
m Fm,i+1,Lρm,i+1.
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∆tadvect = CFL
∆x

maxi,j |ui,j|
(55)

∆ttension = min
m,n

∆x3/2√
2πσm,n
ρm+ρn

(56)

If the Weymouth and Yue (Weymouth and Yue, 2010) directionally split
algorithm is used then,

CFL =
1

2DIM
, (57)

where “DIM” is 2 or 3. If the Eulerian Implicit, Lagrangian Explicit (EI-
LE (Aulisa et al., 2007; Scardovelli and Zaleski, 2003)) directionally split
algorithm is used, then CFL = 1/2.

We use dynamic block structured adaptive mesh refinement in order to
define the computational grid (Sussman et al., 1999; Sussman, 2005) (AMR).
A computational domain that is organized using AMR is made up of a hi-
erarchy of adaptive levels ` = 0, . . . , `max with each level being the union of
disjoint rectangular grids. Level ` = 0 is the coarsest level and the mesh size
on each finer level is half the mesh size of the preceding level, ∆x`+1 = ∆x`/2.

Referring to figure (14), filled circles represent cells or faces not hidden
by a finer mesh. Open circles are either hidden coarse level cells or faces or
fictitious fine grid cells. The solution at cells or faces corresponding to open
circles are interpolated from the solution at cells or faces corresponding to
filled circles. Coarse and fine levels are synchronized by “averaging down”
the fine level solution onto the coarser level. For example, the hidden coarse
grid cell value at cell “3” is the volume weighted average of the finer level
cells “5,” “6,” “7,” and “8.” It could be that the stencil for the fine level cell
“6” includes the fictitious fine level cell “9.” In this case, the fictitious cell
“9” value is interpolated from the coarse level values at cells “1,” “2,” “3,”
and “4.” The algorithm used for interpolating volume fraction and moment
data from coarse levels to fine levels, and the algorithm used for averaging
down volume fraction and moment data from fine level cells to hidden coarse
level cells is identical to that reported in (Jemison et al., 2013).

Momentum and pressure are interpolated from coarse to fine levels using
piecewise constant interpolation. This is in contrast to our recent work in
(Jemison et al., 2014), in which conservative minmod limited second order
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interpolation was used for momentum, and bilinear interpolation was used for
interpolating pressure from the coarse grid to fine grid ghost cells. The reason
we choose piecewise constant interpolation is because we find little difference
in accuracy when computing the example calculations in this paper, and the
piecewise constant interpolation for pressure leads to a symmetric matrix
system for discretizing (43) which can be inverted quickly(Duffy et al., 2012).
When piecewise constant interpolation is used for pressure, it is important
that the gravitational force is expressed as,

F gravity = ∇phydro(z), phydro(z) = gz (58)

and then the gradient operator in (58) is discretized the same as that in (42)
and (44).

We simulate the following cases using the proposed method to illustrate
its robustness and accuracy. These test problems are: (1) severe 2D and
3D deformation of three materials in a prescribed deformational flow field,
(2) relaxation to static shape for 2D droplet on a slope, (3) the liquid lens
triple point problem, (4) downward liquid jets, (5) upward liquid jets, (6)
Binary collision of two water drops (7) Binary collisions of a water drop and
a diesel drop (8) droplet impingement onto a thin liquid film, and (9) droplet
impingement onto a smooth solid wall.

4.1. Severe 2D and 3D multimaterial deformation in a prescribed deforma-
tional flow field

We first test our multimaterial reconstruction and advection algorithms
for interface deformation in a prescribed flow field. In the results that follow
we compare the computed solution to the exact solution using the symmetric
difference error. We define ΩC and ΩE to be the computed and exact regions
respectively of a deforming material in the domain. The symmetric difference
error is then,

Esym = |ΩC ∪ ΩE − ΩC ∩ ΩE|. (59)

(59) can also be defined as,

Esym =
∑
i,j

∫
Ωi,j
|H(n · (x− xi,j) + b)−H(φE(x))|dx. (60)

H is the Heaviside function (5), n and b are derived from the interface
reconstruction (12), xi,j is the center of the cell Ωi,j, and the zero level set
of φE(x) is the exact interface location.
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Figure 14: Illustration of a coarse/fine interface on an AMR grid. Filled
circles represent cells or faces not hidden by a finer mesh. Open circles are
either hidden coarse level cells or faces or fictitious fine grid cells.

We compute the symmetric difference error by approximating the integral
in (60) using adaptive quadrature.

4.1.1. 2D Single Vortex

In this test, a circle of radius R0 = 0.15 and center (0.5, 0.75) is placed
inside a unit sized box. The velocity field is given by the stream function
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Bell et al. (1989):

Ψ(x, y, t) =
1

π
sin2(πx) sin2(πy) cos(

πt

T
), (61)

where T = 8 is the period of the reversing vortical flow.
The resulting velocity field first stretches the circle into an ever thinner

filament that wraps around the center of the box, then after time t = T/2,
slowly reverses and pulls the filament back into the initial circular shape at
time t = T .

For this test we prescribe the velocity at the cell faces in terms of finite
differences of the exact stream function Ψ (61).

In table 1, we compare the error at t = T (T = 8), Esym (59), for the
following two cases: (i) Weymouth and Yue advection strategy(Weymouth
and Yue, 2010) in which the initial circle is artificially cut in half along the
vertical axis, and (ii) alternating EI-LE advection strategy(Aulisa et al., 2007;
Scardovelli and Zaleski, 2003) also in which the initial circle is artificially cut
in half along the vertical axis.

The results using the Weymouth and Yue advection strategy on a 512×
512 grid is illustrated in Figures 15 and 16. For comparison purposes we also
show the results for the deformation of the circle in which the initial circle
is not artificially cut in half. We note that both advection strategies give
comparable errors on the finest mesh, but the alternating EI-LE strategy
is twice as fast since the CFL condition is more lenient than that for the
Weymouth and Yue advection strategy. We also note that as the grid is
refined, the error for the 3 material deformation problem approaches the
error of the 2 material case.

Size 3 material Weymouth and Yue 3 material EI-LE 2 material Weymouth and Yue
128 7.6E − 3 2.4E − 3 1.0E − 3
256 1.4E − 3 6.4E − 4 7.1E − 5
512 3.2E − 5 3.2E − 5 1.8E − 5

Table 1: Symmetric Difference Error from Section 4.1.1, for the reversible
2D vortex. Errors are taken at the end time t = T .
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Figure 15: Deformation problem with period T = 8. Results at t = 4.0.
LEFT: 2 materials. RIGHT: 3 materials. The corresponding piecewise linear
reconstructed interface is plotted. Base grid 64x64. three levels of AMR;
effective fine grid resolution 512x512.

4.2. Reversible Vortex - 3D

In this test problem, a sphere with radius 0.15 and center (0.35, 0.35, 0.35)
is placed in the following flow field:

u = 2 cos(πt/3) sin2(πx) sin(2πy) sin(2πz) (62)

v = − cos(πt/3) sin2(πy) sin(2πx) sin(2πz) (63)

w = − cos(πt/3) sin2(πz) sin(2πx) sin(2πy) (64)

The initial sphere undergoes severe deformation for 0 < t < 3/2. For 3/2 <
t < 3, the flow is “reversed” and the final expected shape is a sphere again.
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Figure 16: Deformation problem with period T = 8. Results at t = 8.0.
LEFT: 2 materials. RIGHT: 3 materials. The corresponding piecewise linear
reconstructed interface is plotted. Base grid 64x64. three levels of AMR;
effective fine grid resolution 512x512.

In table 2, we compare the error at t = 3, Esym (59), for the following two
cases: (i) Weymouth and Yue advection strategy(Weymouth and Yue, 2010)
in which the initial sphere is artificially cut in half along the vertical axis, and
(ii) alternating EI-LE-EI advection strategy(Aulisa et al., 2007; Scardovelli
and Zaleski, 2003) also in which the initial sphere is artificially cut in half
along the vertical axis.

The results using the alternating EI-LE-EI advection strategy on a 64×
64×64 grid are illustrated in in Figures 17 and 18. For comparison purposes
we also show the results for the deformation of the sphere in which the initial
sphere is not artificially cut in half.
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Size 3 material Weymouth and Yue 3 material EI-LE-EI 2 material EI-LE-EI
32 6.5E − 3 5.6E − 3 4.7E − 3
64 2.1E − 3 1.8E − 3 2.0E − 3

Table 2: Symmetric Difference Error from Section 4.2, for the reversible 3D
vortex. Errors are taken at the end time t = 3.

Figure 17: 3D Deformation problem with period T = 3. Results at t = 1.5.
LEFT: 2 materials. RIGHT: 3 materials. The corresponding piecewise planar
reconstructed interface is plotted. 64x64x64 grid.

4.3. 2D droplet on a slope

As in (Arienti and Sussman, 2014; Noel et al., 2012), we tested our MOF
algorithm by performing a convergence study for the relaxation of a two-
dimensional water droplet in gas on an 180 inclined solid plane. See Figure
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Figure 18: 3D Deformation problem with period T = 3. Results at t = 3.0.
LEFT: 2 materials. RIGHT: 3 materials. The corresponding piecewise planar
reconstructed interface is plotted. 64x64x64 grid.

19. There is no gravity. The inclined plane is defined as,

Ωplane = {(x, y)| tan(180)(x− 3) + 1− y > 0}. (65)

The initial droplet is prescribed so that the initial contact angle is 900. The
initial droplet shape is defined as,

Ωdrop = {(x, y)|1− ((x− 3)2 + (y − 1)2) > 0} ∩ ΩC
plane (66)

The dimensionless parameters are: ρ1 = 1, ρ2 = 0.0013, µ1 = 0.16, µ2 =
0.0025, σ12 = 1118.0, σ13 = 559.0, and σ23 = 1118.0. These parameters are
non-dimensionalized by the initial droplet radius r0 = 0.06348cm (see Figure
19) and a characteristic velocity U = 1cm/s. Material “1” corresponds to
water (red), “2” corresponds to air (white), and “3” corresponds to solid
(blue). The values of σij correspond to a contact angle of 600.
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The expected drop height is,

e0 = (1 + cos(π − θ))Rθ, (67)

and the expected base length is

L0 = 2 sin(π − θ)Rθ, (68)

where Rθ is the final radius,

Rθ =

√
π

2θ − sin(2θ)
R0. (69)

In table 3, we give the percent error for e0 and L0 when computed on
successively refined grids.

Table 3: Percent error for the relaxation of a water drop on a sloped incline
from a 900 contact angle to a 600 contact angle. The computational domain is
6x3 in dimensionless units. The computational grid is a hierarchy of adaptive,
dynamic, rectangular grids with a base coarse grid of 96x48 grid cells. The
error is checked for 3 different grid resolutions.

Levels 100
|e0−eexact0 |
eexact0

100
|L0−Lexact0 |
Lexact0

1 3.4 4.0
2 0.9 1.4
3 0.4 0.3

4.4. Liquid Lens test problem

We repeat the Liquid Lens test problem as in (Kim, 2007) (section 4.4
of (Kim, 2007)). Initially there are 3 materials with material 2 occupying a
circle of diameter 0.3 in the center of the domain, material 1 occupying the
remaining top half of the computational domain, and material 3 occupying
the remaining bottom half of the computational domain. All 3 materials
have the same unit density and share the same viscosity of 1/60. The surface
tension coefficient between materials one and two and between materials two
and three was set to σ12 = 2/45 and σ23 = 2/45 respectively. We tested our
algorithm for four different values of the surface tension between materials
one and three (σ13): σ13 = 3/90, 4/90, 5/90, and 6/90. The expected steady
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Figure 19: Relaxation of droplet (red) on a slope (blue) from 900 contact
angle to 600 contact angle. Base coarse grid is a rectangular 96x48 grid. Ef-
fective fine grid resolution is 384x192. Left: initial conditions, Right: droplet
at final static shape t = 0.8.

state solution has material 2 being stretched into a lens shape with major
axis length of Lexact0 = 0.381, 0.416, 0.460, and 0.522 for the four cases of
σ13. In Figure 20 we illustrate the initial and steady state interfaces that we
compute using our multimaterial MOF method for the case when σ13 = 5/90.
In Table 4, we give the percent error in major axis length for the four different
cases of σ13. In all of our test cases, the volume fluctuated by less than 0.001
percent throughout the simulations.

4.5. Downward liquid jets

We study a downward liquid jet from a 3D round nozzle. Fig. 21 illus-
trates the geometry of the nozzle and the computational conditions. The
geometry of the nozzle can be defined by the nozzle diameter D and nozzle
height Hn. Uniform flow velocity is assigned at the nozzle inlet. Nonslip
boundary condition is applied at the nozzle walls and top surface. Outflow
boundary condition is applied on the rest boundaries.

The following fluid properties are used: water density ρl = 1.0×103 kg/m3

, air density ρg = 1.225 kg/m3 , water viscosity µl = 1.3× 10−3 kg/m.s , air
viscosity µg = 2.0× 10−5 kg/m.s, surface tension σ = 7.28× 10−2 kg/s2 and
the gravitational acceleration g = 9.8 m/s2.

In the simulation the nozzle diameter D is 0.4 cm and the nozzle height
Hn is 0.6 cm. Two levels of adaptive mesh refinement are used, resulting in

43



Figure 20: Stretching of a liquid lens. Red region indicates material 1, white
region is material 2 and blue region is material 3. All materials have the
same constant viscosity µ = 1/60. σ12 = 2/45, σ13 = 1/18, and σ23 = 2/45.
The computational domain dimensions are 1x1. The base coarse grid is a
rectangular 64x64 grid. Effective fine grid resolution is 256x256. Left: initial
conditions, Right: liquid lens at t = 6.

 
Inflow 

D 
Hn 

Outflow 

Nonslip 

Figure 21: Illustration of nozzle geometry and computational domain for a
downward jet. D is the nozzle diameter and Hn is the nozzle height.
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Table 4: Percent error for the stretching of a liquid lens at static shape.
Initially material 2 is a circle centered at (1/2, 1/2), material 1 occupies the
remaining top half, and material 3 occupies the remaining bottom half. The
density and viscosity is constant for all three materials: ρ = 1, µ = 1/60.
The surface tension coefficients are σ12 = 2/45, σ23 = 2/45, and σ13 = 3/90,
4/90, 5/90, and 6/90. The computational domain dimensions are 1x1. The
computational grid is a hierarchy of adaptive, dynamic, rectangular grids
with a base coarse grid of 64x64 grid cells and two levels of refinement.

σ13 L0 Lexact0 100
|L0−Lexact0 |
Lexact0

3/90 0.374 0.381 1.8%
4/90 0.407 0.416 2.2%
5/90 0.463 0.460 0.7%
6/90 0.531 0.522 1.7%

a mesh which has 12 grid points per nozzle diameter.
When the flow rate is lower, jet behavior is dominated by the gravita-

tional force and the surface tension force. Dripping regime will occur if the
gravitational force is larger than the surface tension force. Fig. 22 shows the
time evolution of the dripping regime at a low nozzle inlet velocity of v0 = 6.0
cm/s; When the flow rate is higher, the jet behavior is dominated by the iner-
tial force and surface tension force, which leads to the jetting regime. Fig. 23
shows the time evolution of the jetting regime at a high nozzle inlet velocity
of v0 = 20.0 cm/s.

For purpose of generality, we introduce three non-dimensional parameters:
the Reynolds number, the Weber number and the Ohnesorge number. The
Reynolds number, Re = ρv0D/µ, gives a measure of the ratio of inertial
forces to viscous forces. The Weber number, We = ρv2

0D/σ, represents the
relative importance of inertia and surface tension. The Ohnesorge number,
Oh =

√
We/Re = µ/

√
ρσD, relates viscous forces to the inertial and surface

tension forces.
For the studied high inlet velocity case, the Reynolds number is 307,

the Weber number is 1.1 and the Ohnesorge number is 0.0034. The small
Ohnesorge number means that the viscous forces are less important than the
inertial force and surface tension. The breakup length, which is defined as
the distance between the nozzle tip and the point just before the first drop of
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Figure 22: Snapshots of jet interface with a low velocity of v0 = 6.0 cm/s.
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Figure 23: Snapshots of jet interface with a high velocity of v0 = 20.0 cm/s.
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the liquid jet, can be computed using the following formula (Ashgriz, 2011):

L

D
= 1.04C

√
We (70)

where L is the jet breakup length, and C is an empirical parameter. (Grant
and Middleman, 1966) suggested the value of C = 13 based on experimental
data for Rayleigh breakup of low viscosity jets.

The computed breakup length, as shown in Fig. 23, is about 6 cm and it
is very close to the value of 5.7 cm using Eq. 70.

4.6. Upward liquid jets

We simulate upward liquid jet based on a geometry shown in Fig. 24. In
Fig. 24 SLOW and SUP represent the lower and upper section of the nozzle
outlet respectively. Two different nozzle configurations are used in our sim-
ulations. In the first case, both upper and lower surfaces are circles with the
same diameter of 3.2 mm. In the second case, the lower surface is a circle but
the upper surface is an ellipse which has the same cross sectional area as the
lower surface and the ratio of its major axis and minor axis is 3. The nozzle
has an inlet of diameter (D) of 17.4 mm, a wall thickness H1 of 3 mm, and
a height H2 of 9.4 mm. Three levels of adaptive mesh refinement are used
for these cases and the effective grid size is about D1/10. i.e., 10 grid points
per nozzle outlet diameter. The physical properties of the liquid and air are
the same as that in the downward jet example.

In the first case, a uniform velocity v0 = 4.0 cm is applied at the nozzle
inlet. Fig. 25 shows the jet interface evolution with time. The maximum jet
height is 14 cm. The jet height first increase, reach the maximum height and
then decrease with water accumulating at the jet tip because of the gravity
effect.

In the second case the same nozzle inlet velocity of 4.0 cm/s is applied.
Fig. 26 shows the jet interface evolution. It is noticed that after leaving the
nozzle, the major axis and minor axis of the jet switch. This phenomenon
was discussed by (Lin, 2003) who argued that this switch is due to the effect
of surface tension, which causes the jet section vibration about a equilibrium
circle shape.

4.7. Binary collisions of two water drops

Binary collisions of liquid drops have been experimentally studied by
(Ashgriz and Poo, 1990) and (Orme, 1997) and numerically studied by (Tan-
guy and Berlemont, 2005), (Chen and Yang, 2014), and (Nikolopoulos et al.,
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H1 

H2 

SLOW 

SUP 

Figure 24: Illustration of nozzle geometry for upward jet. SUP is the upper
section of nozzle outlet, SLOW is the lower section of nozzle outlet, D is the
diameter of nozzle inlet, H1 is the nozzle wall thickness and H2 is the nozzle
height.

Figure 25: Snapshots of upward liquid jet. A round nozzle is used.
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Figure 26: Snapshots of upward liquid jet. The nozzle has a round low
surface and an elliptical top surface

2009). For equal sized head-on collisions the outcomes depend on the Reynolds
number, Weber number which are defined as follows:

Re =
ρdu

µ
We =

ρdu2

σ

where ρ and µ are the liquid density and viscosity, respectively, d is the
drop diameter, u is the relative velocity of the two drops, and σ is the liquid
surface tension. With the Reynolds number in the range of 500 and 4000,
Ashgriz and Poo found that the Reynolds number did not play a significant
role on the outcome (Ashgriz and Poo, 1990). In Figure 27, we show results
of the simulation of the head-on collision of two equal sized water drops at
the Weber number of 25, 40 and 96. In the experiments, it was found that
reflexive separation occurs for a Weber number greater than nineteen and
coalescence or bouncing occurs for a Weber number less than twenty. Our
numerical results (Figure 27) corroborate these results.

4.8. Binary collisions of one water drop and one diesel drop

In Figure 28, we show results of the collision of a diesel oil drop with a
water drop. These results can be compared with the experimental results
reported by (Chen and Chen, 2006). As with the case for the collision of two
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water drops, again we have agreement between simulation and experiment
for capturing the Weber number cutoff separating the coalescence regime
from the reflexive separation regime.

4.9. Impingement of droplet on a thin liquid film

The complex phenomenon of droplet impingement on a thin film phe-
nomenon is characterized by the Reynolds number Re, the Weber number
We, the Ohnesorge number Oh and the nondimensional film thickness H
defined as follows:

Re = ρv0D/µ
We = ρv2

0D/σ
Oh = µ/

√
ρσD

H = h/D

(71)

where v0 is the impact velocity, D is the droplet diameter and h is the film
thickness. Also, a nondimensional time T = tv0/D is introduced and it is set
to zero at the first contact between the droplet and the film.

At high We numbers, a crown structure is formed on the film surface and
liquid jets or secondary droplets are splashed from the crown rim. This is
called the splashing regime. At low We numbers, the droplet may deposit
on the film surface without secondary droplets. This is called the deposi-
tion regime. The critical We number separating the splashing regime and
the deposition regime is studied by many researchers (Cossali et al., 1997;
Okawa et al., 2006). Two Weber numbers are simulated: We = 100 which
corresponds to the deposition regime and We = 600 which corresponds to
the splashing regime.

Fig. 29 shows the time evolution of the deposition process and Fig. 30
shows the splashing process. The effective grid size is about D/70 for the
deposition case and D/135 for the splashing case. Different Rieber (Rieber
and Frohn, 1999) who introduced random disturbance in his simulation, no
random disturbance was introduced in our simulation. The initial distance
from the droplet to the film is 0.13D. For the deposition regime, as shown
in Fig. 29, a crown-like structure is formed at the first stage of the impact.
This crown-like structure travels outwards with a maximum crown height of
0.5D without any secondary droplet splashing. For the splashing regime, as
shown in Fig. 30, fingers are formed at the top of crown rim. These fingers
are then breakup into secondary droplets due to Rayleigh instability.
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Figure 27: Numerical simulation of head-on collision of two water drops.
From top to bottom Weber Number is 15, 25, 40, and 96, respectively. The
computational grid is a block structured mesh with 16 cell per initial drop
radius. One grid refinement is used(effective fine grid resolution is 32 cells per
initial drop radius). Results are in agreement with experiments (Ashgriz and
Poo, 1990). We capture the correct transition point for reflexive separation.
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Figure 28: Numerical simulation of head-on collision of a diesel oil drop
(cyan) with a water drop (gold) and resulting encapsulation. Weber Num-
ber equals 9.6, 45.3, and 58.9 for the top, middle and bottom rows respec-
tively. Dimensionless drop diameter is 1 and computational domain size is
0 < r < 1.3, −3.9 < z < 3.9. The computational grid is a block struc-
tured dynamic adaptive mesh with 48x288 coarse grid cells and 2 additional
levels of adaptivity (effective fine grid resolution is 192x1152). Results are
in agreement with experiments (Chen and Chen, 2006). We capture the
correct transition point for reflexive separation. Simulations are done in 3d
axisymmetric (RZ) coordinate system.
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Figure 29: Snapshot of droplet-liquid film impingement, We = 100. From
left to right, top to bottom: T = 0.0, T = 1.0, T = 2.0, and T = 3.0

Figure 30: Snapshot of droplet-liquid film impingement, We = 600.
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4.10. Impingement of droplet onto a solid wall

The impingement of a droplet on a smooth solid wall can result in different
regimes such as spreading, splashing, receding and rebounding (Yarin, 2006).
The Weber number, Ohnesorge number as well as the contact angle play an
important role in the impact dynamics. We choose the droplet diameter
D = 3.6 mm, density ρ = 1.0× 103 kg/m3, viscosity µ = 8.67× 10−4 kg/m.s,
surface tension σ = 7.17 × 10−2 kg/s2 and impact velocity v0 = 0.77 m/s,
which correspond to We = 30 and Oh = 0.0017. A dynamic contact angle
model from (Jiang et al., 1979) is used, and the equilibrium contact angle is
set to 87◦. Two levels of grid adaptation are used and the effective grid size
is D/72.

Figure 31: Droplet impinging on a solid wall. Left, experimental results from
(Kim and Chun, 2001). Right, present numerical results.

Figure 31 shows the evolution of the droplet shape. The computed droplet
shape is also compared with experimental data from Kim and Chun(Kim and
Chun, 2001). As can be seen from Fig. 31, the experimental results and the
numerical results are in good agreement.

5. Concluding remarks

A new method was presented to study incompressible flows involving
more than two materials. In this method, the MOF interface reconstruction
method was used to capture the material interfaces. The directionally split
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cell integrated semi-Lagrangian method was used to advect interfaces and
momentum. The block structured adaptive mesh refinement was used to
increase the resolution near material interfaces. Various 2D, 3D axisymmetric
and 3D problems were simulated. Comparisons were made with analytical
or experimental results. Our simulation showed that the proposed method
is able to simulate multiphase problems involving more than two materials.
The method is also able to capture the contact line dynamics and triple
junctions.
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