
Noname manuscript No.
(will be inserted by the editor)

A Space-Time Discontinuous Galerkin
Spectral Element Method for the Stefan problem

Chaoxu Pei · Mark Sussman ·
M. Yousuff Hussaini

Received: / Accepted:

Abstract A space-time Discontinuous Galerkin (DG) spectral element method
is presented to solve the Stefan problem in an Eulerian coordinate system.
In this scheme, the level set method describes the time evolving interface. To
deal with the prior unknown interface, two global transformations, a backward
transformation and a forward transformation, are introduced in the space-time
mesh. The idea of the transformations is to combine an Eulerian description,
i.e. a fixed frame of reference, with a Lagrangian description, i.e. a moving
frame of reference. The backward transformation maps the unknown time-
varying interface in the fixed frame of reference to a known stationary inter-
face in the moving frame of reference. In the moving frame of reference, the
transformed governing equations, written in the space-time framework, are
discretized by a DG spectral element method in each space-time slab. The
forward transformation is used to update the level set function and then to
project the solution in each phase onto the new corresponding time-dependent
domain. Two options for calculating the interface velocity are presented, and
both methods exhibit spectral accuracy. Benchmark tests in one spatial di-
mension indicate that the method converges with spectral accuracy in both
space and time for both the temperature distribution and the interface ve-
locity. The interrelation between the interface position and the temperature
makes the Stefan problem a nonlinear problem; a Picard iteration algorithm
is introduced in order to solve the nonlinear algebraic system of equations and
it is found that only a few iterations lead to convergence.

Keywords Space-time · Discontinuous Galerkin · Spectral accuracy ·
Cut-cell · Mapping method · the Stefan problem

Mathematics Subject Classification (2010)

C. Pei · M. Sussman (�) · M.Y. Hussaini
Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.
E-mail: sussman@math.fsu.edu (�)

2 Chaoxu Pei et al.

1 Introduction

The Stefan problem is a moving boundary problem that is used to model phase
change, e.g. the freezing and thawing process for a solid-liquid system [1,2]. A
key issue for the Stefan problem is that the interface between different phases is
evolving in time. This requires solving the heat equations for different phases,
i.e. the ice and water phases, while the phase boundary separating the two
phases is transported with a velocity that is proportional to the jump of the
normal heat flux at the evolving and prior unknown boundary. In other words,
the problem requires one to find the solutions in a prior unknown domain and
to compute the shape of the unknown domain as a part of the solution. Hence,
these problems are nonlinear due to the coupling between unknown geometric
quantities, i.e. the growing interfacial shape, and the temperature distribution.
Such a problem arise in numerous industrial and technological applications,
such as metal solidification, food freezing, dendritic crystal growth in a super-
cooled liquid and ice accretion on aircraft [3–7] .

Various numerical methods have been proposed for solving the Stefan prob-
lem. These methods can be broadly classified into two categories by the de-
scription of the phase interface, which can be represented explicitly or im-
plicitly. With explicit representation, i.e. front tracking and Lagrangian meth-
ods, the interface is tracked as it moves through the computational domain.
Rønquist and Patera [8] presented a continuous Galerkin spectral element
method combined with an interface-local transformation, in which the element
boundaries coincide with the phase interface. They showed exponential con-
vergence in space and first order in time in one dimensional numerical tests. In
contrast to generating a conforming grid, the following authors [9–11] proposed
a hybrid method in an Eulerian coordinate system, in which the interface is
tracked sharply while the treatment of the interface is done by the immersed
boundary method [3]. One drawback for tracking the interface explicitly is
that special care has to be taken when topological changes such as merging or
breaking occur. To overcome this difficulty, interface capturing methods, such
as the phase-field method [12,13] or the level set method [14,15], have been
introduced to solve the Stefan problem. The phase-field method is a diffuse
interface method in which the interface is given a certain thickness. However,
two drawbacks of the phase-field method for the Stefan problem were pointed
out by the authors [16]. One is that the grid resolution requirements within
the interfacial region is much more stringent with the phase-field method than
with the level set method. The other drawback is that the high dependence
on the physical parameters in the phase-field method makes this method a
challenge when one adds new physics to the model.

In this paper, we use a sharp interface model, the level set method, which
enable one to exactly locate the interface. Other examples of sharp interface
methods are the immersed interface method [17,18], the ghost fluid method [19],
the XFEM method [20], the virtual node method [21,22], the coupled level set
and volume of fluid method [23], the coupled level set and moment of fluid
method [24], the cell integrated Semi-Lagrangian with moment of fluid ap-

Space-time DGSEM for the Stefan problem 3

proach [25] and sharp interface Cartesian grid finite volume method [26]. The
earliest level set method for solidification was presented in [5]. Their method
combined the level set method with a boundary integral method. Chen et
al. [27] introduced a simple approach in an Eulerian coordinate system for the
Stefan problem, which involved the level set method and a finite difference
approach for solving the heat equation in each phase and for evaluating the
interface velocity. The interface boundary condition was imposed directly by
constructing interpolating polynomials on both sides of the interface. Improve-
ments were made by Gibou et al. [28,29]. In contrast to [27], the discretizations
in [28,29] led to a symmetric linear system. In addition, Gibou et al. [28,29]
pointed out the necessity to redefine the grid points that are swept over by
the interface, i.e. a liquid node crossed by the interface must be converted to a
ice node with an appropriate temperature value. Later, a high order nonsysm-
metric approach, a third order accurate method, was presented for solving the
Stefan problem by Gibou and Fedkiw [30], in which a high order extrapolation
approach [31] was applied to redefine the values at nodes that are swept over
by the interface.

To solve the Stefan problem numerically, we develop a space-time Discon-
tinuous Galerkin (DG) spectral element method in an Eulerian coordinate
system, which is combined with the level set method. In order to redefine the
values at nodes in the phase change region, we introduce two global trans-
formations: a backward transformation and a forward transformation. The
idea of the transformations is similar to a semi-Lagrangian method, which
distinguishes our method from the interface-local transformation [8]. In the
space-time mesh, we first apply the backward transformation to map the un-
known time-varying interface in the Eulerian coordinate system to a known
stationary interface in a new coordinate system. Such a mapping transforms
the heat equation, coupled with the interface condition, defined in a prior
unknown time-dependent domain, into a nonlinear convection-diffusion equa-
tion defined in a known stationary domain. To solve the transformed nonlinear
equation, we employ a Picard iteration, i.e. [32,33]. At each iteration, we there-
fore solve a linear advection-diffusion equation by a space-time DG spectral
element method, and the level set function is updated by the forward trans-
formation associated with the previous interface velocity. After the interface
position is updated in the Eulerian coordinate system, the solution is then
projected upon the updated time-dependent domain.

There are several reasons why a DG spectral element method is preferred
over a Continuous Galerkin spectral element method, such as [8]. Firstly, the
piecewise continuous basis functions enable one to apply the DG spectral ele-
ment method on a nonconforming grid. In other words, our method allows for
hanging nodes that can appear due to a non-continuous interface reconstruc-
tion or appear at the junction of coarse and fine grids when Adaptive Mesh
Refinement is employed [34–37]. Secondly, the high degree of locality enable
one to choose different values of the polynomial order in different elements,
which is referred to as p-refinement. Thirdly, the auxiliary variables introduced
in a DG method for discretizing the diffusion term [38,39] can be used directly

4 Chaoxu Pei et al.

to compute the interface velocity by the weak formulation, which enables the
temperature distribution and the interface velocity to be computed simultane-
ously. This is different from the method presented in [8], in which the interface
velocity was computed by a strong form, i.e. a spectral collocation method. A
comparison of the two methods for calculating the interface velocity is shown
in section 6 below.

DG methods in space have been developed for solving a wide range of
physical problems, especially for dealing with flows with discontinuities com-
puted on unstructured meshes. Detailed surveys can be found in e.g. [40–44].
Recently, space-time DG finite element methods have been explored by the
following authors [45–49] for problems which require moving and deforming
meshes. Space-time DG finite element methods, which automatically satisfy
the Geometric Conservation Law, are unconditionally stable. Space-time DG
schemes result in implicit time integration schemes and naturally allow for
time adaptivity. Motivated by these properties of space-time DG finite element
methods, we present a space-time DG spectral element method for solving the
Stefan problem, which leads to spectral accuracy in both space and time.

The organization of the paper is as follows. In section 2, we first present
the Governing equations of the Stefan problem and introduce the level set
function for capturing the phase boundary. The space-time discretization is
introduced in section 3. Transformation techniques are then introduced in
section 4. In section 5, the DG spectral element method is presented for the
transformed equations in the space-time framework. Then two new algorithms
for determining the interface velocity are described in section 5.4. Numerical
tests are presented in one spatial dimension in section 6 to gauge the accuracy
and efficiency of our new numerical scheme.

2 Mathematical model

The Stefan problem describes the temperature distribution of a pure material
undergoing a phase transition. Let us consider a square domain, Ω ∈ Rd,
of a pure material but at different states, such as ice and water. Let x =
(x1, x2, ..., xd) be the spatial variable, where d is the spatial dimension. The
domain Ω is composed of a time-dependent solid region, denoted as Ωst , and a
time-dependent liquid region, denoted asΩlt. The interface, separating different
phases, is a prior unknown free boundary, which is denoted as Γ (t) such that
Γ (t) = Ωst ∩Ωlt. The description of the Stefan problem on a Cartesian domain,
Ω ∈ R2, is illustrated in Fig. 1.

2.1 Governing equations

We assume that convection, thermal expansion and buoyancy are not con-
sidered. Since there is no flow in the liquid region, the energy for the Stefan

Space-time DGSEM for the Stefan problem 5

Fig. 1 The Stefan problem on a Cartesian domain Ω ∈ R2. Ωst and Ωlt are time-dependent
domains at time t, while domain Ω is fixed, such that Ω = Ωst ∪ Ωlt. Γ (t) is the moving
interface at time t, and n = (n1, n2) is the interface normal pointing in the direction of
interface movement. φ is the level set function introduced in section 2.2

problem is determined by the internal energy,

e = cvθ + LH(φ), (1)

where cv denotes the specific heat capacity, θ denotes the temperature dis-
tribution, L is a positive constant representing the latent heat of fusion and
H(φ) is a Heaviside function defined as

H(φ) =

{
0, if φ(x, t) ≤ 0 and x ∈ Ω \Ωlt,
1, if φ(x, t) > 0 and x ∈ Ωlt,

where φ(x, t) is the level set function introduced in section 2.2.
To derive the governing equation for each phase, we start from the conser-

vation of energy, which is governed by

∂(ρe)

∂t
= ∇ · (k∇θ). (2)

Substituting (1) into (2), we obtain,

∂(ρscsvθ
s)

∂t
= ∇ · (ks∇θs), in Ωst , (3)

∂(ρlclvθ
l)

∂t
= ∇ · (kl∇θl), in Ωlt, (4)

6 Chaoxu Pei et al.

where ρ is the density, cv denotes the specific heat capacity, k is the thermal
conductivity, and indices “s”, “l” denote the solid and liquid phase, respec-
tively.

At the interface, the standard Rankine-Hugoniot jump condition of Eq. (2)
is

Vn [ρe]Γ = − [k∇θ · n]Γ , (5)

where Vn = V ·n is the normal velocity at the interface, and [f]Γ denotes the
jump of f across Γ , i.e., [f]Γ = (f l)|Γ −(fs)|Γ . By substituting (1) into (5), we

obtain the jump condition at the interface with the assumption of ρs = ρl = ρ
and csv = clv = cv,

ρLVn = −(kl∇θl − ks∇θs) · n. (6)

Eq. (6) is commonly referred to as the Stefan condition that expresses the
normal velocity of the moving interface as a function of the normal derivative
of the temperature evaluated at both sides of the interface.

On ∂Ω, Dirichlet boundary conditions are specified. At the interface, we
set

θs = θΓ = θl. (7)

For a classical Stefan problem, θΓ = θm where θm denotes the melting temper-
ature. However, for a realistic modeling, such as dendritic solidification, it is
important to take surface tension effects and interface curvature into account,
which leads to the Gibbs-Thomson relation [27], θΓ = −εcκ − εvVn, where κ
denotes the curvature at the front, εc is the surface tension coefficient, and εv
is the molecular kinetic coefficient.

We refer the reader to [7,50,28] and the references therein for information
on freezing models and numerical methods that take into account more detailed
physics than we do in this article.

2.2 Level set function

We represent the time evolving interface by a level set function. The level set
function φ is a continuous function defined as follows

φ(x, t) < 0, x ∈ Ωst ,
φ(x, t) = 0, x ∈ Γ (t),

φ(x, t) > 0, x ∈ Ωlt.

The evolution of the level set function is determined by the following equation,

φt +W · ∇φ = 0, (8)

where W is a continuous extension of the normal velocity Vn off the interface.
The outward unit normal pointing in the direction of interface movement is

Space-time DGSEM for the Stefan problem 7

denoted as n = (n1, n2, ..., nd), which can be determined by the level set
function φ as follows,

n =
∇φ
|∇φ|

, (9)

where∇ is used for the spatial gradient operator, and defined as∇ = (∂
∂x1

, ..., ∂
∂xd

).
The level function φ is initialized as a signed distance function

φ(x, 0) =

−dΓ , x ∈ Ωs0,
0, x ∈ Γ (0),

+dΓ , x ∈ Ωl0,

where dΓ is the distance of a point x to the interface Γ . Updating the level
set function by Eq. (8), may change the level set function away from being
a distance function. So it is necessary to perform a reinitialization procedure
to keep the level set function as a distance function, which satisfies |∇φ| =
1.(cf. [51])

3 Space-time discretization

In this section, we follow the notation of e.g. [45,33] to introduce the definitions
of the space-time domain, space-time slabs and space-time elements.

In a space-time discretization, we introduce a space-time domain E by
considering the domain E = Ω × [t0, T] in Rd+1, where d denotes the spatial
dimension. The coordinates of a point x̄ ∈ E are defined as x̄ = (x, xd+1) with
the spatial variables x = (x1, x2, ..., xd) and the time variable t = xd+1. The
space-time domain boundary ∂E consists of the hyper-surfacesΩ0 := {x̄ ∈ ∂E |
xd+1 = t0}, ΩT := {x̄ ∈ ∂E | xd+1 = T}, and Q := {x̄ ∈ ∂E | t0 < xd+1 < T}.

First, we partition the time interval [t0, T] by the time levels 0 = t0 < t1 <
... < tE(t) = T . The space-time domain E is then divided into E(t) space-time
slabs. The n-th space-time slab is denoted as En = E∩In, where In = [tn, tn+1]
is the n-th time interval with length ∆tn = tn+1 − tn. Also, the space-time
slab En is bounded by Ωtn , Ωtn+1

and Qn = ∂En \ (Ωtn ∪Ωtn+1
).

Now, we describe the construction of the space-time elements in the space-
time slab En. Divide the spatial domain Ωtn into E(x) non-overlapping spatial
elements Kn with a uniformed size h and similarly for the domain Ωtn+1

with

E(x) spatial elements Kn+1. A space-time element Kn is then obtained by
connecting Kn and Kn+1 via linear interpolation. The element boundary ∂K
contains Kn, Kn+1 and QnK = ∂K \ (Kn ∪Kn+1). On ∂K, the outward unit
space-time normal is denoted by n̄K = (n, nd+1), where n = (n1, n2, ..., nd) is
the spatial part of the space-time normal while nd+1 is the time component.

The Stefan problem on a Cartesian domain Ω involves two different phases,
i.e. Ωst and Ωlt. Thus, the space-time elements are classified into two categories:
regular cells and cut-cells.

8 Chaoxu Pei et al.

– Regular cells. A space-time element is referred to as a regular cell if it
contains only one phase. We denote a regular cell as Kn,sj if the space-time

element Knj is in the solid phase. Similarly, Kn,lj denotes a regular cell which
contains only liquid phase.

– Cut-cells. A cell is called a cut-cell if a regular cell intersects with the
moving front. In particular, a cut-cell contains different phases, which are
separated by the phase boundary. Here, we denote a cut-cell as Kn,slj if
the space-time element Knj intersects with the front Γ . The subelements

associated with the cut-cell Kn,slj are denoted as Kn,s,Γj and Kn,l,Γj , such

that Kn,slj = Kn,s,Γj ∪ Kn,l,Γj .

To generate a cut-cell in a space-time slab En, one can partition the time
interval [tn, tn+1] by a set of Gauss-Lobatto points (τ0, τ1, ..., τp), and then
determine the zero level set crossing values Γ (τi) (i = 0, ..., p). By connecting
Γ (τi) using high order interpolation in time, we introduce a curve QnΓ cutting

a regular cell into two subelements, i.e. Kn,s,Γj and Kn,l,Γj . (See Fig. 2).
In the space-time slab En, the tessellation of the solid (liquid) phase is

defined as T n,sh (T n,lh), which consists of all regular cells, Kn,s (Kn,l), and
subelements of cut-cells, Kn,s,Γ (Kn,l,Γ). Then the tessellation of the space-

time slab En is defined as T nh , such that T nh = T n,sh ∪ T n,lh . In addition, the
tessellation of the space-time domain E is denoted as Th = ∪nT nh . In a space-
time domain E ∈ R2, a sketch of a space-time slab En with the moving interface
Γ (t) is demonstrated in Fig. 2.

4 Fixed frame of reference versus moving frame of reference

In a space-time slab En, a cut-cell Kn,slj is generated due to the moving front
QnΓ intersecting or embedding within a space-time element. Some examples of
a cut-cell are shown in Fig. 3. A subelement generated in a cut-cell could be a
triangle, a quadrilateral or a pentagon. One way to handle non-quadrilateral
subelements is to perform the element refinement rule, which is to divide
pentagons into triangles. Thus, the computational grid in each space-time slab
is a mixed mesh with both triangles and quadrilaterals. In this approach, the
approximation of the curve QnΓ needs to be calculated at the beginning, then
one can generate a mixed grid and update the temperature distributions.

An alternative approach to handle non-quadrilateral subelements is to de-
fine a mapping, which is to transform a time-varying front into a constant front.
In one dimension, a computational grid with a constant front in a space-time
slab is preferred over the one with a time-varying front due to a constant front
leads to a rectangular space-time mesh. From Fig. 4, we see that the curve QnΓ
is transformed to a straight line which is either aligned with an inter-element
boundary (Fig. 4(b)) or cutting a regular cell into two subelements (Fig. 4(d)).

Now, we present the mapping technique that we employed in the space-time
framework. First, we introduce two coordinate systems.

Space-time DGSEM for the Stefan problem 9

Fig. 2 An Example of a space-time domain, E = Ω × [t0, T] ∈ R2, with the coordinates of
a point x̄ denoted by x̄ = (x, x2), where x = x1 is the spatial variables and x2 denotes the
time variable. The square with bold lines is an example of a space-time slab En, such that
En = E ∩ In, where In = [tn, tn+1]. We assume that the solid phase is on the left hand side
of the interface QnΓ , while the liquid is on the other side. The space-time element Kn,sj is

referred to as a regular cell in the solid phase with boundary ∂Kn,sj = {QnKn,s
j
∪Kn

j ∪K
n+1
j },

where QnKn,s
j

= {Qnj−1,j ∪Qnj,j+1}. However, Kn,slj+1 and Kn,slj+2 are examples of a cut-cell due

to the time evolving interface, QnΓ , defined on a nonconforming computational grid. In this

example, the curve QnΓ obtained by 4th order interpolation cuts Kn,slj+1 into two subelements,

i.e. a pentagon Kn,s,Γj+1 and a triangle Kn,l,Γj+1

– Fixed frame of reference. The fixed frame of reference is the frame that
we use to define the physical problem. The coordinates of the fixed frame
of reference are denoted as (x, t), where x = (x1, x2, ..., xd) is the spatial
variables. (See Fig. 4(a, c)).

– Moving frame of reference. The moving frame of reference is the coordinate
system that we use to define the transformed physical problem. In the
moving frame of reference, the coordinates are defined as (x̃, t), where
x̃ = (x̃1, x̃2, ..., x̃d) is the spatial variable. (See Fig. 4(b, d))

Next, we construct a mapping x̃ = Mb(x, t) between the moving frame
of reference and the fixed frame of reference. In particular, the mapping will
take a point on the time-varying front in the fixed frame of reference and
transform it to a point on the stationary front relative to the moving frame
of reference. For example, Γ (tn) and Γ (tn+1) in Fig. 4(a or c) denote the
zero level set at times tn and tn+1, respectively. The transformationMb(x, t)
transforms Γ (tn) and Γ (tn+1) to Γ̃ (tn) and Γ̃ (tn+1) in Fig. 4(b or d), such
that Γ̃ (tn) = Γ (tn) and Γ̃ (tn+1) = Γ (tn). Thus, in a space-time slab En, our

10 Chaoxu Pei et al.

Fig. 3 Examples of a cut-cell in a space-time domain E ∈ R2. The moving front is evolving
from left to right in each case. The shape of the generated subelements could be triangle,
quadrilateral or pentagon.

transformation x̃ =Mb(x, t) is determined by{
Mb

t + (∇Mb)W = 0,

Mb(x, tn) = x,
(10)

where ∇ denotes the gradient operator with respect to x, and W is the ex-
tension of the normal velocity Vn off the interface Γ , which is defined by

W (x, t) = Vn(x∗, t), (11)

where x∗ is the closest point on Γ (t) to the coordinates of a point (x, t). Since
the zero level set of the transformed front is determined by the front at time
tn, we refer to this transformation as the backward mapping transformation.
Note that matrix ∇Mb is the Jacobian of the transformation, which is defined
by

∇Mb = ∇x̃ =

∂x̃1
∂x1

∂x̃1
∂x2

∂x̃2
∂x1

∂x̃2
∂x2

 . (12)

After updating the temperature distribution in the moving frame of refer-
ence and calculating the updated interface curve QnΓ , we need to project the
solutions back onto the fixed frame of reference. This projection x =Mf (x̃, t)

Space-time DGSEM for the Stefan problem 11

Fig. 4 Examples of a mapping technique applied to two kinds of a cut-cell in a space-time
domain E ∈ R2. In each case, the curve QnΓ is mapped to a straight bold line Q̃nΓ , which is
either aligned with an inter-element boundary or cutting a regular cell into two subelements.

in a space-time slab En is called the forward mapping transformation and is
defined by {

Mf
t − (∇̃Mf)W = 0,

Mf (x̃, tn) = x̃,
(13)

where ∇̃ denotes the gradient operator with respect to x̃.

In one spatial dimension, we apply the method of characteristics to solve
the transformations (10) and (13), and obtain,

– the backward transformation,

x̃(x, t) = x−
∫ t

tn

W (s)ds, (14)

– the forward transformation,

x(x̃, t) = x̃+

∫ t

tn

W (s)ds. (15)

Note that W is defined in Eq. (11).

12 Chaoxu Pei et al.

4.1 The transformed equations in the moving frame of reference

In this section, we describe a general approach to transform the heat equa-
tions in the fixed frame of reference, Eqs. (3) and (4), into the moving frame
of reference. In the moving frame of reference, the coordinates of a point is
denoted as (x̃, t). As the mapping procedure is identical in both phases, we
consider only the solid phase, Eq. (3), and drop the index “s”,

∂(ρcvθ)

∂t
= ∇ · (k∇θ). (16)

Given a mapping x̃ = Mb(x, t), We find the effect of the mapping on
Eq. (16) by use of the chain rule. First, the time derivative of θ transforms as,

∂(ρcvθ)

∂t
=
∂(ρcv θ̃)

∂t
+
∂x̃

∂t
· ∇̃(ρcv θ̃), (17)

where θ̃ denotes the temperature distribution in the moving frame of reference.
For the gradient operator ∇θ ∈ R2, we have

∇θ =

∂θ

∂x1

∂θ

∂x2

 =

∂x̃1
∂x1

∂x̃2
∂x1

∂x̃1
∂x2

∂x̃2
∂x2

∂θ̃

∂x̃1

∂θ̃

∂x̃2

 = (∇x̃)>∇̃θ̃, (18)

where superscript “>” denotes the matrix transpose, and ∇x̃ is the Jacobian
of the transformation, which is defined in Eq. (12). Similarly, we have

∇̃θ̃ = (∇̃x)>∇θ. (19)

It follows that

∇x̃ = (∇̃x)−1. (20)

From (18), (19) and (20), it then follows that

∇θ = ((∇̃x)−1)>∇̃θ̃. (21)

The transformation for the divergence operator, ∇ · F ∈ R2, is defined as

∇ · F =
∂F1

∂x1
+
∂F2

∂x2
,

= (
∂F̃1

∂x̃1

∂x̃1
∂x1

+
∂F̃1

∂x̃2

∂x̃2
∂x1

) + (
∂F̃2

∂x̃1

∂x̃1
∂x2

+
∂F̃2

∂x̃2

∂x̃2
∂x2

),

= ∇̃F̃ : (∇x̃)>,

= ∇̃F̃ : ((∇̃x)−1)>, (22)

Space-time DGSEM for the Stefan problem 13

where

∇̃F̃ =

∇̃F̃1

∇̃F̃2

 =

∂F̃1

∂x̃1

∂F̃1

∂x̃2

∂F̃2

∂x̃1

∂F̃2

∂x̃2

 , (23)

and the symbol “:” is defined as A : B =
∑
j

∑
i ai,jbi,j , where A = (ai,j)d×d

and B = (bi,j)d×d are matrices. Hence, by applying the transformations (17),
(21) and (22), the heat equation (16) can be rewritten as

∂(ρcv θ̃)

∂t
+
∂x̃

∂t
· ∇̃(ρcv θ̃) = ∇̃(k((∇̃x)−1)>∇̃θ̃) : ((∇̃x)−1)>. (24)

From the definition of the backward mapping in Eq. (10), we have

∂x̃

∂t
= −(∇̃x)−1W , (25)

where W is defined in Eq. (11). The transformed heat equation is then written
as

∂(ρcv θ̃)

∂t
− ((∇̃x)−1W) · ∇̃(ρcv θ̃) = ∇̃(k((∇̃x)−1)>∇̃θ̃) : ((∇̃x)−1)>. (26)

Using vector identities, the second term and the third term in Eq. (26) are
written as,

((∇̃x)−1W) · ∇̃(ρcv θ̃) = ∇̃ · ((∇̃x)−1W ρcv θ̃)− ρcv θ̃∇̃ · ((∇̃x)−1W), (27)

∇̃(k((∇̃x)−1)>∇̃θ̃) : ((∇̃x)−1)> = ∇̃ · ((∇̃x)−1k((∇̃x)−1)>∇̃θ̃)
− (k((∇̃x)−1)>∇̃θ̃) · ∇̃ · ((∇̃x)−1)>, (28)

where ∇̃ · ((∇̃x)−1)> is defined as

∇̃ · (∇x̃)> =

∇̃ · (∂x̃

∂x1
)

∇̃ · (∂x̃
∂x2

)

 . (29)

Thus, the transformed heat equation in the moving frame of reference is writ-
ten as

∂(ρcv θ̃)

∂t
− ∇̃ · ((∇̃x)−1W ρcv θ̃) = ∇̃ · ((∇̃x)−1k((∇̃x)−1)>∇̃θ̃) +N.C.T.,

(30)

14 Chaoxu Pei et al.

where N.C.T. denotes the sum of the non conservative terms, and is defined
as follows

N.C.T. = ρcv θ̃∇̃ · ((∇̃x)−1)W − (k((∇̃x)−1)>∇̃θ̃) · ∇̃ · ((∇̃x)−1)>. (31)

Now, we reformulate the transformed heat equation (30) in the space-
time framework. In the space-time domain, we introduce a vector function
B ∈ Rd+1 and a matrix A ∈ R(d+1)×(d+1), as

B =
(
−(∇̃x)−1W , 1

)
, A =

(
k((∇̃x)−1)> 0

0> 0

)
, (32)

where 0 ∈ Rd×1. Then the transformed heat equation (30) is transformed into
a space-time formulation as,

∇ · (ρcvBθ̃ − (∇̃x)−1A∇θ̃) = N.C.T., (33)

where ∇ = (∂
∂x̃1

, ..., ∂
∂x̃d

, ∂
∂x̃d+1

)> denotes the gradient operator in the space-

time domain. Note that the term A∇θ̃ is a critical component when calculating
the normal velocity at the interface. More detail is discussed in section 5.4.

In one spatial dimension, we have ∇̃W = 0. According to the transforma-
tions (14) and (15), we obtain

∇x̃ = (∇̃x)−1 = 1. (34)

Using the vector identities, the term N.C.T. equals zero due to

∇̃ · ((∇̃x)−1)> = 0, (35)

∇̃ · ((∇̃x)−1W) = ∇̃W : ((∇̃x)−1)> +W · ∇̃ · ((∇̃x)−1)> = 0. (36)

The transformed heat equation is then written in the conservative form as

∂(ρcv θ̃)

∂t
− ∇̃ · ((∇̃x)−1W ρcv θ̃) = ∇̃ · ((∇̃x)−1k((∇̃x)−1)>∇̃θ̃), (37)

Hence, the space-time formulation of Eq. (37) is written as,

∇ · (ρcvBθ̃ − (∇̃x)−1A∇θ̃) = 0. (38)

Remark 1 In higher dimensions, it will be necessary to reduce the spatial and
temporal order as well as reduce ∆tn if the condition number of ∇̃x exceeds
a threshold. One can also use the condition number of ∇̃x as an indicator for
adaptive mesh refinement.

Remark 2 In one spatial dimension, the velocity extension, W , is a function of
time only so that (13) reduces to a linear differential equation; in this case we
can use (15) to find the forward mapping. In multiple dimensions, (13) would
have to be solved by the method of characteristics where a Picard iteration
technique (e.g. [32,33]) is applied in order to find the arrival points of the
characteristics. At each iteration, we solve

∂

∂t
(x(k+1)(x̃, t)) = W (x(k)(x̃, t), t), (39)

with the initial guess x(0)(x̃, t) = x̃, which is the initial condition of Eq. (13).

Space-time DGSEM for the Stefan problem 15

5 Space-time DG spectral element method

In this section, we describe our space-time DG spectral element method for
solving the Stefan problem.

5.1 Outline of the space-time DG spectral element method

We present an outline of our space-time DG spectral element method for
solving the Stefan problem in Algorithm 1. Note that the transformed heat
equation (37) in the moving frame of reference is a nonlinear equation since
W in (11) and B in (32) are functions of the interfacial temperature gradients
evaluated from both sides of the interface. We use the following expression to
indicate the nonlinear property,

W = W (∇̃θ̃), B = B(∇̃θ̃). (40)

To solve such a nonlinear equation, we use a Picard iteration scheme [32,33]
for which at each Picard iteration the linear advection-diffusion equation has
to be solved in the space-time framework.

Algorithm 1 the space-time discontinuous Galerkin spectral element method
for solving the Stefan problem in a space-time slab En.

1: Given θn,s, θn,l and φn at time tn in the space-time slab En.
2: Compute the normal velocity V nn at the interface from Eq. (6). Details are given in

section 5.4.
3: Define a space-time slab Ẽn in the moving frame of reference by introducing the backward

transformation x̃ = Mb(x, t) (Eq. (10)) and forward transformation x = Mf (x̃, t)
(Eq. (13)). Here, the temperature values in the solid and liquid phases are denoted as
θ̃n,s and θ̃n,l,respectively.

4: In Ẽn, apply a Picard iteration scheme [32,33] to solve (38) in each phase, and let the

initial guess of the normal velocity to be V
j,(k)
n = V nn , where k = 0 and j = 1, ..., p(t).

Note that V
p(t),(k)
n = V

n+1,(k)
n . In each phase, we solve

∇ · (ρcvB(∇̃θ̃(k))θ̃(k+1) − (∇̃x)−1A∇θ̃(k+1)) = 0. (41)

5: while (‖V n+1,(k+1)
n − V n+1,(k)

n ‖ > tol) do
i Use the DG spectral element method to solve the linear equation (41) in each phase.

The discretization of (41) will be discussed in section 5.3.

ii Applying the forward transformation Mf ,(k)(x̃, t) defined in (13), we obtain the
level set function φj,(k) at time tj , where j = 1, ..., p(t).

iii The backward transformation Mb,(k)(x, t) is applied to obtain θj,s,(k+1) and
θj,l,(k+1), where j = 1, ..., p(t).

iv Compute V
j,(k+1)
n (j = 1, ..., p(t)), Mb,(k+1)(x, t) and Mf ,(k+1)(x̃, t).

6: end while
7: Update the level set function, φj (j = 1, ..., p(t)), using the forward transformation.
8: return θn+1,s, θn+1,l, V n+1

n and φn+1.

16 Chaoxu Pei et al.

5.2 Function spaces and notations

First, we introduce a transformation ˜̄x = X(ξ, η) which defines a mapping that
connects a one spatial dimension space-time element K̃ in the moving frame of
reference and a reference square R = [−1, 1]× [−1, 1], where ˜̄x = (x̃, t) ∈ R2.
In the space-time domain Ẽ ∈ R2, each space-time element in the moving
frame of reference is a square. So the transformation (x̃, t) = X(ξ, η) [43] is
linear in each coordinate direction and is written as

X(ξ, η) =
1

4
{x1(1− ξ)(1− η) + x2(1 + ξ)(1− η)

x3(1 + ξ)(1 + η) + x4(1− ξ)(1 + η)}, (42)

where {xj}j=1,...,4 are four corners of a space-time element K̃, which are num-
bered counter clockwise.

Let’s define the transformation between the space-time element K̃nj and the

reference square R as (x̃, t)|K̃n
j

= XK̃n
j
(ξ, η), such that XK̃n

j
= (Xn,j , Y n,j).

So the gradient operator ∇ is transformed to

∇f =
1

J n,j
Cn,j∇rf, (43)

where J n,j = Xn,j
ξ Y n,jη −Xn,j

η Y n,jξ , the matrix Cn,j is defined as

Cn,j =

(
Y n,jη −Y n,jξ

−Xn,j
η Xn,j

ξ

)
, (44)

and ∇r denotes the gradient operator defined on the reference square R. In
addition, the divergence operator ∇· is transformed to

∇ · F =
1

J n,j
∇r · ((Cn,j)>F). (45)

Next, Let’s introduce two function spaces, Vh and Σh, associated with the
tessellation T̃h defined in the moving frame of reference,

Vh = {ν ∈ L2(Ẽ) : ν|K̃ ◦XK̃ ∈ P
p(R),∀K̃ ∈ T̃h}, (46)

Σh = {τ ∈ (L2(Ẽ))d+1 : τ |K̃ ◦XK̃ ∈ (Pp(R))d+1,∀K̃ ∈ T̃h}, (47)

where Pp(R) is the set of all polynomials of degree at most p = (p(x), p(t)) on
R, with p(x) in the spatial direction and p(t) in the time direction.

Spectral element methods with non-periodic boundaries use orthogonal
polynomial approximations of the solution [41,43]. In the space-time domain
Ẽ ∈ R2, we introduce a tensor product basis, `i(ξ)`j(η) ∈ Pp(R), such that

`i(ξ) =

p(x)∏
i=0
i 6=k

ξ − ξi
ξk − ξi

, `j(η) =

p(t)∏
j=0
j 6=k

η − ηj
ηk − ηj

, (48)

Space-time DGSEM for the Stefan problem 17

where {ξi}i=0,...,p(x) and {ηj}j=0,...,p(t) are the sets of Legendre Gauss-Lobatto

points. Then the exact solution σ̃ and θ̃ are approximated by σ̃h ∈ Σh and
θ̃h ∈ Vh, which are written in nodal Lagrange form,

σ̃ ∼ σ̃h =

p(t)∑
j=0

p(x)∑
i=0

σ̃i,j`i(ξ)`j(η), (49)

θ̃ ∼ θ̃h =

p(t)∑
j=0

p(x)∑
i=0

θ̃i,j`i(ξ)`j(η). (50)

In addition, we define the trace of ν ∈ Vh on K̃ as

ν− = lim
ε→0

ν(˜̄x− εn̄K̃) (51)

where ˜̄x = (x̃, t) ∈ ∂K̃ and n̄K̃ is outward unit normal of K̃. The trace of
τ ∈ Σh is defined similarly.

Due to the discontinuous approximation spaces, the temperature and the
temperature gradient approximations are double valued across element bound-
aries. Thus, we introduce the average {{·}} and jump J·K operators. Considering
two adjacent elements K̃nj and K̃nj+1 such that Q̃nj,j+1 = K̃nj ∩ K̃nj+1, let n̄K̃n

j

and n̄K̃n
j+1

denote the corresponding outward unit normal of K̃nj and K̃nj+1 on

Q̃nj,j+1. Then the average {{·}} and jump J·K operators are defined as,

{{ν}} = (ν−K̃n
j

+ ν−K̃n
j+1

)/2, {{τ}} = (τ−K̃n
j

+ τ−K̃n
j+1

)/2, (52)

JνK = ν−K̃n
j

n̄K̃n
j

+ ν−K̃n
j+1

n̄K̃n
j+1
, Jτ K = τ−K̃n

j

· n̄K̃n
j

+ τ−K̃n
j+1

· n̄K̃n
j+1
. (53)

5.3 Discretization of DG spectral element method

To derive the space-time DG weak formulation for Eq. (38), we follow the
same approach presented in [38]. By introducing an auxiliary variable σ̃, we
rewrite Eq. (38) into a first order system

σ̃ = A∇θ̃, (54)

∇ · (ρcvBθ̃ − (∇̃x)−1σ̃) = 0. (55)

In the moving frame of reference, a tessellation of a space-time slab Ẽn is
defined as T̃ nh such that T̃ nh = T̃ n,sh ∪ T̃ n,lh . As the discretization procedure is

identical in both phases, we consider only the solid phase with T̃ n,sh . Recall

that a space-time element K̃s in T̃ n,sh is either K̃n,sj or K̃n,s,Γj , where K̃n,s,Γj

denotes a subelement of the cut-cell K̃n,slj .

18 Chaoxu Pei et al.

Multiply (54) with a test function τ ∈ Σh, substitute σ̃ and θ̃ with the
approximations σ̃h ∈ Σh and θ̃h ∈ Vh, and integrate over a space-time element
K̃s ∈ T n,sh , then we obtain∫

K̃s

σ̃h · τdK̃s =

∫
K̃s

A∇θ̃h · τdK̃s. (56)

According to the transformation (x̃, t) = X(ξ, η) and Eq. (43), we transform
the integrals over K̃s to the integrals over the reference square R and obtain∫

R
σ̃h · τJ n,jdR =

∫
R

1

J n,j
(ACn,j∇r θ̃h · τ)J n,jdR. (57)

After integration by parts twice, we have the following formulation,∫
R
σ̃h · τJ n,jdR =

∫
R
ACn,j∇r θ̃h · τdR+

∫
∂R
ACn,j(

ˆ̃
θDh − θ̃−h)nr · τ−d∂R,

(58)

where nr denotes the outward unit normal vector of the reference square R
and

ˆ̃
θDh denotes the numerical flux, which should be carefully defined to ensure

stability of the method.
Similarly, the weak formulation of (55) for a space-time element K̃s ∈

T̃ n,sh is obtained by first multiplying (55) with a test function ν ∈ Vh, and

substituting σ̃ and θ̃ with the approximations σ̃h ∈ Σh and θ̃h ∈ Vh. Then
the transformation (x̃, t) = X(ξ, η) is applied on a space-time element K̃s
using Eq. (45) in order to obtain∫

R

1

J n,j
{∇r ·

(
(Cn,j)>(ρcvBθ̃h − (∇̃x)−1σ̃h)

)
ν}J n,jdR = 0. (59)

After performing integration by parts once, we have

−
∫
R

(
ρcv(C

n,j)>Bθ̃h − (Cn,j)>(∇̃x)−1σ̃h

)
·∇rνdR+∫

∂R
ρcv

(
(Cn,j)>B

ˆ̃
θAh − (Cn,j)>(∇̃x)−1 ˆ̃σD

h

)
· nrν−d∂R = 0, (60)

where
ˆ̃
θAh and ˆ̃σD

h are the numerical fluxes. Note that the only coupling be-
tween elements in Eq. (58) and Eq. (60) occur when we compute the element
boundary flux values.

Next, we find appropriate choices for the numerical fluxes. We separate the

numerical fluxes into an advection flux
ˆ̃
θAh and the diffusive fluxes (

ˆ̃
θDh ,

ˆ̃σD
h).

For the advection flux, we apply the upwind flux, as described in [45].

(Cn,j)>B
ˆ̃
θAh = {{(Cn,j)>Bθ̃h}}+

1

2
|(Cn,j)>B · nr|Jθ̃hK. (61)

Now, we consider the diffusive fluxes (
ˆ̃
θDh ,

ˆ̃σD
h). In [52], a mathematical frame-

work is proposed for analyzing different DG approaches for elliptic problems.

Space-time DGSEM for the Stefan problem 19

Kirby and Karniadakis [53] presented a study of three different formulations
selecting from [52] for diffusion problems, which are listed in Table 1. In Ta-
ble 1, we drop the symbol “∼” and the index “D” in order to be more concise.

Method Fluxes stencil in 1D h−convergence

Bassi-Rebay [54]
θ̂h = {{θh}};
σ̂h = {{σh}}

five-element suboptimal

LDG [38]
θ̂h = {{θh}} − β · JθhK;

σ̂h = {{σh}}+ β · JσhK− αjJθhK
three-element optimal

Baumann-Oden [55]
θ̂h = {{θh}};
σ̂h = {{∇θh}}

three-element suboptimal

Table 1 DG methods for diffusion problems and the corresponding numerical fluxes. β is
called the auxiliary parameter and defined as β ·n = sign(v ·n)/2 [39], where v = (1, 1)>.
αj ≥ 0 is referred to as the stabilization parameter

Considering the compactness of the stencil and the h-convergence rate, we
choose the LDG [38] fluxes listed in Table 1 with the stabilization parameter
αj = 0. To complete the derivations of the weak formulation for (54) and (55),
we perform summation over all elements.∑

n

∑
j

∫
R
σ̃h · τJ n,jdR =

∑
n

∑
j

∫
R
ACn,j∇r θ̃h · τdR+

∑
n

∑
j

∫
∂R
ACn,j(

ˆ̃
θDh − θ̃−h)nr · τ−d∂R, (62)

−
∑
n

∑
j

∫
R

(
ρcv(C

n,j)>Bθ̃h − (Cn,j)>(∇̃x)−1σ̃h

)
·∇rνdR+

∑
n

∑
j

∫
∂R

(
ρcv(C

n,j)>B
ˆ̃
θAh − (Cn,j)>(∇̃x)−1 ˆ̃σD

h

)
· nrν−d∂R = 0.

(63)

Note that special care is needed when imposing the boundary conditions in

Eq. (62) through
ˆ̃
θDh . The reason is that the boundary conditions must be the

exact values imposed in the moving frame of reference, which are obtained by
applying the backward transformation on the boundary conditions imposed in
the fixed frame of reference. Since the backward transformation (10) depends
on the interface velocity, we have

(
ˆ̃
θDh)|(∂Ẽn,s) = (

ˆ̃
θDh (∇̃θ̃h))|(∂Ẽn,s). (64)

We proceed by approximating the integrals in Eq. (62) and Eq.(63) using
Gaussian quadrature. In order to avoid the computation of an inverse matrix

20 Chaoxu Pei et al.

in Eq. (62), we choose the quadrature nodes to be the same as the interpolation
nodes, i.e. Legendre Gauss-Lobatto nodes. By choosing the same nodes, the
mass matrix in each element becomes an identity matrix. Thus, we have∫

R
σ̃h · τJ n,jdR ≈ J n,j(σ̃i,j · τ i,j)ωiωj , (65)

i = 0, ..., p(x),

j = 0, ..., p(t),

where {ωi}i=0,...,p(x) and {ωj}j=0,...,p(t) are the integration weights in the ξ

direction and in the η direction, respectively. In a space-time slab Ẽn ∈ R2,
J n,j in each element is a positive constant, such that J n,j = ∆tn

2
h
2 .

From Table 1, we notice that the numerical flux
ˆ̃
θDh only depends on the

variable θ̃h. So we can eliminate the auxiliary variable σ̃h from the formulation
(63). Solve for σ̃h in (62) and then substitute σ̃h and ν with the resulting
expression and `i(ξ)`j(η) into (63). We then obtain a linear system at k-th
Picard iteration as ,

G(θ̃
(k)
h)θ̃

(k+1)
h = f(θ̃

(k)
h) (66)

where G(θ̃
(k)
h) denotes the matrix of the linear system due to (41), and the

vector f(θ̃kh) obtained by (64) is the Dirichlet boundary conditions imposed

on the boundary of T̃ n,sh ∩ (∂Ẽn \Ωtn+1
∪Q̃nΓ). Note that there is no boundary

condition imposed on Ωtn+1
.

Lastly, we examine the structure of the matrix G(θ̃
(k)
h) in each phase. Here,

we take the matrix in the liquid phase as an example, which is denoted as

Gl(θ̃
(k)
h). The matrix Gl(θ̃

(k)
h) depends on the polynomial order in space, p(x),

the polynomial order in time, p(t), and the number of element in the liquid
phase, E(x),l. For example, we take p(x) = 2, p(t) = 1 and E(x),l = 2. The order

of the matrix Gl(θ̃
(k)
h) is (12× 12), i.e. (p(x) + 1)× (p(t) + 1)×E(x),l = 12, and

the structure of the matrix, Gl(θ̃
(k)
h), is shown as follows

Gl(θ̃
(k)
h)(12×12) =

∗ ∗ ∗ ∗ 0 0 ∗ 0 0 0 0 0
∗ ∗ ∗ 0 ∗ 0 ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0
∗ 0 0 ∗ ∗ ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0 0 ∗ 0 0
∗ ∗ ∗ 0 0 0 ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0
0 0 0 0 0 0 ∗ ∗ ∗ 0 0 ∗
0 0 0 ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

Note that Gl(θ̃

(k)
h) is a sparse non symmetric matrix.

Space-time DGSEM for the Stefan problem 21

5.4 Calculating the interface velocity

In the Stefan problem, the phase boundary is evolving in time with the veloc-
ity defined in Eq. (6). The accuracy of the interface velocity directly affects
the accuracy of the interface position. The interface velocity is a function of
the temperature gradient evaluated at both sides of the interface. The order of
accuracy for approximating the interface velocity must be commensurate with
the order for approximating the solutions of the heat equations, otherwise the
overall order of accuracy will reduce to the minimum of the velocity or tem-
perature order. For example, in [28,30], the authors applied finite difference
methods to solve the Stefan problem, and the loss of one order of overall ac-
curacy was reported due to the discretization error in calculating the interface
velocity.

In order to obtain overall spectral accuracy, the interface velocity must
be computed by a spectrally accurate method. We propose two options for
computing the interface velocity. We find that each option leads to a spectrally
accurate method for computing the interface velocity.

Since the velocity is determined by the temperature gradient evaluated at
the interface in both phases, one option is to approximate the interface normal
velocity using the following expression

Vn =
1

ρL
(σ̃s − σ̃l) · ˜̄n, (67)

where ˜̄n = (ñ, 0) is the unit normal at the interface pointing in the direction
of interface movement in a space-time slab Ẽn, and ñ = (ñ1, ..., ñd) is the
spatial part of ˜̄n in the moving frame of reference. Note that σ̃ is the auxiliary
variable introduced in (54). Now, we show that Eq. (67) is equivalent to Eq. (6)
defined in the fixed frame of reference by,

σ̃ · ˜̄n = A∇θ̃ · ˜̄n,
= k((∇̃x)−1)>∇̃θ̃ · ñ,
= k∇θ · n, (68)

where n is the unit normal at the interface pointing in the direction of interface
movement in the fixed frame of reference. We refer to Eq. (67) as the weak
form method.

Another option is to apply the normal probe method in the fixed frame of
reference. In a space-time slab En ∈ R2, the interface curve QnΓ is updated by
the forward transformation x =Mf (x̃, t), while the temperature values θ(x, t)
in the fixed frame of reference are obtained by the backward transformation
x̃ =Mb(x, t).

Note that the transformations (14) and (15) are discretized by a (p(t) + 1)-
point Gaussian quadrature rule, where p(t) is the polynomial order in the
time direction. In order to obtain the temperature values θ(x, t) in the fixed
frame of reference, we first find the departure points (i.e. x̃) of the Legendre
Gauss-Lobatto nodes (i.e. x) in the fixed frame of reference by the backward

22 Chaoxu Pei et al.

transformation (14), then the temperature values θ(x, t) are obtained via a
p(x)-th order accurate interpolation, such that

θ(x, t) = Im(θ̃(x̃, t)), (69)

where Im is the interpolation operator due to the mapping, and p(x) is the
polynomial order in the spatial direction. According to the zero level set at
time tj (j = 1, ..., p(t)), we construct a fictitious element in each phase with
the size h that is the length of a regular space-time element in the spatial
direction, i.e. Fig. 5 is an example of the normal probe method applied at

time tp
(t)

. In each fictitious element, the temperature values, θfic(x, t), at its
Gauss-Lobatto nodes are obtained by

θfic(x, t) = In(θ(x, t)), (70)

where In is the interpolation operator due to the normal probe method. The
normal interface velocity is then computed by,

Vn =
1

ρL

{
∇
(
In(Im(θ̃n+1,s))

)
−∇

(
In(Im(θ̃n+1,l))

)}
· n, (71)

where ∇ is the gradient operator with respect to the spatial variable x =
(x1, ..., xd) in the fixed frame of reference, and n = (n1, ..., nd) is the unit
normal at the interface pointing in the direction of the interface movement.

The approximation of ∇
(
In(Im(θ̃n+1,s)

)
is written as

∇
(
In(Im(θ̃n+1,s)

)
≈
∑
i

(
In(Im(θ̃n+1,s

h)
)
i
DΓn+1,i, (72)

where DΓn+1,i is the derivative matrix evaluated at the interface Γ (tn+1), i.e.

DΓn+1,i = `
′

i(Γ (tn+1)) in one spatial dimension. The aim of using fictitious
elements is to avoid computing the temperature gradient in a small cell, which
can eliminate the instability caused by computing the temperature gradient
directly (i.e. spectral collocation discretization) in a small cell. The description
of the normal probe method is illustrated in Fig. 5.

6 Numerical Experiments

In this section, we test the space-time DG spectral element method for solving
the Stefan problem on two benchmark problems in one spatial dimension. The
numerical results are compared with the exact solutions in order to examine
the convergence rate both with respect to space and time. The time step is
restricted by the following CFL criterion

∆t = C
h

Vn
, (73)

Space-time DGSEM for the Stefan problem 23

Fig. 5 Description of the normal probe method applied in a space-time slab En ∈ R2 in the
fixed frame of reference. The polynomial order, p = (p(x), p(t)), in each space-time element
is chosen to be (3, 2). We assume that the solid phase is on the left hand side of the interface
QnΓ while the liquid is on the other side. The fictitious element in the solid phase at time

tn+1 is denoted as en+1,s
fic , and en+1,l

fic is the fictitious element for the liquid phase at time

tn+1. The length of both fictitious elements is h, which is the same as the length of a regular
space-time element, i.e. the length of Kn,sj−1. The number of Gauss-Lobatto nodes in each

fictitious element is p + 1, where p = p(x). The temperature gradient is evaluated at the
node with symbol “�” in each fictitious element.

where C is a constant and set to be less than 1.0, and h is the length of
a regular space-time element. This CFL condition (73) makes sure that the
interface does not move across two regular space-time elements in one space-
time slab.

Note that G(θ̃k) in Eq. (66) is a non symmetric matrix due to the dis-
cretization of the advection term in the transformed heat equation. In our
tests, we apply a direct solver from the LAPACK library in order to invert the
resulting linear system.

In the last space-time slab EE(t)−1, the errors are measured in the l∞ norms
at time tE(t) , i.e. tE(t) = T , where T is the finial computational time.

‖Errθ‖∞ = max
i=0,...,p(x)

‖θE
(t)

i − (θh)E
(t)

i ‖, (74)

where θE
(t)

i denotes the exact temperature solution evaluated at node xi, and

(θh)E
(t)

i is the approximation temperature evaluated at the same node.

6.1 Test 1-constant velocity

Consider a computational domain Ω = [−0.5, 1.0] with an exact solution

θ(x, t) =

{
−1 + e−Vn(x−Vnt), x > Vnt,

0, x ≤ Vnt,
(75)

24 Chaoxu Pei et al.

where the normal velocity Vn is a constant, and we take Vn = 1.0. The interface
is governed by

Γ (t) = Vnt. (76)

In this test, the ice phase is on the left and motionless, existing at the
melting temperature, i.e. θs = θm = 0, while the liquid phase is on the right
and initialized as a supercooled liquid. The interface between the ice and liquid
phase is initialized at the origin, Γ (0), and moves to the right with the normal
velocity Vn defined in Eq. (6). We take ρl = ρs = 1.0, kl = ks = 1.0, clv = csv =
1.0 and L = 1.0. Dirichlet boundary conditions for temperature distributions
are enforced on the domain’s boundary ∂Ω using the exact solution. At the
interface, we choose θΓ = θm.

First, we demonstrate the spectral accuracy of the approximation by plot-
ting the maximum errors in the temperature and the interface velocity as a
function of polynomial order, p = (p(x), p(t)), respectively. Fig. 6 applies the
weak form method (67) to compute the interface velocity, while Fig. 7 uses the
normal probe method (71). Both figures show exponential convergence of ap-
proximate temperature to the exact solution, as well as the interface velocity.
The simulation is computed over the time t = 0 to t = 0.5 with the time step
∆t = 3.84×10−2. The polynomial orders in space and in time are chosen to be
the same, i.e. p(x) = p(t). The computational domain is divided into Ex = 5,
E(x) = 10 and E(x) = 20. Different slopes are observed in both Fig. 6 and
Fig. 7.

Two options for approximate the interface velocity, i.e. the weak form
method (67) and the normal probe method (71) are compared in Fig. 8 .
Through the comparison of the temperature (left) and the interface velocity
(right), we see that both options exhibit spectral accuracy.

Note that the DG spectral element method is applied on the transformed
heat equations in both phases in the moving frame of reference (Algorithm 1).
If we transform the exact solution (75) into the moving frame of reference by
the backward transformation (14), we have

θ̃(x̃, t) =

{
−1 + e−Vn(x̃), x̃ > 0,

0, x̃ ≤ 0.
(77)

So the convergence rate does not depend on the polynomial order p(t) in this
test problem, which is shown in Figs. (9) and (10). We choose three values of
the polynomial order in time, i.e. p(t) = p(x), p(t) = 2 and p(t) = 10. All cases
lead to the same error behavior, which is consistent with the exact solution (77)
in the moving frame of reference. Fig. (9) applies the weak form method (67)
to calculate the interface velocity, while Fig. (10) applies the normal probe
method (71).

In Table 2 and Table 3, we list the maximum errors of the temperature,
interface position and interface velocity in the last space-time slab with differ-
ent values of the polynomial order. The computational domain is divided into

Space-time DGSEM for the Stefan problem 25

2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Weakform, E
(x)

=5

Weakform, E
(x)

=10

Weakform, E
(x)

=20

2 3 4 5 6 7 8
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, E
(x)

=5

Weakform, E
(x)

=10

Weakform, E
(x)

=20

Fig. 6 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the liquid phase. The polynomial order in time direction, p(t),
is chosen to be the same as p(x). The interface velocity is computed by the weak form
method (67). The comparison is made among E(x) = 5, E(x) = 10 and E(x) = 20. For
E(x) = 20, the interface moves across 7 inter-element boundaries, while the interface moves
across 3 inter-element boundaries for E(x) = 10 and 2 inter-element boundaries for E(x) = 5.
The simulation is computed over the time t = 0 to t = 0.5 with the time step ∆t =
3.84× 10−2

E(x) = 5 elements in the spatial direction, and the time step is chosen to be
∆t = 3.84× 10−2. We choose the tolerance of the Picard iteration to be 10−13

(Algorithm 1). The errors in Table 2 are obtained using the weak form velocity
algorithm (67), while Table 3 uses the normal probe velocity algorithm (71).

p = (p(x), p(t)) ‖Errθ‖∞ ‖ErrΓ ‖∞ ‖ErrVn‖∞ iter
(2,1) 1.24E-003 1.75E-003 6.12E-003 11
(3,1) 5.16E-005 6.40E-005 2.68E-004 11
(4,1) 1.28E-006 1.47E-006 7.20E-006 9
(5,1) 2.40E-008 2.63E-008 1.44E-007 8
(6,1) 3.77E-010 4.02E-010 2.31E-009 5

Table 2 Errors of the temperature (‖Errθ‖∞), interface position (‖ErrΓ ‖∞) and interface
velocity (‖ErrVn‖∞) in the last space-time slab. The interface velocity is computed by
applying the weak form method (67). The number of the Picard iteration is listed in the
last column with tol = 10−13

26 Chaoxu Pei et al.

2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Normalprobe, E
(x)

=5

Normalprobe, E
(x)

=10

Normalprobe, E
(x)

=20

2 3 4 5 6 7 8
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Normalprobe, E
(x)

=5

Normalprobe, E
(x)

=10

Normalprobe, E
(x)

=20

Fig. 7 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the liquid phase. The polynomial order in time direction, p(t), is
chosen to be the same as p(x). The interface velocity is computed by the normal probe
method (71). The comparison is made among E(x) = 5, E(x) = 10 and E(x) = 20. For
E(x) = 20, the interface moves across 7 inter-element boundaries, while the interface moves
across 3 inter-element boundaries for E(x) = 10 and 2 inter-element boundaries for E(x) = 5.
The simulation is computed over the time t = 0 to t = 0.5 with the time step ∆t =
3.84× 10−2

p = (p(x), p(t)) ‖Errθ‖∞ ‖ErrΓ ‖∞ ‖ErrVn‖∞ iter
(2,1) 3.89E-003 5.29E-003 1.34E-002 12
(3,1) 1.55E-004 1.85E-004 5.08E-004 12
(4,1) 3.73E-006 4.16E-006 1.25E-005 10
(5,1) 6.80E-008 7.32E-008 2.29E-007 6
(6,1) 9.97E-010 1.05E-009 3.47E-009 5

Table 3 Errors of the temperature (‖Errθ‖∞), interface position (‖ErrΓ ‖∞) and interface
velocity (‖ErrVn‖∞) in the last space-time slab. The interface velocity is computed by
applying the normal probe method (71). The number of the Picard iteration is listed in the
last column with tol = 10−13

6.2 Test 2 - variable velocity

Consider a computational domain Ω = [0, l] with an exact solution [4,56]

θ = θwall +
θm − θwall
erf(λ)

erf(
x

2
√
λt

), (78)

Γ (t) = 2λ
√
αt, (79)

where α = ks/(ρscsv), θwall is the Dirichlet boundary condition at x = 0, erf(·)
is the error function and λ is a solution to the transcendental equation.

Space-time DGSEM for the Stefan problem 27

2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Weakform, E
(x)

=5

Normalprobe, E
(x)

=5

Weakform, E
(x)

=20

Normalprobe, E
(x)

=20

2 3 4 5 6 7 8
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, E
(x)

=5

Normalprobe, E
(x)

=5

Weakform, E
(x)

=20

Normalprobe, E
(x)

=20

Fig. 8 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the liquid phase. The polynomial order in time direction, p(t), is
chosen to be the same as p(x). The comparison is made between the weak form method (67)
and the normal probe method (71). The simulation is computed over the time t = 0 to
t = 0.5 with the time step ∆t = 3.84× 10−2

λexp(λ2)erf(λ) =
csv(θwall − θm)

L
√
π

. (80)

In this test, the ice phase is on the left, while the liquid phase is on the right
and motionless, existing at the melting temperature, i.e. θl = θm. The interface
between the ice and liquid phase is initialized at Γ (0) = 0.1 and moves to the
right with the normal velocity Vn defined in Eq. (6). Dirichlet boundary con-
ditions for temperature distributions are enforced on the domain’s boundary
∂Ω using the exact solution.

We set ρl = ρs and clv = csv. Now, we derive the following non-dimensional
form,

∂Θs

∂τ
=
∂2Θs

∂ζ2
, 0 < ζ < ζΓ (81)

∂Θl

∂τ
= Kls ∂

2Θl

∂ζ2
, ζΓ < ζ < 1 (82)

Vn = St(
∂Θs

∂ζ
−Ksl ∂Θ

l

∂ζ
), ζ = ζΓ , (83)

28 Chaoxu Pei et al.

2 3 4 5 6 7 8

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Weakform, p
(t)

=p
(x)

Weakform, p
(t)

=2

Weakform, p
(t)

=10

2 3 4 5 6 7 8
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, p
(t)

=p
(x)

Weakform, p
(t)

=2

Weakform, p
(t)

=10

Fig. 9 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the liquid phase. The simulation is computed over the time t = 0
to t = 0.5. The computational domain is divided into E(x) = 5 in spatial direction, with
E(x),l = 4 in the liquid in the beginning and E(x),l = 2 in the liquid at the end. The
interface velocity is computed by the weak form method (67). The time step is chosen to be
∆t = 3.84× 10−2

With Dirichlet boundary conditions

Θ(0, τ) = 1.0, ζ = 0, (84)

Θ(ζΓ , τ) = 0.0 ζ = ζΓ . (85)

Here ζ = x/l, τ = α(t/l2), Θ = (θ − θm)/∆θ, ζΓ = Γ/l, Kls = kl/ks and
St = (cv∆θ)/L, where l is the length of the domain, ∆θ = θwall − θm and Γ
is the phase boundary position. Note that St is called the Stefan number.

First, we demonstrate the spectral accuracy of the approximation by plot-
ting the maximum errors in the temperature and the interface velocity as a
function of polynomial order, p = (p(x), p(t)), respectively. Fig. 11 applies the
weak form method (67) to compute the interface velocity, while Fig. 12 uses
the normal probe method (71). The computational domain is divided into
Ex = 6, E(x) = 12 and E(x) = 24. The Stefan number St is set to be 0.02.
The interface starts at x = 0.1 and moves to x = 0.3. Fig. 11 and Fig. 12 are
shown the exponential convergence in space by fixing the polynomial order in
time, p(t), to be 10 so that the temporal errors are negligible.

Two options for approximate the interface velocity, i.e. the weak form
method (67) and the normal probe method (71) are compared in Fig. 13.
In Fig. 13, the left part shows the exponential convergence of the tempera-
ture, while the exponential convergence of the interface velocity is observed
from the right part. We see that both options exhibit spectral accuracy.

Space-time DGSEM for the Stefan problem 29

2 3 4 5 6 7 8

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Normalprobe, p
(t)

=p
(x)

Normalprobe, p
(t)

=2

Normalprobe, p
(t)

=10

2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Normalprobe, p
(t)

=p
(x)

Normalprobe, p
(t)

=2

Normalprobe, p
(t)

=10

Fig. 10 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the liquid phase. The simulation is computed over the time t = 0
to t = 0.5. The computational domain is divided into E(x) = 5 in spatial direction, with
E(x),l = 4 in the liquid in the beginning and E(x),l = 2 in the liquid at the end. The
interface velocity is computed by the normal probe method (71). The time step is chosen to
be ∆t = 3.84× 10−2

Fig. 14 applies the weak form method (67) to compute the interface ve-
locity, while Fig. 15 uses the normal probe method (71). The number of the
space-time slab is denoted by E(t), which is chosen to Et = 41, E(t) = 81 and
E(t) = 162. The interface starts at x = 0.1 and moves to x = 0.3. Fig. 14 and
Fig. 15 are shown the exponential convergence in time by fixing the polynomial
order in space, p(x), to be 10 so that the spatial errors are negligible.

In Table 4 and Table 5, we show the maximum errors of the temperature,
interface position and interface velocity in the last space-time slab. The com-
putational domain is divided into E(x) = 6 elements in the spatial direction,
and the time step is chosen to be ∆t = 4.9×10−2. We choose the tolerance for
the Picard iteration to be 10−15 (Algorithm 1). The errors in Table 4 are ob-
tained using the weak form method (67) for computing the interface velocity,
while Table 5 uses the normal probe method (71).

Note that the solution to the Stefan problem is quasi-steady, whereas for
the Stefan number St large, the interface moves relatively rapidly [8]. We vary
the Stefan number, i.e. St = 0.001, St = 0.02, St = 0.05 and St = 0.08. Fig. 16
applies the weak form method (67) to compute the interface velocity, while
Fig. 17 uses the normal probe method (71). The interface starts at x = 0.1 and
moves to x = 0.4. Fig. 16 and Fig. 17 are shown the exponential convergence
for different values of St.

30 Chaoxu Pei et al.

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Weakform, E
(x)

=6

Weakform, E
(x)

=12

Weakform, E
(x)

=24

0 1 2 3 4 5 6 7 8

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, E
(x)

=6

Weakform, E
(x)

=12

Weakform, E
(x)

=24

Fig. 11 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the ice phase. The interface velocity is computed by the weak form
method (67). The comparison is made between E(x) = 6, E(x) = 12 and E(x) = 24. The
interface starts at x = 0.1 and moves to x = 0.3. The polynomial order in time direction,
p(t), is chosen to be 10 so that the temporal errors are negligible. The time step is chosen
to be ∆t = 4.9× 10−2

7 Conclusions

A space-time DG spectral element method for solving the Stefan problem has
been presented in one spatial dimension. Transformation techniques are intro-
duced to deal with the space-time curved, prior unknown, subelements in a
cut-cell by mapping the fixed frame of reference to the moving frame of ref-
erence. In the moving frame of reference, we have a rectangular mesh in each
space-time slab. So in one space-time slab, a DG spectral element method
is applied to solve the transformed heat equations, written in the space-time
formulation, in both phases. We presented two options for computing the inter-
face velocity, the weak form method (67) and the normal probe method (71).
Numerical experiments on standard 1D benchmark problems demonstrate the
spectral convergence in both space and time for the temperature and the in-
terface velocity. Both options for calculating the interface velocity exhibit the
spectral convergence in both space and time. By comparing the weak form
method (67) with the normal probe method (71), we show that the errors
of the temperature or the interface velocity computed by applying the weak
form method is less than that computed by using the normal probe method.
In addition, the number of the Picard iterations for the weak form method
is less than that for the normal probe method. We have analyzed our new
method for different values of the Stefan number, St, and we have found that

Space-time DGSEM for the Stefan problem 31

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Normalprobe, E
(x)

=6

Normalprobe, E
(x)

=12

Normalprobe, E
(x)

=24

0 1 2 3 4 5 6 7 8

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Normalprobe, E
(x)

=6

Normalprobe, E
(x)

=12

Normalprobe, E
(x)

=24

Fig. 12 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the ice phase. The interface velocity is computed by the normal
probe method (71). The comparison is made between E(x) = 6, E(x) = 12 and E(x) = 24.
The interface starts at x = 0.1 and moves to x = 0.3. The polynomial order in time direction,
p(t), is chosen to be 10 so that the temporal errors are negligible. The time step is chosen
to be ∆t = 4.9× 10−2

p = (p(x), p(t)) ‖Errθ‖∞ ‖ErrΓ ‖∞ ‖ErrVn‖∞ iter
(3,3) 3.86E-006 8.44E-007 1.87E-007 7
(3,10) 2.46E-006 7.67E-008 1.67E-008 7
(4,4) 3.82E-009 9.46E-010 2.11E-010 7
(4,10) 2.41E-009 1.74E-010 3.98E-011 7
(5,5) 1.48E-009 4.72E-010 1.05E-010 7
(5,10) 4.18E-010 1.28E-010 2.84E-011 7
(6,6) 3.07E-012 9.52E-013 2.12E-013 7
(6,10) 1.14E-012 3.47E-013 7.79E-014 7
(7,7) 3.19E-013 9.91E-014 2.19E-014 7
(7,10) 1.46E-013 4.55E-014 1.09E-014 7

Table 4 Errors of the temperature (‖Errθ‖∞), interface position (‖ErrΓ ‖∞) and interface
velocity (‖ErrVn‖∞) in the last space-time slab. The interface velocity is computed by

applying the weak form method (67). The computational domain is divided into E(x) = 6
in the spatial direction. The interface starts at x = 0.1 and moves to x = 0.3. The time step
is chosen to be ∆t = 4.9 × 10−2. The number of the Picard iteration is listed in the last
column with tol = 10−15

the space-time spectral accuracy property of our method is not sensitive to
the values of St.

As is characteristic of DG spectral element methods, only element bound-
ary flux information is communicated between elements. This property allows
one to adjust the polynomial order used in a given element; e.g. the subele-
ments in a cut-cell can have an order that is distinct from its neighbors in
order to capture thin thermal layers.

32 Chaoxu Pei et al.

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Weakform, E
(x)

=6

Normalprobe, E
(x)

=6

Weakform, E
(x)

=24

Normalprobe, E
(x)

=24

0 1 2 3 4 5 6 7 8
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, E
(x)

=6

Normalprobe, E
(x)

=6

Weakform, E
(x)

=24

Normalprobe, E
(x)

=24

Fig. 13 Errors in the temperature (left) and the interface velocity (right) as a function
of polynomial order p(x) in the ice phase. The comparison is made between the weak form
method (67) and the normal probe method (71). The interface starts at x = 0.1 and moves
to x = 0.3. The polynomial order in time direction, p(t), is chosen to be 10 so that the
temporal errors are negligible. The time step is chosen to be ∆t = 4.9 × 10−2. The Stefan
number St is set to be 0.02

Our method is not restricted to one spatial dimension, and its extension to
multiple space dimensions is the subject of future activity. In multiple space
dimensions, a high-order accurate numerical quadrature needs to be devel-
oped for computing the integrals over curved and implicitly defined surfaces
and volumes, i.e. the phase interface, in the weak formulation. The numerical
quadrature in two or three spatial dimensions can be accomplished by per-
forming the element refinement rule, which is to divide elements into triangles
in 2D or tetrahedral element shapes in 3D. However, the methods proposed
in [57,58] are more efficient for problems with complex geometries, because
there is no need to subdivide elements. In higher spatial dimensions, the level
set equation (8) needs to be solved with spectral accuracy, which can be done
by the method proposed in [15]. Future work will also explore an alterna-
tive direct solver methodology [59] for the sparse linear systems (66) that are
obtained in each Picard iteration.

Acknowledgments

This work and the authors were supported in part by the National Science
Foundation under contract DMS 1418983.

Space-time DGSEM for the Stefan problem 33

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(t)

||
E

R
R

||
m

a
x

Temperature

Weakform, E
(t)

=41

Weakform, E
(t)

=81

Weakform, E
(t)

=162

0 1 2 3 4 5 6 7 8
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Poly. Order p
(t)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, E
(t)

=41

Weakform, E
(t)

=81

Weakform, E
(t)

=162

Fig. 14 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(t) in the ice phase. The interface velocity is computed by the weak form
method (67). The interface starts at x = 0.1 and moves to x = 0.3. The comparison is made
among different numbers of the space-time slab, i.e. E(t) = 41, E(t) = 81 and E(t) = 162.
The corresponding time step is ∆t = 4.9 × 10−2, ∆t = 2.5 × 10−2 and ∆t = 1.2 × 10−2.
The polynomial order in spatial direction, p(x), is chosen to be 10 so that the spatial errors
are negligible. The computational domain is divided into Ex = 5 in the spatial direction.
The Stefan number St is set to be 0.02

References

1. Šarler, B.: Stefan’s work on solid-liquid phase changes. Engineering Analysis with
Boundary Elements 16(2), 83–92 (1995)

2. Li, B., Da-Wen, S.: Novel methods for rapid freezing and thawing of foods - a review.
Journal of Food Engineering 54(3), 175–182 (2002)

3. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3),
220–252 (1977)

4. Alexiades, V., Solomon, A.D.: Mathematical Modelling of Melting and Freezing Pro-
cesses. Hemisphere Publishing Corporation, Washington (1981)

5. Sethian, J.A., Strain, J.: Crystal growth and dendritic solidification. J. Comput. Phys.
98(2), 231–253 (1992)

6. Farid, M.: The moving boundary problems from melting and freezing to drying and
frying of food. Chemical Engineering and Processing: Process Intensification 41(1), 1–
10 (2002)

7. Gupta, S.C.: The Classical Stefan Problem: Basic Concepts, Modelling and Analysis.
North-Holland Series in Applied Mathematics and Mechanics, vol. 45. Elsevier Science
B.V., Amsterdam (2003)

8. Rønquist, E.M., Patera, A.T.: A Legendre spectral element method for the Stefan prob-
lem. Int. J. Number. Meth. Eng. 24(12), 2273–2299 (1987)

9. Juric, D., Tryggvason, G.: A front-tracking method for dendritic solidification. J. Com-
put. Phys. 123(1), 127–148 (1996)

10. Al-Rawahi, N., Tryggvason, G.: Numerical simulation of dendritic solidification with
convection: Two-dimensional geometry. J. Comput. Phys. 180(2), 471–496 (2002)

34 Chaoxu Pei et al.

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(t)

||
E

R
R

||
m

a
x

Temperature

Normalprobe, E
(t)

=41

Normalprobe, E
(t)

=81

Normalprobe, E
(t)

=162

0 1 2 3 4 5 6 7 8
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Poly. Order p
(t)

||
E

R
R

||
m

a
x

Interface Velocity

Normalprobe, E
(t)

=41

Normalprobe, E
(t)

=81

Normalprobe, E
(t)

=162

Fig. 15 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(t) in the ice phase. The interface velocity is computed by the normal
probe method (71). The interface starts at x = 0.1 and moves to x = 0.3. The comparison is
made among different numbers of the space-time slab, i.e. E(t) = 41, E(t) = 81 and E(t) =
162. The corresponding time step is ∆t = 4.9×10−2, ∆t = 2.5×10−2 and ∆t = 1.2×10−2.
The polynomial order in spatial direction, p(x), is chosen to be 10 so that the spatial errors
are negligible. The computational domain is divided into Ex = 5 in the spatial direction.
The Stefan number St is set to be 0.02

11. Al-Rawahi, N., Tryggvason, G.: Numerical simulation of dendritic solidification with
convection: Three-dimensional flow. J. Comput. Phys. 194(2), 677–696 (2004)

12. Karma, A., Rappel, W.-J.: Quantitative phase-field modeling of dendritic growth in two
and three dimensions. Phys. Rev. E 57, 4323–4349 (1998)

13. George, W.L., Warren, J.A.: A parallel 3D dendritic growth simulator using the phase-
field method. J. Comput. Phys. 177(2), 264–283 (2002)

14. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Math-
ematical Sciences, vol. 153. Springer, New York, N.Y. (2003)

15. Sussman, M., Hussaini, M.Y.: A discontinuous spectral element method for the level set
equation. J. Sci. Comput. 19(1-3), 479–500 (2003). Special issue in honor of the sixtieth
birthday of Stanley Osher

16. Javierre, E., Vuik, C., Vermolen, F.J., van der Zwaag, S.: A comparison of numerical
models for one-dimensional Stefan problems. J. Comput. Appl. Math. 192(2), 445–459
(2006)

17. Li, Z.: Immersed interface methods for moving interface problems. Numer. Algorithms
14(4), 269–293 (1997)

18. Li, Z., Lai, M.-C.: The immersed interface method for the Navier-Stokes equations with
singular forces. J. Comput. Phys. 171(2), 822–842 (2001)

19. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A Non-oscillatory Eulerian approach
to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152(2),
457–492 (1999)

20. Chessa, J., Smolinski, P., Belytschko, T.: The extended finite element method (XFEM)
for solidification problems. Int. J. Number. Meth. Eng. 53(8), 1959–1977 (2002)

Space-time DGSEM for the Stefan problem 35

p = (p(x), p(t)) ‖Errθ‖∞ ‖ErrΓ ‖∞ ‖ErrVn‖∞ iter
(3,3) 1.36E-005 4.65E-006 2.34E-007 7
(3,10) 1.29E-005 4.42E-006 1.84E-007 8
(4,4) 8.27E-008 2.67E-008 1.26E-009 8
(4,10) 8.50E-008 2.75E-008 1.43E-009 8
(5,5) 1.44E-008 4.58E-009 1.02E-009 7
(5,10) 1.42E-008 4.52E-009 1.01E-009 7
(6,6) 1.43E-012 1.62E-014 4.03E-013 10
(6,10) 1.20E-012 3.86E-013 4.81E-013 8
(7,7) 4.08E-012 1.27E-012 2.80E-013 10
(7,10) 4.20E-012 1.31E-012 2.87E-013 9

Table 5 Errors of the temperature (‖Errθ‖∞), interface position (‖ErrΓ ‖∞) and interface
velocity (‖ErrVn‖∞) in the last space-time slab. The interface velocity is computed by

applying the normal probe method (71). The computational domain is divided into E(x) = 6
in the spatial direction. The interface starts at x = 0.1 and moves to x = 0.3. The time step
is chosen to be ∆t = 4.9 × 10−2. The number of the Picard iteration is listed in the last
column with tol = 10−15

21. Bedrossian, J., von Brecht, J.H., Zhu, S., Sifakis, E., Teran, J.M.: A second order virtual
node method for elliptic problems with interfaces and irregular domains. J. Comput.
Phys. 229(18), 6405–6426 (2010)

22. Assêncio, D.C., Teran, J.M.: A second order virtual node algorithm for Stokes flow prob-
lems with interfacial forces, discontinuous material properties and irregular domains. J.
Comput. Phys. 250, 77–105 (2013)

23. Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., Zhi-Wei, R.: A sharp interface
method for incompressible two-phase flows. J. Comput. Phys. 221(2), 469–505 (2007)

24. Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y.:
A coupled level set-moment of fluid method for incompressible two-phase flows. J. Sci.
Comput. 54(2-3), 454–491 (2013)

25. Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method
with moment of fluid interface representation. J. Comput. Phys. 279, 182–217 (2014)

26. Vahab, M., Miller, G.: A front-tracking shock-capturing method for two gases. Commu-
nications in Applied Mathematics and Computational Science (2015). (in press)

27. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving
Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997)

28. Gibou, F., Fedkiw, R.P., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric
discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1),
205–227 (2002)

29. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical
simulation of dendritic growth. J. Sci. Comput. 19(1-3), 183–199 (2003)

30. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat
equations on arbitrary domains, with applications to the Stefan problem. J. Comput.
Phys. 202(2), 577–601 (2005)

31. Aslam, T.D.: A partial differential equation approach to multidimensional extrapolation.
J. Comput. Phys. 193(1), 349–355 (2004)

32. Benzi, M., Olshanskii, M.A.: An augmented Lagrangian-based approach to the Oseen
problem. SIAM J. Sci. Comput. 28(6), 2095–2113 (2006)

33. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method
for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204
(2012)

34. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys. 53(3), 484–512 (1984)

35. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J.
Comput. Phys. 82(1), 64–84 (1989)

36 Chaoxu Pei et al.

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Weakform, St=0.001

Weakform, St=0.005

Weakform, St=0.01

0 1 2 3 4 5 6 7 8

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Weakform, St=0.001

Weakform, St=0.005

Weakform, St=0.01

Fig. 16 Errors in the temperature (left) and the interface velocity (right) as a function
of polynomial order p(x) in the ice phase. The interface velocity is computed by the weak
form method (67). The polynomial order in time direction, p(t), is chosen to be the same
as p(x). The interface starts at x = 0.1 and moves to x = 0.4. The comparison is made
among different values of St, i.e. St = 0.001, St = 0.005, St = 0.01 and St = 0.05. The
computational domain is divided into Ex = 6 in the spatial direction. The time step is
chosen to be ∆t = 0.9× 10−3

36. Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.:
An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys.
148(1), 81–124 (1999)

37. Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive
cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818
(2009)

38. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

39. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local
discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer.
Anal. 39(1), 264–285 (2001)

40. Cockburn, B.B., Karniadakis, G., Shu, C.-W. (eds.): Discontinuous Galerkin Methods
: Theory, Computation, and Applications. Lecture notes in computational science and
engineering. Springer, Berlin, New York (2000)

41. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamen-
tals in Single Domains. Berlin, Springer (2006)

42. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications. Texts in Applied Mathematics, vol. 54. Springer, New York
(2008)

43. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Al-
gorithms for Scientists and Engineers. Scientific Computation. Springer, Berlin (2009)

44. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn.
Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford
(2013)

Space-time DGSEM for the Stefan problem 37

0 1 2 3 4 5 6 7 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Temperature

Normalprobe, St=0.001

Normalprobe, St=0.005

Normalprobe, St=0.01

0 1 2 3 4 5 6 7 8

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Poly. Order p
(x)

||
E

R
R

||
m

a
x

Interface Velocity

Normalprobe, St=0.001

Normalprobe, St=0.005

Normalprobe, St=0.01

Fig. 17 Errors in the temperature (left) and the interface velocity (right) as a function of
polynomial order p(x) in the ice phase. The interface velocity is computed by the normal
probe method (71). The polynomial order in time direction, p(t), is chosen to be the same
as p(x). The interface starts at x = 0.1 and moves to x = 0.4. The comparison is made
among different values of St, i.e. St = 0.001, St = 0.02, St = 0.05 and St = 0.08. The
computational domain is divided into Ex = 6 in the spatial direction. The time step is
chosen to be ∆t = 0.9× 10−3

45. Sudirham, J.J., van der Vegt, J.J.W., van Damme, R.M.J.: Space-time discontinuous
Galerkin method for advection-diffusion problems on time-dependent domains. Appl.
Numer. Math. 56(12), 1491–1518 (2006)

46. Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin
method for the compressible Navier-Stokes equations. J. Comput. Phys. 217(2), 589–
611 (2006)

47. van der Vegt, J.J.W., Sudirham, J.J.: A space-time discontinuous Galerkin method for
the time-dependent Oseen equations. Appl. Numer. Math. 58(12), 1892–1917 (2008)

48. Sollie, W.E.H., Bokhove, O., van der Vegt, J.J.W.: Space-time discontinuous Galerkin
finite element method for two-fluid flows. J. Comput. Phys. 230(3), 789–817 (2011)

49. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin
method for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 339–358
(2013)

50. Criscione, A., Kintea, D., Tuković, Ž., Jakirlić, S., Roisman, I.V., Tropea, C.: Crystal-
lization of supercooled water: A level-set-based modeling of the dendrite tip velocity.
Int. J. Heat Mass Transfer 66(0), 830–837 (2013)

51. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions
to incompressible two-phase flow. Journal of Computational Physics 114(1), 146–159
(1994)

52. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

53. Kirby, R.M., Karniadakis, G.E.: Selecting the numerical flux in discontinuous Galerkin
methods for diffusion problems. J. Sci. Comput. 22/23, 385–411 (2005)

38 Chaoxu Pei et al.

54. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for
the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys.
131(2), 267–279 (1997)

55. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-
diffusion problems. Comput. Methods Appl. Mech. Engrg. 175(3-4), 311–341 (1999)

56. Welch, S.W.J., Wilson, J.: A volume of fluid based method for fluid flows with phase
change. J. Comput. Phys. 160(2), 662–682 (2000)

57. Gassner, G.J., Lörcher, F., Munz, C.-D., Hesthaven, J.S.: Polymorphic nodal elements
and their application in discontinuous Galerkin methods. J. Comput. Phys. 228(5),
1573–1590 (2009)

58. Saye, R.I.: High-order methods for computing distances to implicitly defined surfaces.
Commun. Appl. Math. Comput. Sci. 9(1), 107–141 (2014)

59. Martinsson, P.G.: A direct solver for variable coefficient elliptic PDEs discretized via a
composite spectral collocation method. J. Comput. Phys. 242, 460–479 (2013)

