
A Space-Time Discontinuous Galerkin Spectral Element

Method for Nonlinear Hyperbolic Problems

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini

Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.

Abstract

A space-time discontinuous Galerkin (DG) spectral element method is

presented for the solution to nonlinear hyperbolic problems. The space-time

method is combined with two different approaches for treating problems with

discontinuous solutions: (i) space-time dependent artificial viscosity is added

in order to capture discontinuities, and (ii) the sharp discontinuity is tracked

with space-time spectral accuracy, as it moves through the grid. To capture

the discontinuity whose location is initially unknown, an artificial viscosity

term is strategically introduced; the strategy due to Persson and Peraire [1]

is extended to space-time spectral methods. The amount of artificial viscos-

ity prescribed varies with time within a given space-time slab. It is found

that spectral accuracy is recovered everywhere except in the “troublesome

element(s)” where the unresolved steep/sharp gradient exists. When the lo-

cation of a discontinuity is initially known, a space-time spectrally accurate

tracking method has been developed so that the spectral accuracy of the

position of the discontinuity, and the space-time spectral accuracy of the

Email addresses: cpei@math.fsu.edu (Chaoxu Pei), sussman@math.fsu.edu
(Mark Sussman), myh@math.fsu.edu (M. Yousuff Hussaini)

Preprint submitted to Computers & Fluids December 21, 2015

solution on either side of the discontinuity is preserved. A Picard iteration

method is developed in order to handle nonlinear terms. Within each Pi-

card iterate, a linear equation is solved, which is derived from the space-time

DG spectral element discretization. Spectral accuracy in both space and

time is first demonstrated for the Burgers’ equation. Space-time spectral

accuracy enables better accuracy at extrema away from the shock, and en-

ables better accuracy at capturing the shock strength at a shock with higher

order polynomials in both space and time compared to lower order polyno-

mials. Simultaneously, Gibbs oscillations are suppressed by the combination

of higher order polynomials and the present shock capturing scheme, as well

as by the combination of higher order polynomials and the present shock

tracking scheme. Such features are demonstrated for both a scalar hyper-

bolic linear problem with a discontinuous initial condition and the inviscid

Burgers’ equation with a discontinuous initial condition as well as a smooth

initial condition that evolves into a sharp discontinuity. The sensitivity of the

number of Picard iterations to the temporal order is discussed. The spectral

accuracy of the shock speed and location is demonstrated for the solution of

the inviscid Burgers’ equation obtained by the shock tracking method.

Keywords: Space-time, Discontinuous Galerkin, Spectral accuracy, Shock

capturing, Shock tracking, Picard iteration

1. Introduction

In this paper, we present a numerical method for solving scaler conserva-

tion laws, which is spectrally accurate in both space and time in the region

in which the solution is smooth. For treating problems with sharp discon-

2

tinuities, we present two approaches: (i) if a sharp discontinuity develops

as the solution evolves, then we strategically introduce artificial viscosity,

which is similar to the ones proposed in Persson and Peraire [1], Barter and

Darmofal [2], Reisner et al [3], Casoni et al [4], and (ii) if the location of

a discontinuity is initially known, then we introduce a space-time spectrally

accurate tracking method so that the spectral accuracy of the position of the

discontinuity, and the space-time spectral accuracy of the solution on either

side of the discontinuity is preserved.

We present here a brief history of numerical methods leading to the

present method. In 1989, Shu and Osher [5] developed essentially non-

oscillatory (ENO) numerical methods for hyperbolic conservation laws. These

methods can be implemented up to any prescribed spatial and temporal or-

der of accuracy. Unfortunately, regardless of the order, these methods are

dissipative. Weighted ENO (WENO) schemes, first developed in 1996 by

Jiang and Shu [6] and Balsara and Shu [7], are less dissipative than ENO

methods. In 1999, Yee et al [8] proposed a numerical method that is a hy-

brid of the low-dissipative fourth order method (4th order in space and time)

of Gustafsson and Olsson [9] with a shock capturing method developed by

Harten [10]. Improvements upon the hybrid approach of Yee et al [8] have

since followed. Ren et al [11] hybridized the compact scheme of Pirozzoli [12]

with the WENO scheme of Jiang and Shu [6]. Sjogreen and Yee [13] also hy-

bridized a low-dissipative fourth order method of Gustafsson and Olsson [9]

with the multiresolution method developed by Harten [10]. The difference

between Sjogreen and Yee’s method [13] and the hybrid method of Yee et

al [8], is that the smoothness sensor in this work did not depend on empir-

3

ical tuning parameters. Instead, sensors were developed by looking at the

coefficients of the wavelet transform Gerritsen and Olsson [14], Mallat and

Zhong [15], Daubechies [16], and Mallat [17]. Reisner et al [3] developed a

sensor that switched on or off an artificial viscosity term depending on the

solutions of a linear scalar reaction-diffusion equation, which is referred to

as C-method. With artificial viscosity deactivated, their method reduced to

either a second order finite element method or a 5th order WENO method.

Abbassi et al [18] proposed an entropy-based artificial viscosity for spectral

collocation method. To smoothen artificial viscosity, an element-level filter-

ing approach is introduced. With such a treatment, the resulting artificial

viscosity is locally large near discontinuities.

Besides methods that switch between spatially dissipative and relatively

less dissipative discretization schemes, methods have been developed for lim-

iting the order of the discretization in time. Duraisamy et al [19] developed

time limiters for the second order 2-stage diagonally implicit Runge Kutta

(DIRK2) and the Trapezoid time discretization methods. They implemented

the 5th order monotonicity preserving method of Suresh and Huynh [20] for

the spatial discretization.

Concurrent with the development of shock capturing methods, there have

been the development of methods for tracking discontinuities in hyperbolic

conservation laws. We refer to the article by Touil et al [21] and the references

therein; they resorted to refining the mesh in discontinuous regions which

introduces an inordinate number of additional degrees of freedom.

In this work, we develop a space-time discontinuous Galerkin (DG) spec-

tral element method. DG methods in space have been developed for solving

4

a wide range of physical problems, especially for dealing with flows with

discontinuities computed on unstructured meshes. Detailed surveys can be

found in, for example, Cockburn et al [22], Canuto et al [23], Hesthaven et

al [24], Kopriva [25], and Karniadakis and Sherwin [26]. Recently, space-time

DG finite element methods have been explored by Sudirham et al [27], Klaij

et al [28], van der Vegt and Sudirham [29], Sollie et al [30], and Rhebergen et

al [31], for problems that require moving and deforming meshes. Space-time

DG schemes result in implicit time integration and naturally allow for time

adaptivity. van der Vegt and van der Ven [32] present a space-time DG finite

element method for Euler equations of gas dynamics in time-dependent flow

domains, which involves adding artificial dissipation to guarantees monotone

solutions. Lörcher et al [33] propose an explicit DG scheme for inviscid com-

pressible flow in one space dimension, in which a Taylor expansion in space

and time to define a space-time polynomial is used to obtain an arbitrary

order of accuracy in space and time. Their approach require a local stability

criterion to be satisfied in every grid zone.

Motivated by the properties of space-time DG finite element methods,

we present a space-time DG spectral element method for solving scaler con-

servation laws, which is integrated with shock capturing and shock tracking

procedures. If the position of a discontinuity is initially unknown, then we

employ a sensor (developed by Persson and Peraire [1]) to locate, what we

call,, the troublesome element wherein the unresolved steep gradient/shock

causes Gibbs phenomenon. The shock is contained within one spatial ele-

ment. Since the proposed method is in a space-time framework, the amount

of artificial viscosity is computed at each time “node” independently within

5

one space-time slab, which allows one to take a large time step with optimal

diffusion to capture strong shock without Gibbs phenomenon. By increas-

ing the polynomial order in both space and time, one can resolve the shock

strength, i.e., the extrema on either side of the shock. If the initial position

of a discontinuity is known, or if the solution is smooth everywhere, then

the present method is spectrally accurate in both space and time. We note

that the present method does not align the computational elements with a

discontinuity, which distinguishes it from a body fitted method [27, 29, 34].

Instead, two global transformations: a backward transformation and a for-

ward transformation are applied, which combines an Eulerian description,

i.e., a fixed frame of reference, with a Lagrangian description, i.e., a moving

frame of reference (see [35]). In the proposed tracking method, the discon-

tinuity may cut an element in such a way that one piece can be very small.

Small cut cells do not affect the spectral accuracy of the proposed tracking

method. In order to deal with nonlinear terms, we employ a Picard iteration

procedure (see e.g., [36, 34]). At each iteration, a linear equation is solved

by a space-time DG spectral element method.

The organization of this paper is as follows. In section 2, we define the

nonlinear initial boundary-value problem to be solved by a space-time dis-

continuous Galerkin spectral element method, which is spectrally accurate

in both space and time. The space-time (“slab”) discretization framework

is introduced in section 3. In section 4, the DG spectral element method

is presented in the space-time framework. Two treatments for shocks are

then presented in section 5. The outline of the proposed method is given in

section 6. Numerical experiments are presented in one spatial dimension in

6

section 7 in order to evaluate the accuracy and efficiency of the present shock

treatment methods. The summary of results and conclusions are provided in

the final section 8.

2. Problem formulation

On a Cartesian domain, Ω ∈ Rd, we consider a scalar conservation law of

the form,

ut +∇ · F (u) = 0 (x, t) ∈ Ω× [0, T], (1)

u(x, t) = gb(x, t), (x, t) ∈ ∂Ω× [0, T], (2)

u(x, 0) = u0, x ∈ Ω, (3)

where F (u) is the vector of fluxes in the spatial directions, u0 is the initial

data and gb(x, t) denotes the boundary data.

It is well known that such problems may develop discontinuous solutions

even if the initial values are smooth. In order to suppress the Gibbs-type

oscillations caused by applying higher order numerical methods to discon-

tinuous solutions, one can either introduce a dissipative term (e.g.,[1]) or

track the discontinuities explicitly (e.g., [21]) when the initial location of a

discontinuity is known. In the former case, we rewrite (1) as,

ut +∇ · F (u) = ∇ · (ε(u)∇u) (x, t) ∈ Ω× [0, T], (4)

where ε(u) is a matrix with non-negative components depending on the so-

lution u.

7

3. Space-time discretization

3.1. Space-time tessellation

In this section, we follow the notation of, e.g. [27, 29, 34], to introduce

the definitions of the space-time domain, space-time slabs and space-time

elements.

In a space-time discretization, we introduce a space-time domain E by

considering the domain E = Ω × [0, T] in Rd+1, where d denotes the spatial

dimension. The coordinates of a point x̄ ∈ E are defined as x̄ = (x, xd+1)

with the spatial variables x = (x1, x2, ..., xd) and the time variable t = xd+1.

To tessellate the space-time domain E , we first divide E into E(t) space-time

slabs by the time levels 0 = t0 < t1 < ... < tE(t) = T . The n-th space-time

slab is then denoted as En = E ∩ In, where In = [tn−1, tn] is the n-th time

interval with length ∆tn = tn − tn−1. Now, we describe the construction of

space-time elements in the space-time slab En. Divide the spatial domain

Ωtn−1 (Ωtn−1 := {(x, t) ∈ Ω × tn−1}) into E(x) non-overlapping spatial

elements Kn−1 with a uniformed size h and similarly for the domain Ωtn

with E(x) spatial elements Kn. A space-time element Kn is then obtained by

connecting Kn−1 and Kn via linear interpolation. The outward unit space-

time normal on ∂K is denoted by n̄K = (n, nd+1), where n = (n1, n2, ..., nd)

is the spatial part of the space-time normal while nd+1 is the time component.

The tessellation of the space-time slab En is defined as T nh , which consists

of all space-time elements, Kn, defined in En. Then the tessellation of the

space-time domain E is denoted as Th = ∪nT nh . A sketch of a space-time

domain, E ∈ R2, with a tessellation T nh is demonstrated in Fig. 1.

Remark 3.1. In the shock capturing method, the spatial domain is fixed

8

Figure 1: An Example of a space-time domain, E = Ω× [0, T] ∈ R2, with the coordinates

of a point x̄ denoted by x̄ = (x1, x2), where x1 = x is the spatial variable and x2 denotes

the time variable t. The space-time domain E is divided into E(t) space-time slabs by the

time levels 0 = t0 < t1 < ... < tE(t) = T . On the right, the rectangular mesh is an example

of a tessellation T n
h of the space-time slab En, where En = E ∩ In, where In = [tn−1, tn].

Kn
i denotes a space-time element in En.

in time, which is different from the one proposed in [27, 29, 34]. We then

obtain a rectangular space-time mesh in each space-time slab for one spatial

dimension or a cubic space-time mesh for two spatial dimensions.

Remark 3.2. In the shock tracking method, we introduce a moving frame of

reference, in which the spatial domain is fixed in time. In the moving frame

of reference, the mesh is a rectangular space-time mesh in each space-time

slab for one spatial dimension or a cubic space-time mesh for two spatial

dimensions. However, A cut cell is introduced in such mesh. (See [35])

9

3.2. Function spaces and notation

First, we define a mapping, x̄ = G|Kn
j
(ξ) ∈ Rd+1, which connects a space-

time element Knj and the master element R = [−1, 1]d+1, where x̄ = (x, t) ∈

Knj and ξ = (ξ1, ξ2, ..., ξd+1). Take two spatial dimension, i.e., d=2, as an

example, we have,

G|Kn
j

: R → Knj : ξ → x̄ =
8∑
i=1

x̄i(Knj)χi(ξ) (5)

where {x̄i(Knj)}i=1,...,8 is the vertices of the space-time element Knj , and χi(ξ)

is the standard trilinear finite element shape functions for hexahedra. Ex-

amples of the transformation x̄ = G(ξ) ∈ R2 can be found in [23, 25].

Next, Let’s introduce two function spaces, Qh and V h, associated with

the tessellation Th,

Vh = {ν ∈ (L2(E)) : ν|K ◦GK ∈ Pp(R),∀K ∈ Th}, (6)

Σh = {τ ∈ L2(E)d : τ |K ◦GK ∈ (Pp(R))d, ∀K ∈ Th}, (7)

where Pp(R) is the set of all polynomials of degree at most p = (p(x̄)) =

(p(x), p(t)) ∈ Rd+1 on R, with p(x) in the spatial direction and p(t) in the time

direction.

Spectral element methods with non-periodic boundaries use orthogonal

polynomial approximations of the solution [23, 25]. In the space-time domain

E ∈ Rd+1, we introduce a tensor product basis, ψ(ξ) ∈ Pp(R), such that

ψ(ξ) =
d+1∏
i=1

`(ξi) (8)

where

`(ξi) = `j(ξi) =

p(xi)∏
n=0
n6=j

ξi − ξi,n
ξi,j − ξi,n

, 1 6 i 6 d+ 1 (9)

10

where {ξi,j}j=0,...,p(xi) is the set of interpolation points in ξi direction of the

master element R. We choose Legendre Gauss nodes in the spatial directions

and Legendre Gauss-Lobatto nodes in the time direction. In addition, we

define the trace of ν ∈ Vh on K as

ν− = lim
ε→0

ν(x̄− εn̄K) (10)

where x̄ = (x, t) ∈ ∂K and n̄K is outward unit normal of K. The trace of

τ ∈ Σh is defined similarly.

Due to the discontinuous approximation spaces, the approximations are

double valued across element boundaries. Thus, we introduce the average

{{·}} and jump J·K operators. Considering two adjacent elements Knj and Knj+1

such that Snj,j+1 = Knj ∩ Knj+1, let n̄Kn
j

and n̄Kn
j+1

denote the corresponding

outward unit normal of Knj and Knj+1 on Snj,j+1. Then the average {{·}} and

jump J·K operators are defined as,

{{ν}} = (ν−Kn
j

+ ν−Kn
j+1

)/2, {{τ}} = (τ−Kn
j

+ τ−Kn
j+1

)/2, (11)

JνK = ν−Kn
j
n̄Kn

j
+ ν−Kn

j+1
n̄Kn

j+1
, Jτ K = τ−Kn

j
· n̄Kn

j
+ τ−Kn

j+1
· n̄Kn

j+1
. (12)

Note that the jump JνK is vector, whereas the jump Jτ K is a scaler.

4. Space-time DG spectral element method

4.1. Space-time formulation

In the space-time domain, we introduce a vector function B ∈ R1×(d+1)

and a matrix A ∈ R(d+1)×(d+1), as,

B =
(
F (u)/u, 1

)
, A =

ε(u) 0

0> 0

 , (13)

11

where 0 ∈ Rd×1 and d is the spatial dimensions. We then transform (4) into

a space-time formulation as follows,

∇ · (Bu−A∇u) = 0, x ∈ E , (14)

where ∇ = (∂
∂x1
, ∂
∂x2
, ..., ∂

∂xd+1
) denotes the gradient operator in the space-

time domain, whereas ∇ = (∂
∂x1
, ∂
∂x2
, ..., ∂

∂xd
) is the gradient operator with

respect to the spatial variables.

To solve Eq. (14), we first use a Picard iteration scheme [36, 34] for which

at each Picard iteration a linear advection-diffusion equation has to be solved

in the space-time framework. That is, at k-th Picard iteration, we solve,

∇ · (B(k)u(k+1) −A(k)∇u(k+1)) = 0. (15)

To derive the space-time DG weak formulation for Eq. (15), we follow the

same approach presented in [37]. By introducing an auxiliary variable σ, we

rewrite Eq. (15) into a first order system

σ(k+1) = ∇u(k+1), (16)

∇ · (B(k)u(k+1) −A(k)σ(k+1)) = 0. (17)

4.2. Discretization of DG spectral element method

In this section, we present the derivation of the space-time DG spectral

element method for Eqs. (16) and (17). Without loss of generality, we drop

the iteration symbols, i.e., (k) and (k+1) when deriving the space-time DG

weak formulations.

4.2.1. Space-time DG weak formulations

The auxiliary equation. To derive the space-time DG weak formulation

for the auxiliary equation, we multiply (16) with a test function τ ∈ Σh,

12

substitute u with the approximation uh ∈ Vh, and integrate over a space-time

element Knj ∈ T nh . Next, we perform integration by parts once to obtain,∫
Kn

j

σh · τdKnj = −
∫
Kn

j

uh∇ · τdKnj +

∫
∂Kn

j

ûεhn̄ · τ−d∂Knj . (18)

where n̄ denotes the outward unit normal vector of the space-time element

Knj and ûεh denotes numerical flux.

The governing equation. We derive the space-time DG weak formulation

for (17) by multiplying it with a test function ν ∈ Vh, substituting u and

σ with the approximations uh ∈ Vh and σh ∈ Σh, and integrating over a

space-time element Knj ∈ T nh . By performing integration by parts once, we

have,

−
∫
Kn

j

(Buh −Aσh) ·∇νdKnj +

∫
∂Kn

j

(Bûh −Aσ̂εh) · n̄ν−d∂Knj = 0, (19)

where ûh and σ̂εh are numerical fluxes.

4.2.2. Definition of numerical fluxes

We separate the numerical fluxes into two categories: the convective

fluxes, i.e., ûh; the numerical fluxes related to the artificial viscosity term,

i.e., ûεh and σ̂εh.

For the convective fluxes, we choose the upwind flux,

Bûh = {{B}}{{uh}}+
1

2
|{{B}} · n̄|JuhK. (20)

For the numerical fluxes ûεh and σ̂εh, there are several different formula-

tions presented Arnold et al [38]. Here, we choose the local discontinuous

13

Galerkin (LDG) fluxes [37] for its compact stencils,

ûεh = {{uh}} − β · JuhK, (21)

σ̂εh = {{σh}}+ β · JσhK− αjJuhK, (22)

where β · n = sign(v · n)/2 ([39]) with v = (1, 1, 1)> and αj ≥ 0 is referred

as the stabilization parameter.

4.2.3. The space-time slab linear system

From (18) and (19), we notice that the outward normal vectors, n̄, at

the faces of Kn and K(n−1) in a space-time slab En are (0, 1) and (0,−1),

respectively. This makes the space-time slab En only depend on its previous

space-time slab En−1, which leads to weakly coupled space-time slabs. We

then perform summation over all elements of the tessellation T nh in one space-

time slab En for (18) and (19),

∑
j

∫
Kn

j

σh · τdKnj =
∑
j

(
−
∫
Kn

j

uh∇ · τdKnj +

∫
∂Kn

j

ûεhn̄ · τ−d∂Knj

)
,

(23)∑
j

(
−
∫
Kn

j

(Buh −Aσh) ·∇νdKnj +

∫
∂Kn

j

(Bûh −Aσ̂εh) · n̄ν−d∂Knj

)
= 0.

(24)

Remark 4.1. The weak coupling between space-time slabs reduces the num-

ber of unknowns of the linear system obtained at each Picard iteration from∏d+1
j=1(p(xj) + 1)E(x)E(t) to

∏d+1
j=1(p(xj) + 1)E(x), and enables the local resolu-

tion to be flexible; i.e., polynomial orders and grid resolutions can vary from

one space-time slab to another.

14

According to the tensor product basis (8) with d = 2, the approximations

uh and σh are written in nodal Lagrange form,

u ∼ uh(x1, x2, x3) =

p(x3)∑
k=0

p(x2)∑
j=0

p(x1)∑
i=0

ui,j`i(ξ1)`j(ξ2)`k(ξ3), (25)

σ ∼ σh(x1, x2, x3) =

p(x3)∑
k=0

p(x2)∑
j=0

p(x1)∑
i=0

σi,j`i(ξ1)`j(ξ2)`k(ξ3). (26)

To proceed, we approximate the integrals in (23) and (24) using Gaussian

quadrature. Here, we choose the quadrature nodes to be the same as the

interpolation nodes, i.e., Legendre-Gauss nodes in the spatial directions and

Legendre-Gauss-Lobatto nodes in the time direction. The reason for such

choice is that an identity mass matrix is obtained in each space-time element.

In addition, the numerical flux ûεh only depends on the variable uh. So the

auxiliary variable σh can be eliminated from the formulation (24) by solving

for σh in (23) and then substituting the resulting σh into (24). At the k-th

Picard iteration, we obtain a “space-time slab”, which is local to the slab in

contrast to global to the whole time domain, linear system for the space-time

slab En as,

H(u
(k)
h)u

(k+1)
h = f(un−1h , gkb,h), x ∈ En (27)

where H(u
(k)
h) denotes the matrix of the linear system due to (13) and (15),

and the vector f(un−1h , gkb,h) takes into account the solution at Ω(tn−1) com-

puted from the previous space-time slab E (n−1) as well as the boundary con-

ditions imposed on En \ (Ω(tn−1) ∪ Ω(tn)). Note that there is no boundary

condition imposed on Ω(tn). (See Fig. 2)

Now, we examine the structure of the matrix H(u
(k)
h) in the first space-

time slab E1. The matrix H(u
(k)
h) depends on the polynomial order in space,

15

Figure 2: An Example of nodes distribution of the space-time slab En ∈ R2 (d = 2), with

the coordinates of a point x̄ denoted by x̄ = (x1, x2), where x1 = x is the spatial variable

and the time variable t is denoted as x2. In the spatial direction x, the total number of

Legendre Gauss points is 2, while 3 Legendre Gauss-Lobatto points are used in the time

direction t. gleftb and grightb denote the boundary data. The symbol ø denotes the known

values, un−1, while the symbol × denotes the boundary values, gkb,h. All these values form

the vector f(un−1
h , gkb,h) in (27).

p(x), the polynomial order in time, p(t), and the number of element, E(x). For

example, we solve the Burgers’ equation in one spatial dimension, such that

f(u) = u2/2, and choose p(x) = 2, p(t) = 2 and E(x) = 2. The order of the

matrix H(u
(k)
h) is (18× 18), i.e. (p(x) + 1)× (p(t) + 1)× E(x) = 18, and the

16

structure of the matrix, H(u
(k)
h), is shown as follows

H(u
(k)
h)(18×18) =



∗ ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 ∗ 0 0 ∗ 0 ∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0

∗ 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 0 0

0 ∗ 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 ∗ ∗ ∗ 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 0 ∗ ∗ ∗ 0 0 0

∗ 0 0 ∗ 0 0 ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗

0 ∗ 0 0 ∗ 0 ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗

0 0 ∗ 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗

∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 ∗ 0 0

∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 ∗ 0

∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 ∗ 0 0 ∗

0 0 0 ∗ ∗ ∗ 0 0 0 ∗ 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 ∗ ∗ ∗ 0 0 0 0 ∗ 0 ∗ ∗ ∗ 0 ∗ 0

0 0 0 ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 ∗

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗ ∗

0 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 ∗ 0 ∗ ∗ ∗

0 0 0 0 0 0 ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗ ∗ ∗


Note that H(u

(k)
h) is a sparse non symmetric matrix.

5. Procedures for treating shocks

5.1. Shock capturing

Since the idea of adding artificial viscosity is to eliminate Gibbs oscilla-

tions, it is crucial to determine where the solution is discontinuous and how

much artificial viscosity is needed. The smoothness indicator introduced by

Persson and Peraire [1], which is similar to error indicators for adaptation in

spectral element methods [40], assumes that the polynomial expansion has

17

a similar behavior to the Fourier expansion. Here, we apply the smoothness

indicator:

SK =

∫
K

(uh − ûh)2dK∫
K

(uh)2dK
, (28)

where uh is the approximation of order p(x) and ûh is the truncated repre-

sentation of uh at order p(x)−1. Since the coefficients in a Fourier expansion

decay like 1/p(x)2 and the sensor (28) involves square quantities, we have

that the approximation uh is at most C0 for element K if SK > 1/p(x)4.

Once a shock is detected in a spatial element, we determine the amount of

artificial viscosity by the following elementwise-constant formulation, which

is due to Persson and Peraire [1]:

εK =


0, sK < s0 − κ,

ε0
2

(1 + sin π(sk−s0)
2κ

), s0 − κ ≤ sK ≤ s0 + κ,

ε0, sK > s0 + κ,

(29)

where sK = log10 SK , ε0 is a maximum value, s0 and κ are empirical tuning

parameters. The parameter s0 should be scaled as s0 ∼ −4 log10 p(x) due to

the coefficients of the polynomial expansion decay like 1/p(x)4.

Remark 5.1. The integral in (28) is over a spatial element instead of a

space-time element in a space-time slab, which allows us to apply different

amount of artificial viscosity at different time level in one space-time slab.

Remark 5.2. Compared to the elementwise-constant formulation, there are

some work on a smooth artificial viscosity formulation, i.e., [2], [3].

18

5.2. Shock tracking

Discontinuous initial data produces Gibbs-type oscillations, which persist

at least for a short time even in the artificial viscosity method. To avoid this

spurious behavior, one can either smooth the discontinuous initial profiles,

e.g., a hyperbolic-tangent smoothing mentioned in [3], or track the disconti-

nuity explicitly [21].

Incorporating the shock tracking procedure in the present space-time

discontinuous Galerkin spectral element method follows the work of Pei et

al. [35]. The idea is to combine the Eulerian description, i.e., a fixed frame of

reference, with a Lagrangian description, i.e., a moving frame of reference by

two global transformations, a backward transformation and a forward trans-

formation. For one spatial dimension problems, two global transformations

are defined as follows,

• the backward transformation,

x̃(x, t) = x−
∫ t

tn

W (s)ds, (30)

• the forward transformation,

x(x̃, t) = x̃+

∫ t

tn

W (s)ds, . (31)

x is the spatial variable corresponding to the fixed frame of reference and

x̃ is the coordinate of the moving frame of reference. W is the normal in-

terface velocity, i.e., the shock speed. In the moving frame of reference, the

transformed governing equation (4) is then,

ũt + (f(ũ)−Wũ)x̃ = (ε(ũ)ũx̃)x̃. (32)

19

The corresponding space-time formulation is written as

∇̃ · (B̃∗ũ− Ã∇̃ũ) = 0, (33)

where ∇̃ is the gradient operator defined in the moving frame of reference,

and Ã, B̃
∗

are defined as follows,

B̃
∗

=
(
f(ũ)/ũ−W, 1

)
, Ã =

ε(ũ) 0

0 0

 . (34)

Remark 5.3. The computed shock speed, W , needs to be updated along with

the solution in each space-time slab due to its dependence on the solution on

either side of the front and its influence on the transformations (30) and (31).

Remark 5.4. In higher spatial dimensions, the derivation of the transfor-

mations and transformed governing equation can be found in [35].

Remark 5.5. The interface is updated by a level set procedure which captures

the location of the discontinuity, e.g., [41, 42, 21].

6. Outline of the space-time DG spectral element method

We present an outline of our space-time DG spectral element method for

solving nonlinear hyperbolic problems in Algorithm 1. Combined with either

the shock capturing method or the shock tracking method, we illustrate our

method based on the space-time formulation (33) in one spatial dimension.

At the k-th Picard iteration, (33) is written as

∇̃ · (B̃∗,(k)ũ(k+1) − Ã(k)∇̃ũ(k+1)) = 0, (35)

Note that B̃
∗,(k)

and Ã
(k)

are nonlinear terms, such that,

B̃
∗,(k)

= B̃
∗,(k)

(ũ(k),W (k)), Ã
(k)

= Ã(ũ(k)). (36)

20

Algorithm 1 the space-time discontinuous Galerkin spectral element

method for solving nonlinear hyperbolic problems in a space-time slab En+1.

1: Given the solution un and the level set function φn at time tn in the

space-time slab En+1 with slab thickness ∆t.

2: Compute W n at the discontinuity by the Rankine-Hugoniot jump condi-

tion.

3: Define a space-time slab Ẽn in the moving frame of reference by the

backward transformation (30) and the forward transformation (31).

4: Compute the vector B̃
∗,n

based on ũn, and define V n = f(ũn)/ũn;

5: Compute the indicator SK (28) and the matrix Ã
n
.

6: Set V j,(k) = V n and W j,(k) = W n, where k = 0 and j = 1, ..., p(t). We

initialize Ã as Ã
0,(k)

= Ã
n

and Ã
j,(k)

= 0. Note that V p(t),(k) = V n+1,(k),

W p(t),(k) = W n+1,(k) and Ã
p(t),(k)

= Ã
n+1,(k)

.

7: for ks = 1, 2 do

(a) while (‖V n+1,(k+1) − V n+1,(k)‖ > tol) do

i Use the DG spectral element method to discretize (35). The

discretization of (35) is discussed in section 4.2.

ii Solve the resulting space-time slab linear system (27), which is

discussed in section 4.2.3

iii Compute V j,(k+1) (j = 1, ..., p(t)).

iv Update W j,(k+1) at j = 1, ..., p(t), and B̃
∗,(k+1)

.

(b) end while

(c) Compute V j and W j at j = 1, ..., p(t), and the then update B̃
∗
.

(d) Compute the indicator SK (28) and Ã
j,(k+1)

at j = 1, ..., p(t).

8: end for

9: Compute φp
(t),(k) by the forward transformation, and up

(t),(k+1) by the

backward transformation.

10: return un+1 and φn+1.

21

7. Numerical Experiments

In this section, we test the space-time DG spectral element method on

a variety of one dimensional test problems to demonstrate the capabilities

of our approach in preserving the accuracy and capturing or tracking sharp

shock profiles. Note that H(u
(k)
h) in Eq. (27) is a non-symmetric matrix

due to the discretization of the convection term. In our tests, we apply a

direct solver from the LAPACK library in order to invert the resulting linear

system. The tolerance of the Picard iteration is set to be 10−13.

7.1. Convergence analysis

In this test, the numerical results are compared with the exact solutions

in order to examine the convergence rate with respect to both space and

time. In the last space-time slab EE(t)
, the errors are measured in the l∞

norm at time tE(t) , i.e. tE(t) = T , where T is the final computational time.

‖Erru‖∞ = max
i=0,...,p(x)

‖uE(t)

i − (uh)
E(t)

i ‖ (37)

uE
(t)

i denotes the exact solution evaluated at node xi, and (uh)
E(t)

i is the

approximation evaluated at the same node.

We consider the Burgers’ equation

ut + (
u2

2
)x = (εux)x, x ∈ [−1.0, 1.0], (38)

with an exact traveling wave solution

u(x, t) = − tanh(
x+ 0.5− t

2ε
) + 1.0. (39)

22

Dirichlet boundary conditions are imposed by using the exact solution. We

refer the reader to [43] and the references therein for deriving an exact solu-

tion of the Burgers’ equation. We choose ε = 0.5.

First, we demonstrate the spectral accuracy of the approximation by plot-

ting the maximum errors in the solution as a function of the spatial polyno-

mial order, p(x). The simulation is computed over the time t = 0 to t = 1.0,

and the comparison is made among different numbers of spatial elements,

i.e., E(x) = 5 and E(x) = 10. The ratio of the time step to the spatial el-

ement size is, ∆t/h = 0.125 for E(x) = 5 and ∆t/h = 0.25 for E(x) = 10.

On the left part of Fig. 3, the polynomial order in the temporal direction,

p(t), is chosen to be the same as p(x), while p(t) is chosen to be 12 so that the

temporal errors are negligible on the right part. Both choices of p(t) exhibit

spectral accuracy in space.

Next, we demonstrate the spectral accuracy of the approximation by plot-

ting the maximum errors in the solution as a function of the temporal poly-

nomial order, p(t). The simulation is computed over the time t = 0 to t = 1.0,

and the spatial domain is divided into 5 elements, i.e., E(x) = 5. The com-

parison is made among E(t) = 10 and E(t) = 20. The ratio of the time step

to the spatial element size is, ∆t/h = 0.25 for E(t) = 10 and ∆t/h = 0.125

for E(t) = 20. On the left part of Fig. 4, the polynomial order in the spatial

direction, p(x), is chosen to be the same as p(t), while p(x) is chosen to be 12

so that the spatial errors are negligible on the right part. Both choices of p(x)

exhibit spectral accuracy in time.

23

2 3 4 5 6 7 8 9 10 11 12
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

p
(t)

=p
(x)

E
(x)

=5

E
(x)

=10

2 3 4 5 6 7 8 9 10 11 12
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

p
(t)

=12

E
(x)

=5

E
(x)

=10

Figure 3: Errors in the solution as a function of polynomial order p(x). the polynomial

order in the temporal direction, p(t), is chosen to be the same as p(x) on the left part, and

to be 12 on the right part. The comparison is made between E(x) = 5 and E(x) = 10.

The ratio of the time step to the spatial element size is, ∆t/h = 0.125 for E(x) = 5 and

∆t/h = 0.25 for E(x) = 10. The simulation is computed over the time t = 0 to t = 1.0.

7.2. The spatio-temporal artificial viscosity

In order to feature the gains of our artificial diffusion approach, we test our

approach on a linear advection problem with periodic boundary conditions

as follows, ut + ux = 0, −1 ≤ x ≤ 1, t > 0

u(x, 0) = u0(x).

24

2 3 4 5 6 7 8 9 10 11 12
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(t)

||
E

R
R

||
m

a
x

p
(x)

=p
(t)

E
(t)

=10

E
(t)

=20

2 3 4 5 6 7 8 9 10 11 12
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Poly. Order p
(t)

||
E

R
R

||
m

a
x

p
(x)

=12

E
(t)

=10

E
(t)

=20

Figure 4: Errors in the solution as a function of polynomial order p(t). the polynomial

order in the spatial direction, p(x), is chosen to be the same as p(t) on the left part, and

to be 12 on the right part. The comparison is made among E(t) = 10 and E(t) = 20.

The ratio of the time step to the spatial element size is, ∆t/h = 0.25 for E(t) = 10 and

∆t/h = 0.125 for E(t) = 20. The simulation is computed over the time t = 0 to t = 1.0,

and E(x) = 5.

The initial condition is chosen to be

u0(x) =


1.0, if x ∈ [−1.0,−0.5),

sin(π(x+ 0.5)), if x ∈ [−0.5, 0.5),

1.0, if x ∈ [0.5, 1.0],

First, we compute the solutions without adding any artificial viscosity.

Fig. 5 compares the numerical solutions with the exact solutions at time

t = 2.0. Comparisons between different pairs of polynomial orders are also

25

shown, i.e., (p(x), p(t)) = (10, 5) (no the left) and (p(x), p(t)) = (10, 7) (on the

right). The results obtained by a polynomial with a higher temporal order,

p(t) = 7, are the same as the one computed by the one with a lower temporal

order, p(t) = 5.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=2.000000e+00; p
(x)

=10; p
(t)

=5

NumSoln

ExactSoln

Grid

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=2.000000e+00; p
(x)

=10; p
(t)

=7

NumSoln

ExactSoln

Grid

Figure 5: A comparison between the numerical results, without any artificial viscosity, and

exact solutions using different pairs of polynomial orders, (p(x), p(t)) = (10, 5) (on the left

) and (p(x), p(t)) = (10, 7) (on the right). The simulation is computed over the time t = 0

to t = 2.0, and E(x) = 11. The ratio of the time step to the element size, ∆t/h = 0.055.

Now, we demonstrate the performance of adding artificial viscosity. Ini-

tially, in a given space-time slab, the only known information in order to

compute the amount of artificial viscosity is at the beginning of the slab. In

order to obtain the amount of artificial viscosity in the whole space-time slab,

a prediction-correction scheme is implemented. The simulation is computed

26

over the time t = 0 to t = 2.0, and E(x) = 10. The ratio of the time step to

the element size, ∆t/h = 0.25. For the empirical tuning parameters in (29),

we choose κ = 2.5 and ε0 = 0.25h/p(x).

In Figs. 6, 7 and 8, comparisons between the numerical solution and the

exact solution are plotted on the left, while the amount of artificial viscosity is

plotted on the right. Clearly, the oscillations are reduced by adding artificial

viscosity. Since our strategy for computing the amount of artificial viscosity

is time varying, approximations with a higher order in time, e.g., p(t) = 5 or

p(t) = 7, obtain better results compared to the one with a low order in time,

e.g. p(t) = 3.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=2.000000e+00; p
(x)

=10; p
(t)

=3

NumSoln

ExactSoln

Grid

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
x 10

−5

x

ε

t=2.000000e+00

ε

Grid

Figure 6: A comparison between the numerical results and exact solutions using

(p(x), p(t)) = (10, 3). On the left, comparisons between the numerical solution and the

exact solution are plotted, while the amount of artificial viscosity is plotted on the right.

27

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=2.000000e+00; p
(x)

=10; p
(t)

=5

NumSoln

ExactSoln

Grid

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9
x 10

−5

x

ε

t=2.000000e+00

ε

Grid

Figure 7: A comparison between the numerical results and exact solutions using

(p(x), p(t)) = (10, 5). On the left, comparisons between the numerical solution and the

exact solution are plotted, while the amount of artificial viscosity is plotted on the right.

In Fig. 9, we show the time varying artificial viscosity in the last space-

time slab. The amount of artificial viscosity is varying amongst the different

time “nodes” in a given space-time slab as the discontinuities travel.

7.3. Inviscid Burgers’ equation

The present method is tested on two nonlinear problems. In the first

problem, a shock forms at t = 0.25, and we apply the artificial viscosity

method to capture the shock; the second problem has a sharp discontinuity

at the initial time, and we apply the shock tracking procedure.

28

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=2.000000e+00; p
(x)

=10; p
(t)

=7

NumSoln

ExactSoln

Grid

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

x

ε

t=2.000000e+00

ε

Grid

Figure 8: A comparison between the numerical results and exact solutions using

(p(x), p(t)) = (10, 7). On the left, comparisons between the numerical solution and the

exact solution are plotted, while the amount of artificial viscosity is plotted on the right.

7.4. Shock capturing

In this section, we study the sensitivity of the error and the number of

Picard iterations on varying the temporal and spatial orders, the number of

elements, the ratio of the time step to the element size, and whether or not

artificial viscosity is present. For the sensitivity study, the inviscid Burgers’

equation is solved,ut + ∂f(u)/∂x = 0, 0 ≤ x ≤ 1, t > 0

u(x, 0) = 1
2

+ sin(2πx).

29

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
x 10

−4

x

ε

t
n
=1.950000e+00; t

n+1
=2.000000e+00

j=0

j=1

j=2

j=3

j=4

j=5

Figure 9: A plot of the time varying artificial viscosity for an approximation with

(p(x), p(t)) = (10, 5) in one space-time slab. The amount of artificial viscosity is plot-

ted for each time level (node), j, in the last time slab.

Periodic boundary conditions are enforced at x = 0 and x = 1. The solution

of this problem forms a shock at t=0.25 that moves to the right. For the

empirical tuning parameters in (29), we choose κ = 2.5 and ε0 = h/p(x).

First we report in Table 1 the sensitivity of the number of Picard iterations

as a function of the temporal order and the ratio of the time step to the spatial

element size. The simulation is computed over the time t = 0.0 to t = 0.25,

at which point the shock forms. The number of Picard iterations, which is

reported in Table 1, represents the maximum number during the simulation

process. As illustrated in the table, approximations with higher temporal

30

orders reduce the number of Picard iterations for this test. Note that the

Picard iteration algorithm does not converge within the maximum iteration

number (one thousand) in the prediction step for p(t) = 1 and p(t) = 2 (noted

by (∗) in Table 1). However, the Picard iteration, in the correction step,

converges in 163 (p(t) = 1) or 164 (p(t) = 2) iterations. We reason that this

is because the prediction step, in spite of not converging, yielded an artificial

viscosity that was sufficient to damp out noise for carrying out the correction

step.

In Figs. 10, 11, 12, 13 and 14, the numerical solutions (on the left) and

the amount of artificial viscosity (on the right) are plotted. The simulation

is computed over the time t = 0.0 to t = 0.5. The ratio of the time step

to the spatial element size is set as ∆t/h = 0.08. The shock is well-resolved

within one element as shown in Fig. 10. In addition, the shock is well-

resolved for approximations with different higher orders approximations, i.e.,

(p(x), p(t)) = (8, 5) and (p(x), p(t)) = (13, 7). In comparing Fig. 11 to Fig. 13,

an approximation with higher order, (p(x), p(t)) = (13, 7), resolves the solution

extrema more accurately than the one with (p(x), p(t)) = (8, 5) (the same

number of spatial elements are used).

7.5. Shock tracking

The inviscid Burgers’ equation with periodic boundary conditions is solved

with the following initial conditions,

u(x, 0) =

sin(2π(x+ 0.25)) + 0.25, −0.25 ≤ x ≤ 0,

− cos(2πx) + 0.25, −0.25 < x ≤ 0.25.

31

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

u

t=2.500000e−01; p
(x)

=8; p
(t)

=6

NumSoln

Grid

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

x

ε

t=2.500000e−01

ε

Grid

Figure 10: A plot of the approximate solution at t = 0.25 (on the left) and the amount

of artificial viscosity (on the right). The spatial polynomial order is p(x) = 8 and the

temporal polynomial order is p(t) = 6. The number of spatial elements is E(x) = 10. The

ratio of the time step to the spatial element size is set as ∆t/h = 0.08.

Since the location of the discontinuity is known at the initial time, we track

the discontinuity explicitly. In this section, we report the error of our tracking

algorithm with respect to the spatial and temporal polynomial orders. We

demonstrate the spectral accuracy of the shock velocity and shock location

by plotting the maximum errors as a function of polynomial orders, p(x)

and p(t). The errors are computed by comparing our numerical results with

the ones computed by a first order Godunov method with ten thousand grid

points. Since the temporal resolution affects the number of Picard iterations,

see section 7.4, we choose the time step for the convergence tests to be 0.01

32

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

u

t=2.500000e−01; p
(x)

=8; p
(t)

=5

NumSoln

Grid

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

−3

x

ε

t=2.500000e−01

ε

Grid

Figure 11: A plot of the approximate solution at t = 0.25 (on the left) and the amount

of artificial viscosity (on the right). The spatial polynomial order is p(x) = 8 and the

temporal polynomial order is p(t) = 5. The number of spatial elements is E(x) = 8. The

ratio of the time step to the spatial element size is set as ∆t/h = 0.08.

so that the ratio of the time step to the spatial element size is 0.04 for

E(x) = 2 and 0.06 for E(x) = 3. This setting for ∆t allows the Picard

iteration algorithm to converge for a lower temporal order, e.g., p(t) = 1.

In Fig. 15, we choose the number of spatial elements to be E(x) = 3

(on the left) and E(x) = 2 (on the right). For the case of E(x) = 2, the

discontinuity is initialized at the inter-element boundary, which means that

there are no cut cells at the beginning of the simulation. After the first time

step, a small cell is generated on the left side of the discontinuity so that

∆t/minK{hK} could be greater than 1. For such scenarios, we refine the

33

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

u

t=5.000000e−01; p
(x)

=8; p
(t)

=5

NumSoln

Grid

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

x

ε

t=5.000000e−01

ε

Grid

Figure 12: A plot of the approximate solution at t = 0.5 (on the left) and the amount

of artificial viscosity (on the right). The spatial polynomial order is p(x) = 8 and the

temporal polynomial order is p(t) = 5. The number of spatial elements is E(x) = 8. The

ratio of the time step to the spatial element size is set as ∆t/h = 0.08.

time step in the given space-time slab. We show that the small cell does

not affect the spectral accuracy in our tracking method. Both the interface

velocity and the interface location exhibit spectral accuracy in both space

and time.

The approximation with (p(x), p(t)) = (6, 6), in Fig. 16, behaves well

with the appearance of the small cell. In Fig. 17, the approximation with

(p(x), p(t)) = (8, 5) behaves well after crossing an inter-element boundary.

34

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

u

t=2.500000e−01; p
(x)

=13; p
(t)

=7

NumSoln

Grid

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

−3

x

ε

t=2.500000e−01

ε

Grid

Figure 13: A plot of the approximate solution at t = 0.25 (on the left) and the amount

of artificial viscosity (on the right). The spatial polynomial order is p(x) = 13 and the

temporal polynomial order is p(t) = 7. The number of spatial elements is E(x) = 8. The

ratio of the time step to the spatial element size is set as ∆t/h = 0.08.

8. Summary and Conclusions

A space-time DG spectral element method for solving nonlinear hyper-

bolic problems has been presented in one spatial dimension. In order to treat

shocked solutions of hyperbolic problems, two methods are introduced in the

space-time framework: (i) the shock capturing approach and (ii) the shock

tracking approach.

Numerical experiments on the Burgers’ equation demonstrate the spec-

tral convergence in both space and time. The spatio-temporal artificial dif-

35

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

u

t=5.000000e−01; p
(x)

=13; p
(t)

=7

NumSoln

Grid

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

x

ε

t=5.000000e−01

ε

Grid

Figure 14: A plot of the approximate solution at t = 0.5 (on the left) and the amount

of artificial viscosity (on the right). The spatial polynomial order is p(x) = 13 and the

temporal polynomial order is p(t) = 7. The number of spatial elements is E(x) = 8. The

ratio of the time step to the spatial element size is set as ∆t/h = 0.08.

fusion approach is tested on both a scalar hyperbolic linear problem with

a discontinuous initial condition and the inviscid Burgers’ equation with a

solution that evolves into a sharp discontinuity. In the present shock captur-

ing method, the amount of artificial viscosity is computed at each time level

(node) in a given space-time slab based on the smoothness indicator (28),

which results in optimal diffusion to suppress Gibbs phenomenon. Space-time

spectral accuracy enables better accuracy at extrema away from the shock,

and enables better accuracy at capturing the shock strength at a shock with

higher order polynomials in both space and time compared to lower order

36

1 2 3 4 5 6 7 8 9
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

p
(t)

=p
(x)

, E
x
=3

Velocity

Interface

1 2 3 4 5 6 7 8 9
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Poly. Order p
(x)

||
E

R
R

||
m

a
x

p
(t)

=p
(x)

, E
x
=2

Velocity

Interface

Figure 15: Errors in the shock velocity and shock location as a function of polynomial

order p(x). the polynomial order in the temporal direction, p(t), is chosen to be the same

as p(x). The number of elements are chosen to be E(x) = 3 (on the left) and E(x) = 2

(on the right). The simulation is computed over the time t = 0 to t = 0.2. The ratio of

the time step to the spatial element size is ∆/h = 0.06 for E(x) = 3 and ∆/h = 0.04 for

E(x) = 2.

polynomials. Simultaneously, Gibbs oscillations are suppressed by the com-

bination of higher order polynomials and the present shock capturing scheme.

Such features are demonstrated for both a scalar hyperbolic linear problem

with higher order polynomials, e.g., (p(x), p(t)) = (10, 7) (Fig. 8) and the invis-

cid Burgers’ equation with higher order polynomials, e.g., (p(x), p(t)) = (13, 7)

(Fig. 14), respectively. The sensitivity of the number of Picard iterations as

a function of the temporal order, with different ratios of the time step to

37

−0.2 −0.1 0 0.1 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=1.500000e−01; p
(x)

=6; p
(t)

=6

NumSoln

Grid

−0.2 −0.1 0 0.1 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=4.000000e−01; p
(x)

=6; p
(t)

=6

NumSoln

Grid

Figure 16: A plot of the numerical solution at different times. The ratio of the time step

to the spatial element size is ∆t/h = 0.08, and E(x) = 4. The polynomial orders are set

to be (p(x), p(t)) = (6, 6).

the spatial element size, is discussed. It has been found that increasing the

temporal order reduces the number of Picard iterations in the nonlinear case

(Table 1) and eliminates oscillations in the linear case (Figs. 6 and 7).

The spectral accuracy of the shock speed and location is demonstrated

for the shock tracking method. Also, the space-time spectral accuracy of

the solution on either side of the discontinuity is preserved. A small cut cell

may be generated in the shock tracking process, which does not affect the

spectral accuracy. In addition, higher order approximations, e.g., (px, p(t)) =

(6, 6) and (px, p(t)) = (8, 5), behave well for the case in which a small cell

38

−0.2 −0.1 0 0.1 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=1.500000e−01; p
(x)

=8; p
(t)

=5

NumSoln

Grid

−0.2 −0.1 0 0.1 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

t=4.000000e−01; p
(x)

=8; p
(t)

=5

NumSoln

Grid

Figure 17: A plot of the numerical solution at different times. The ratio of the time step

to the spatial element size is ∆t/h = 0.06, and E(x) = 3. The polynomial orders are set

to be (p(x), p(t)) = (8, 5).

is generated in the tracking process. However, a drawback of the tracking

method is the time step restriction caused by a tiny cut cell. A tiny cut cell

can result in the collision of characteristics for the nonlinear problem; this

problem is manifested in the Picard iteration not converging unless the time

step is sufficiently refined. The ratio of the time step to the spatial element

size, ∆t/minK{hK} must be restricted depending on max{∂f(u)/∂u} if a

tiny cut cell is generated in one space-time slab. An alternate to reduce ∆t

is to adjust the polynomial order used in a given element. The capability for

subelements in a cut-cell to have a low order approximation that is distinct

39

from its neighbors is the topic of future research.

The present method can be extended to higher spatial dimensions, how-

ever, an alternative faster direct solver methodology, such as Martinsson [44],

needs to be explored for the resulting large sparse linear system (27) obtained

in each Picard iteration. This too will be the subject of future study.

Acknowledgments

This work was partially supported by the National Science Foundation

under contract DMS 1418983.

40

References

References

[1] P. Persson and J. Peraire. Sub-Cell Shock Capturing for Discontinuous

Galerkin Methods. AIAA Aerospace Sciences Meeting and Exhibit, 44th,

2006.

[2] Garrett E. Barter and David L. Darmofal. Shock capturing with PDE-

based artificial viscosity for DGFEM. I. Formulation. J. Comput. Phys.,

229(5):1810–1827, 2010.

[3] J. Reisner, J. Serencsa, and S. Shkoller. A space-time smooth artificial

viscosity method for nonlinear conservation laws. J. Comput. Phys.,

235:912–933, 2013.

[4] E. Casoni, J. Peraire, and A. Huerta. One-dimensional shock-capturing

for high-order discontinuous Galerkin methods. Internat. J. Numer.

Methods Fluids, 71(6):737–755, 2013.

[5] Chi-Wang Shu and Stanley Osher. Efficient implementation of essen-

tially non-oscillatory shock-capturing schemes, ii. Journal of Computa-

tional Physics, 83(1):32 – 78, 1989.

[6] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of

weighted eno schemes. Journal of Computational Physics, 126(1):202

– 228, 1996.

[7] Dinshaw S. Balsara and Chi-Wang Shu. Monotonicity preserving

weighted essentially non-oscillatory schemes with increasingly high or-

41

der of accuracy. Journal of Computational Physics, 160(2):405 – 452,

2000.

[8] H.C Yee, N.D Sandham, and M.J Djomehri. Low-dissipative high-order

shock-capturing methods using characteristic-based filters. Journal of

Computational Physics, 150(1):199 – 238, 1999.

[9] Bertil Gustafsson and Pelle Olsson. Fourth-order difference methods for

hyperbolic ibvps. Journal of Computational Physics, 117(2):300–317,

1995.

[10] Amiram Harten. The artificial compression method for computation

of shocks and contact discontinuities. iii. self-adjusting hybrid schemes.

Mathematics of Computation, 32(142):363–389, 1978.

[11] Yu-Xin Ren, Miao’er Liu, and Hanxin Zhang. A characteristic-wise

hybrid compact-weno scheme for solving hyperbolic conservation laws.

Journal of Computational Physics, 192(2):365 – 386, 2003.

[12] Sergio Pirozzoli. Conservative hybrid compact-weno schemes for shock-

turbulence interaction. Journal of Computational Physics, 178(1):81 –

117, 2002.

[13] Björn Sjögreen and HC Yee. Multiresolution wavelet based adaptive nu-

merical dissipation control for high order methods. Journal of Scientific

Computing, 20(2):211–255, 2004.

[14] Margot Gerritsen and Pelle Olsson. Designing an efficient solution strat-

egy for fluid flows: 1. a stable high order finite difference scheme and

42

sharp shock resolution for the euler equations. Journal of Computational

Physics, 129(2):245–262, 1996.

[15] Stephane Mallat and Sifen Zhong. Characterization of signals from mul-

tiscale edges. IEEE Transactions on Pattern Analysis & Machine Intel-

ligence, 14(7):710–732, 1992.

[16] Ingrid Daubechies. Ten lectures on wavelets, CBMS-NSF regional con-

ference series in applied mathematics., volume 61. SIAM, 1992.

[17] Stéphane Mallat. A wavelet tour of signal processing. Academic press,

1999.

[18] Hesam Abbassi, Farzad Mashayek, and Gustaaf B. Jacobs. Shock cap-

turing with entropy-based artificial viscosity for staggered grid discon-

tinuous spectral element method. Computers and Fluids, 98:152 – 163,

2014. 12th USNCCM mini-symposium of High-Order Methods for Com-

putational Fluid Dynamics - A special issue dedicated to the 80th birth-

day of Professor Antony Jameson.

[19] Karthikeyan Duraisamy, James D Baeder, and Jian-Guo Liu. Concepts

and application of time-limiters to high resolution schemes. Journal of

scientific computing, 19(1-3):139–162, 2003.

[20] A Suresh and HT Huynh. Accurate monotonicity-preserving schemes

with runge–kutta time stepping. Journal of Computational Physics,

136(1):83–99, 1997.

[21] H. Touil, M. Y. Hussaini, and M. Sussman. Tracking discontinuities in

43

hyperbolic conservation laws with spectral accuracy. J. Comput. Phys.,

225(2):1810–1826, 2007.

[22] B. Bernardo Cockburn, George Karniadakis, and Chi-Wang Shu, edi-

tors. Discontinuous Galerkin methods : theory, computation, and ap-

plications. Lecture notes in computational science and engineering.

Springer, Berlin, New York, 2000.

[23] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A.

Zang. Spectral methods: Fundamentals in single domains. Berlin,

Springer, 2006.

[24] Jan S. Hesthaven and Tim Warburton. Nodal discontinuous Galerkin

methods: Algorithms, Analysis, and Applications, volume 54 of Texts in

Applied Mathematics. Springer, New York, 2008.

[25] David A. Kopriva. Implementing spectral methods for partial differential

equations: Algorithms for Scientists and Engineers. Scientific Compu-

tation. Springer, Berlin, 2009.

[26] George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element

methods for CFD. Numerical Mathematics and Scientific Computation.

Oxford University Press, Oxford, second edition, 2013.

[27] J. J. Sudirham, J. J. W. van der Vegt, and R. M. J. van Damme. Space-

time discontinuous Galerkin method for advection-diffusion problems on

time-dependent domains. Appl. Numer. Math., 56(12):1491–1518, 2006.

44

[28] C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. Space-time dis-

continuous Galerkin method for the compressible Navier-Stokes equa-

tions. J. Comput. Phys., 217(2):589–611, 2006.

[29] J. J. W. van der Vegt and J. J. Sudirham. A space-time discontinuous

Galerkin method for the time-dependent Oseen equations. Appl. Numer.

Math., 58(12):1892–1917, 2008.

[30] W. E. H. Sollie, O. Bokhove, and J. J. W. van der Vegt. Space-time

discontinuous Galerkin finite element method for two-fluid flows. J.

Comput. Phys., 230(3):789–817, 2011.

[31] Sander Rhebergen, Bernardo Cockburn, and Jaap J. W. van der Vegt.

A space-time discontinuous Galerkin method for the incompressible

Navier-Stokes equations. J. Comput. Phys., 233:339–358, 2013.

[32] J. J. W. van der Vegt and H. van der Ven. Space-time discontinu-

ous Galerkin finite element method with dynamic grid motion for in-

viscid compressible flows. I. General formulation. J. Comput. Phys.,

182(2):546–585, 2002.

[33] F. Lörcher, G. Gassner, and C.-D. Munz. A discontinuous Galerkin

scheme based on a space-time expansion. I. Inviscid compressible flow

in one space dimension. J. Sci. Comput., 32(2):175–199, 2007.

[34] Sander Rhebergen and Bernardo Cockburn. A space-time hybridizable

discontinuous Galerkin method for incompressible flows on deforming

domains. J. Comput. Phys., 231(11):4185–4204, 2012.

45

[35] Chaoxu Pei, Mark Sussman, and Yousuff M. Hussaini. A space-time

discontinuous galerkin spectral element method for the stefan problem.

Submitted to J. Sci. Comput., 2015.

[36] Michele Benzi and Maxim A. Olshanskii. An augmented Lagrangian-

based approach to the Oseen problem. SIAM J. Sci. Comput.,

28(6):2095–2113, 2006.

[37] Bernardo Cockburn and Chi-Wang Shu. The local discontinu-

ous Galerkin method for time-dependent convection-diffusion systems.

SIAM J. Numer. Anal., 35(6):2440–2463, 1998.

[38] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella

Marini. Unified analysis of discontinuous Galerkin methods for elliptic

problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2001.

[39] Bernardo Cockburn, Guido Kanschat, Ilaria Perugia, and Dominik

Schötzau. Superconvergence of the local discontinuous Galerkin method

for elliptic problems on Cartesian grids. SIAM J. Numer. Anal.,

39(1):264–285 (electronic), 2001.

[40] Catherine Mavriplis. Adaptive mesh strategies for the spectral element

method. Comput. Methods Appl. Mech. Engrg., 116(1-4):77–86, 1994.

ICOSAHOM’92 (Montpellier, 1992).

[41] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach

for computing solutions to incompressible two-phase flow. Journal of

Computational Physics, 114(1):146 – 159, 1994.

46

[42] Mark Sussman and M. Y. Hussaini. A discontinuous spectral element

method for the level set equation. J. Sci. Comput., 19(1-3):479–500,

2003. Special issue in honor of the sixtieth birthday of Stanley Osher.

[43] David Furbish, M. Yussuf Hussaini, François-Xavier Le Dimet, Pierre

Ngnepieba, and Yonghui Wu. On discretization error and its control in

variational data assimilation. Tellus A, 60(5):979–991, 2008.

[44] P. G. Martinsson. A direct solver for variable coefficient elliptic PDEs

discretized via a composite spectral collocation method. J. Comput.

Phys., 242:460–479, 2013.

47

E(x) p(x) p(t) ∆t/h Number of iterations

8 8 1 0.08 65

8 8 2 0.08 47

8 8 3 0.08 33

8 8 4 0.08 25

8 8 5 0.08 24

8 8 6 0.08 22

8 8 7 0.08 19

8 8 1 0.2 > Nmax (∗)

8 8 2 0.2 > Nmax (∗)

8 8 3 0.2 124

8 8 4 0.2 51

8 8 5 0.2 46

8 8 6 0.2 40

8 8 7 0.2 33

Table 1: Dependence of the number of Picard iterations on the time step and the temporal

order. The criterion for convergence of the Picard iteration is tol = 10−13. The maximum

iteration number, Nmax, is set to be 1000.

48

