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High-order Techniques for Calculating
Surface Tension Forces

M. Sussman and M. Ohta

Abstract. In this paper we develop further the “height fraction” technique
for computing curvature directly from volume fractions. In particular we, (1)
develop a systematic approach for calculating curvature from volume fractions
which is accurate to any order, and (2) we test the second-order “height
fraction” technique on the following two-phase problems: (1) the break-up of
a cylindrical column of liquid due to Rayleigh-capillary instability, (2) surface
tension induced droplet oscillations and (3) the steady motion of gas bubbles
rising in liquid.
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1. Introduction

Numerical algorithms for calculating surface tension have been presented from the
perspective of front tracking algorithms [14, 26, 25, 28, 16], Volume-of-Fluid algo-
rithms [3, 7, 1, 18, 8], level set methods [24, 12, 13], and various hybrid methods
[23, 20, 6]. The ability to accurately calculate surface tension can be important for
modeling the impact of drops on surfaces, contact line dynamics, bubble motion,
and the break-up of liquid jets. In our previous work [20], a second-order coupled
level set and volume of fluid method was presented for calculating bubble growth
and collapse. In that work, the “height fraction” technique[9] was employed to
accurately calculate curvature directly from volume fractions. In this paper, we
present additional calculations further validating the second-order method orig-
inally proposed in [20]. Furthermore, we demonstrate that the “height fraction”
technique can be extended to calculate curvature to any order of accuracy.

Conventional wisdom would have it that only a level set representation of
an interface is capable of having a very high-order accurate method for extracting
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the interface curvature. For example, a “spectral” level set approach was presented
by[21]. Previous methods for extracting curvature from volume fractions have been
proposed by Chorin [4] (osculating circle technique), Poo and Ashgriz [15], Aleinov
and Puckett [1] (convolution technique), Williams et al. [27], Renardy et al. [17]
(“PROST”), and the “height fraction” approach [9, 20, 7, 5]. The challenge in
accurately calculating curvature from the volume-of-fluid function F is the fact
that F transitions sharply from 0 (computational cell containing only gas) to 1
(computational cell containing only liquid). Of all the approaches for calculating
curvature from volume fractions, the “height fraction” approach is the most direct,
and, unlike convolution techniques, it is “localized.”

In this paper we present a systematic approach to extending the “height
fraction” approach to any order of accuracy (i.e., higher than second order).

2. Curvature discretization using “height fractions”

The curvature of an interface is computed to second- or fourth-order accuracy
directly from the volume fractions. The method is based on reconstructing the
“height” function directly from the volume fractions [9]. Without loss of generality,
we assume that the free surface is oriented more horizontal than vertical. For
a second-order curvature algorithm, a 3 × 3 × 7 stencil of volume fractions is
constructed about cell (i, j, k). For the fourth-order algorithm, a 5× 5× 13 stencil
of volume fractions is constructed about cell (i, j, k). The 3× 3 (5 × 5 for fourth-
order) vertical sums, Fi′,j′ , i′ = −1 . . . 1, j′ = −1 . . .1, are exact integrals of the
height function h(x, y) (up to a constant); i.e.,

Fi′,j′∆x∆y∆z =
∫ xi+i′+1/2

xi+i′−1/2

∫ yj+j′+1/2

yj+j′−1/2

h(x, y)dxdy + C. (2.1)

It can be shown that ∆z(F1,0 − F−1,0)/(2∆x) is a second-order approximation to
hx(xi, yj) and that ∆z(F1,0−2F0,0 +F−1,0)/∆x2 is a second-order approximation
to hxx(xi, yj). In general, one expands h(x, y) in a Taylor series,

h(x, y) = h(xi, yj) + (x− xi)hx(xi, yj) +
1
2
(x− xi)2hxx(xi, yj)

+
1
6
(x − xi)3hxxx(xi, yj) +

1
24

(x− xi)4hxxxx(xi, yj) + (y − yj)hy(xi, yj)

+
1
2
(y − yj)2hyy(xi, yj) +

1
6
(y − yj)3hyyy(xi, yj) +

1
24

(y − yj)4hyyyy(xi, yj)

+ (x− xi)(y − yj)hxy(xi, yj) +
1
2
(x− xi)2(y − yj)hxxy(xi, yj)

+
1
2
(x − xi)(y − yj)2hxyy(xi, yj) +

1
4
(x− xi)2(y − yj)2hxxyy(xi, yj)

+ higher-order terms.
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After integrating the Taylor series expansion of h(x, y) and using (2.1), one has

Fi′,j′∆z = h(xi+i′ , yj+j′ ) +
1
24

∆x2hxx(xi+i′ , yj+j′ ) (2.2)

+
1

(16)(120)
∆x4hxxxx(xi+i′ , yj+j′ ) +

1
24

∆y2hyy(xi+i′ , yj+j′ )

+
1

(16)(120)
∆y4hyyyy(xi+i′ , yj+j′ ) +

1
(24)(24)

∆x2∆y2hxxyy(xi+i′ , yj+j′ )

+ higher-order terms.

For a horizontally orientated surface, the curvature is written as,

κ = ∇ · n
where,

n =

⎛⎝− hx√
1 + h2

x + h2
y

,− hy√
1 + h2

x + h2
y

,
1√

1 + h2
x + h2

y

⎞⎠ .

For a fourth-order approximation to the curvature, we must approximate hx, hy,
hxx, hyy and hxy with fourth-order accuracy. We assume the discretization to each
of these terms has the form,

∂l+mh(xi, yj)
∂xl∂ym

= ∆z

2∑
i′=−2

2∑
j′=−2

Al,m
i′,j′Fi′,j′ .

The coefficients, Al,m (l = 0, 1, 2 and m = 0, 1, 2), are determined by the “method
of undetermined coefficients” in which one uses the relation (2.2) to relate Fi′,j′

to h, and the fact that our discretization for the derivatives of h should be exact
for the polynomials h(x, y) = (x− xi)l(y − yj)m where l = 0 . . . 4 and m = 0 . . . 4.
As a result, one constructs a matrix system of equations with 25 equations and 25
unknowns. For example, in 2d, one has the following fourth-order approximations,

∂h(xi)
∂x

≈ ∆y

∆x

(
5
48

(F−2 − F2) +
17
24

(F1 − F−1)
)

∂2h(xi)
∂x2

≈ ∆y

∆x2

(
−1
8

(F−2 + F2) +
3
2
(F1 + F−1)−

11
4
F0

)
.

Remark: For the fourth-order algorithm, a 5 × 5 × 13 stencil is used. A possible
concern here is that in underresolved regions, the interface might pass through
the stencil more than one time resulting in an erroneous approximation to the
curvature. A simple patch (not implemented for any of the results presented in
this paper) for this problem would be to locate the interface crossing, in each
13 cell column of data, closest to zk and then delete other interface crossings by
looking at where the divided difference,

Dfi′,j′,k′ =
fi′,j′,k′ − fi′,j′,k′−1

∆z
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Table 1. Convergence study for computing curvatures from volume
fractions of a unit circle in 2d. Results for the second-order and fourth-
order discretizations are reported.

∆x max error (2nd) max error (4th) avg. error (2nd) avg. error (4th)
1/16 0.0031 0.00104 0.0019 0.00016
1/32 0.0007 4.21E-5 0.0005 7.9E-6

Table 2. Convergence study for computing curvatures from volume
fractions of a unit sphere in 3d. Results for the second-order and fourth-
order discretizations are reported.

∆x max error (2nd) max error (4th) avg. error (2nd) avg. error (4th)
1/16 0.050 0.03431 0.0035 0.00081
1/32 0.010 0.00060 0.0009 2.78E-5

changes sign. All volume fractions in the stencil, fi′,j′,k′′ , in which k′′ ≥ k′ ≥ k are
set to fi′,j′,k′−1.

3. Numerical validation of curvature discretization for a circle

We check our curvature discretization algorithm for a circle in 2d or a sphere in
3d. In 2d, we have a unit circle located at the point (2,2) in a 4× 4 domain. In 3d,
we have a unit sphere located at the origin in a 2×2 domain. Symmetric boundary
conditions are used at the borders of the domain. As demonstrated by Tables 1
and 2, we get the appropriate order of accuracy for our high-order height fraction
curvature discretization schemes.

4. Parasitic currents

In this section we test our implementation of surface tension for the problem of a
static 2d drop with surface tension. The exact solution for such a problem is that
the velocity u is identically zero. In terms of the Ohnesorge number,

Oh =
µ√
σρD

,

and assuming constant density and constant viscosity in the drop, the Navier
Stokes equations are,

Du

Dt
= −∇p +

1
Oh

∆u− 1
Oh

κ∇H.

We assume the drop is surrounded by a constant pressure void. The numerical
simulation uses the second-order coupled levelset and volume-of-fluid (CLSVOF)
algorithm described in [20]. We investigate the maximum velocity of our numerical
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Table 3. Convergence study for static droplet with surface tension
(parasitic currents test). Maximum velocity at t = 250 is shown. Oh =
12000. ρL = 1 and ρG = 0. Results for the second-order discretization
of curvature and the fourth-order discretization are reported.

∆x max. velocity (2nd) max. velocity (4th)
1.0/32 1.4E-6 5.5E-7
1.0/64 1.5E-7 2.9E-8

method for varying grid resolutions at the dimensionless time t = 250. The dimen-
sions of our computational grid are 1× 1 with symmetric boundary conditions at
all boundaries. A one diameter drop is placed at the origin of our domain. Our tol-
erance for the pressure solver and viscous solver is 1.0E−12. In Table 3 we display
results of our grid refinement study for Oh = 12000. We used both the second-
order height fraction algorithm and the fourth-order height fraction algorithm for
calculating curvature. Our results indicate at least second-order convergence us-
ing both approaches. We remark that the overall results are not expected to be
4th-order accurate when using the 4th-order height fraction curvature discretiza-
tion since the underlying Navier-Stokes solver is second order. For a reference of
previous results for parasitic currents, we refer the reader to work by [16, 7]. Our
results using the fourth-order accurate curvature discretization algorithm crush
any doubt about the ability to calculate surface tension using the volume-of-fluid
method.

5. 2d axisymmetric test problems

In this section we validate the second-order height fraction curvature discretization
scheme for the problem of (1) surface tension driven drop oscillations, (2) Rayleigh-
capillary instability, and (3) steady bubble motion. The governing equations are
the Navier-Stokes equations for two phase flows,

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ − σκ∇H (5.1)

∇ ·U = 0

Dφ

Dt
= 0

ρ = ρLH(φ) + ρG(1−H(φ))

µ = µLH(φ) + µG(1 −H(φ))

H(φ) =
{

1 φ ≥ 0
0 φ < 0
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Table 4. Convergence study for zero gravity drop oscillations γ = 1/2.

∆r Eavg
Amplitude Emax

amplitude

3/64 N/A N/A
3/128 0.00073 0.00174
3/256 0.00021 0.00054

We either use the second-order “single-phase” method described in [20] (ρG = 0)
or the sharp interface “two-phase” method described in [11, 22] (ρG = 0.001).

For the first problem (1), surface tension driven drop oscillations, we compute
the evolution of a drop in a void with a surface tension coefficient σ = 1/2 and
initial perturbation of ε = 0.05. Table 4 gives the successive errors in amplitude
as one refines the computational grid. In Figure 1, we plot the minor amplitude
versus time for the three different grid resolutions.
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Figure 1. Perturbation in minor amplitude for zero gravity drop os-
cillations. µL = 1/50, γ = 1/2.

For the second problem (2), we calculate the break-up of a liquid jet (in
a void) due to capillary instability. The surface tension coefficient is σ = 1 and
the viscosity coefficient is µ = 1/200. In Figure 2, we display the results of our
computations for the capillary jet as it breaks up. In Table 5, we measure the
relative errors for the interface and velocity field for grid resolutions ranging from
16x32 to 64x128.

For our third test problem (3), we compute the steady state shapes of a gas
bubble rising in a viscous Newtonian liquid. For comparison, we use the experi-
mental results found in [2] and [10] and computational results in [19].

As in [2] and [10], we present our computational results in terms of the
following dimensionless groups. The Reynolds number R, the Eötvös number Eo,
and the Morton number Mo are defined as follows

R =
ρLU

ηL
Eo =

gL2U

σ
Mo =

gη4
L

ρσ3
. (5.2)
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Table 5. Convergence study for the Rayleigh capillary instability prob-
lem. Two-phase sharp interface method. t = 80.

grid Einterface Eavg
Liquid Emax

Liquid

16x32 N/A N/A N/A
32x64 3.87 2.77 0.014
64x128 0.62 0.84 0.003

t=100.0t=90.0

t=80.0t=40.0

Figure 2. Capillary Instability. Grid resolution is 64× 128.

ρ is the liquid density, L is the bubble diameter, U is a characteristic velocity, ηL

is the liquid viscosity, σ is the surface tension, and g is the acceleration of gravity.
A comparison of computed terminal bubble shapes versus previous computational
and experimental results are reported in Figure 3. Our comparisons include oblate
ellipsoidal cap bubbles studied by [2] (Eo = 243, Mo = 266, and R = 7.77 for
bubble figure 2(d) and Eo = 116, Mo = 5.51, and R = 13.3 for bubble figure 3(d)),
spherical cap bubbles studied by Hnat & Buckmaster [10] (R = 9.8, Mo = 0.065,
and C = 4.95, where C = r

(ν2/g)1/3 ), and a disk-bubble studied by Ryskin & Leal
[19] (R = 100 and We = 10).

6. Conclusions

The “height fraction” approach for deriving curvature from volume fractions was
extended from second-order accurate to fourth-order accurate. The improved ac-
curacy was verified both analytically and through numerical tests. When applied
to the “parasitic currents” test, there was a factor of 5 improvement of the fourth-
order method over the second-order method. Besides developing a fourth-order
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Figure 3. Comparison of numerical results with experimental results
and previous computational results. Upper left: Bhaga & Weber (figure
2, bubble (d)). Upper right: Bhaga & Weber (figure 3, bubble (d)).
Lower left: Hnat & Buckmaster. Lower right: Ryskin & Leal.

height fraction technique for finding curvature, we also verified further the robust-
ness of using the second-order height fraction technique together with a 2nd-order
Navier-Stokes solver for problems such as the pinch-off of a liquid jet and the
steady rise of bubbles.

Acknowledgments

We thank Mr. D. Kikuchi and Mr. S. Yamaguchi for their help in preparing this
manuscript.



High-order Surface Tension 433

References

[1] I. Aleinov and E.G. Puckett. Computing surface tension with high-order kernels. In
Proceedings of the 6th International Symposium on Computational Fluid Dynamics,
Lake Tahoe, CA, 1995.

[2] D. Bhaga and M.E. Weber. Bubbles in viscous liquids: Shapes, wakes and velocities.
J. Fluid Mech., 105:61–85, 1981.

[3] J.U. Brackbill, D.B. Kothe, and C. Zemach. A continuum method for modeling
surface tension. J. Comput. Phys., 100:335–353, 1992.

[4] A.J. Chorin. Curvature and solidification. J. Comput. Phys., 57:472–490, 1985.

[5] S. Cummins, M. Francois, and D. Kothe. Estimating curvature from volume frac-
tions. Computers and Structures, 83:425–434, 2005.

[6] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water
surfaces. In SIGGRAPH 2002, volume ACM TOG 21, pages 736–744, 2002.

[7] M. Francois, S. Cummins, E. Dendy, D. Kothe, J. Sicilian, and M. Williams. A
balanced-force algorithm for continuous and sharp interfacial surface tension models
within a volume tracking framework. J. Comput. Phys., 2005. in press.

[8] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume of fluid inter-
face tracking with smoothed surface stress methods for three-dimensional flows. J.
Comput. Phys., 152:423–456, 1999.

[9] J. Helmsen, P. Colella, and E.G. Puckett. Non-convex profile evolution in two dimen-
sions using volume of fluids. LBNL technical report LBNL-40693, Lawrence Berkeley
National Laboratory, 1997.

[10] J.G. Hnat and J.D. Buckmaster. Spherical cap bubbles and skirt formation. Physics
of Fluids, 19 (2):182–194, 1976.

[11] E. Jimenez, M. Sussman, and M. Ohta. A computational study of bubble motion in
newtonian and viscoelastic fluids. Fluid Dynamics and Materials Processing, 2005.
(to appear).

[12] M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing method for
multiphase incompressible flow. J. Sci. Comput., 15:323–360, 2000.

[13] H. Liu, S. Krishnan, S. Marella, and H.S. Udaykumar. Sharp interface cartesian grid
method ii: A technique for simulating droplet interactions with surfaces of arbitrary
shape. J. Computational Physics, 210(1):32–54, 2005.

[14] M.R. Nobari, Y.J. Jan, and G. Tryggvason. Head on collision of drops; a numeri-
cal investigation. Technical Report ICOMP-93-45, NASA ICOMP Lewis Research
Center, November 1993.

[15] J.Y. Poo and N. Ashgriz. A computational method for determining curvatures. J.
Comput. Phys., 84:483–491, 1989.

[16] S. Popinet and S. Zaleski. A front-tracking algorithm for accurate representation of
surface tension. International Journal for Numerical Methods in Fluids, 30(6):775–
793, 1999.

[17] Y. Renardy and M. Renardy. Prost: A parabolic reconstruction of surface tension
for the volume-of-fluid method. J. Comput. Phys., 183(2):400–421, 2002.

[18] M. Rudman. A volume tracking method for interfacial flows with large density vari-
ations. Int. J. Numer. Methods Fluids, 28:357–378, 1998.



434 M. Sussman and M. Ohta

[19] G. Ryskin and L.G. Leal. Numerical solution of free boundary problems in fluid
mechanics. part 2 buoyancy-driven motion of a gas bubble through a quiescent liquid.
J. Fluid Mech., 148:19–35, 1984.

[20] M. Sussman. A second-order coupled levelset and volume of fluid method for com-
puting growth and collapse of vapor bubbles. Journal of Computational Physics,
187:110–136, 2003.

[21] M. Sussman and M.Y. Hussaini. A discontinuous spectral element method for the
level set equation. J. Scientific Computing, 19:479–500, 2003.

[22] M. Sussman, M.Y. Hussaini, K. Smith, R. Zhi-Wei, and V. Mihalef. A second-order
adaptive sharp interface method for incompressible multiphase flow. In Proceed-
ings of the 3rd international conference on Computational Fluid Dynamics, Toronto,
Canada, 2004. to appear.

[23] M. Sussman and E.G. Puckett. A coupled level set and volume of fluid method for
computing 3d and axisymmetric incompressible two-phase flows. J. Comp. Phys.,
162:301–337, 2000.

[24] M. Sussman, P. Smereka, and S.J. Osher. A level set approach for computing solu-
tions to incompressible two-phase flow. J. Comput. Phys., 114:146–159, 1994.

[25] H.S. Udaykumar, M.M. Rao, and W. Shyy. Elafint – a mixed Eulerian-Lagrangian
method for fluid flows with complex and moving boundaries. Int. J. Numer. Meths.
Fluids., 22(8):691–704, 1996.

[26] S.O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompress-
ible, multi-fluid flows. J. Comput. Phys., 100:25–37, 1992.

[27] M. Williams, D. Kothe, and E.G. Puckett. Convergence and accuracy of kernel-based
continuum surface tension models. In Proceedings of the Thirteenth U.S. National
Congress of Applied Mechanics, Gainesville, FL, June 16-21 1998.

[28] T. Ye, W. Shyy, and J.N. Chung. A fixed-grid, sharp interface method for bubble
dynamics and phase change. J. Comp. Phys., 174:781–815, 2001.

M. Sussman
Department of Mathematics
Florida State University
Tallahassee, FL 32306, USA
e-mail: sussman@math.fsu.edu

M. Ohta
Department of Applied Chemistry
Muroran Institute of Technology
27-1, Mizumotocho, Muroran-shi
Hokkaido 050-8585, Japan
e-mail: mohta@mmm.muroran-it.ac.jp




