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Abstract We introduce a robust method for computing viscous and viscoelastic two-phase
bubble and drop motions. Our method utilizes a coupled level-set and volume-of-fluid tech-
nique for updating and representing the air-water interface. Our method introduces a novel
approach for treating the viscous coupling terms at the air-water interface; these improve-
ments result in improved stability for computing two-phase bubble formation solutions. We
also present an improved, “positive-preserving” discretization technique for updating the
configuration tensor for viscoelastic flows, in the context of computing two-phase bubble
and drop motion.

Keywords Level-set method · Volume-of-fluid method · Two-phase flow · Bubbles · Drops

1 Introduction

In [1, 2], and [3], a sharp interface method was developed for computing solutions to prob-
lems in Newtonian two-phase flows and viscoelastic two-phase flows. The interface separat-
ing the two phases in these papers was represented and updated using the coupled level set
and volume-of-fluid method. The treatment of interfacial boundary conditions for our sharp
interface method has the property that in the limit of zero gas density and zero gas viscosity,
i.e. in the limit that the gas is treated as a zero density void, the solutions approach the so-
lutions of the corresponding one-phase problem. The air-water interface for the one-phase
problem is a free-surface in which the liquid on one side is treated as an incompressible fluid
and the gas pressure on the other side of the free-surface is treated as spatially constant.
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We remark that Kang et al. [4] used the Ghost Fluid Method [5] and techniques in [6] to
treat multiphase incompressible flow, including the effects of viscosity, surface tension, and
gravity using a sharp interface method. Their method takes the interfacial jump conditions
into consideration, but they use an explicit formulation of viscous terms. References [1–
3], and this paper utilize an implicit treatment of the viscous terms. Our treatment takes
the location of the interface into consideration and uses the knowledge that the two-phase
algorithm reduces to a one-phase algorithm in the limit that gas becomes a constant pressure
void.

In this paper we present two improvements, in the context of our sharp interface method;
(1) we present improvements for the discretization of the “coupling” terms that appear in
the viscous force terms and (2) we present improved discretization techniques for updating
the configuration tensor for viscoelastic flows.

1.1 Improvements in Calculating the Viscous Force Terms

We introduce a robust method for computing viscosity in two-phase bubble and drop mo-
tions. Sussman et al. [1] described a sharp interface method for incompressible two-phase
flows. This method uses a coupled level-set and volume-of-fluid technique for updating and
representing the air-water interface, and introduces a novel approach for treating the jump
conditions at the air-water interface. This method yielded solutions in the zero gas density
limit which were comparable in accuracy to the method in which the gas pressure was treated
as spatially constant. This improvement allowed for increases in the accuracy of solutions
on coarse grids.

However, the above method’s matrix solver would not converge when viscous effects
were dominant. The above method also was inefficient in the sense that it used a second
order time discretization, even though the spatial error in discretizing the viscous force terms
was only first order accurate. Li et al. [7] gave a method to decouple problematic viscous
terms with a low Reynolds number. This provided a basis for Sussman and Ohta to describe
improvements for calculating two-phase bubble and drop motions [3].

The new method proposed by Sussman-Ohta [3] no longer suffered from problems with
large viscous terms. The decoupling of the viscous terms resulted in a diagonally dominant
matrix system for the non-coupled viscous force terms; such a matrix system could be ro-
bustly solved using the conjugate gradient method or multigrid method. This new method
involved a first order, backwards Euler time discretization for the non-coupled viscous terms
and was comparably better than [1] when viscous effects are dominant.

However, the calculation of the viscous coefficients used for the coupling terms in [3]
are not as accurate as they could be, and the method will lead to instabilities in some calcu-
lations. The analysis done in [7] only considered the temporal discretization when proving
unconditional stability for their method. We show through example in this paper that the
semi-implicit approach taken by [3] works well for many bubble and drop two-phase flow
problems, but fails for the bubble formation problem for certain parameter regimes. Here,
we shall introduce a new method to improve the evaluations of the viscous coupling-term
coefficients. Our method does not lead to instabilities and is either just as accurate as the
methods proposed in [1] and [3], or for some problems, measurably more accurate.

Other methods of interest include [8] and [9]. In [8], Hong et al. treats their viscous
terms implicitly in a method similar to that described in [3]. However, they assume that the
net result of their viscous coupling terms is zero. In [9], Rasmussen et al. also use a method
similar to that described in [3]. However, their method for discretizing the viscous force
terms is developed in the context of one-phase flow with variable liquid viscosity, instead
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of two-phase flow; we focus on the treatment of the viscous force terms at a two-phase
interface where both density and viscosity have large jumps.

1.2 A Positive Definite Preserving Numerical Scheme for Updating the Configuration
Tensor for Viscoelastic Two-Phase Flow

Algorithms for viscoelastic two-phase flow have been presented by Yu et al. [10], Pilla-
pakkam and Singh [11], and Jimenez et al. [2]. Also, algorithms for viscoelastic one-phase
flow have been presented by Goktekin et al. [12], Losasso et al. [13] and Irving [14]. We re-
mark that the previous methods [10] and [11] were developed in the context of a “smoothed”
interface method, instead of the sharp interface method presented here. The work by [12–14]
was developed in the context of a one-phase flow algorithm in which the gas pressure was
assumed spatially constant. We note that, as remarked by Losasso et al. [13], Goktekin et
al. [12] ignored the fluid rotation term since Goktekin et al. solved the following simplified
equation for the elastic strain tensor ε:

εt + �u · ε = (∇�u + (∇�u)T )/2 − εPlastic
t .

In this paper, we describe improvements to the work presented by Jimenez et al. [2] for the
discretization of the evolution equation for the configuration tensor A:

∂A
∂t

+ u · ∇A = A · (∇u)T + ∇u · A − f (R)

λ
(A − I). (1.1)

For the FENE–CR model [15], the conformation of the polymer is specified in terms of the
average of the dyadic product 〈RR〉 of the dumbbell end-to-end vector R. c,L,λ are FENE–
CR model parameters. The parameter c is a measure of the concentration of dumbbells, L is
the extensibility parameter which denotes the maximum average length of s polymer mole-
cule relative to the equilibrium end-to-end dimension, λ is a characteristic relaxation time.
The FENE–CR model has a constant shear viscosity and the FENE–CR model reduces to
the Oldroyd-B model as L → ∞. The function f (R) specifies the nonlinear spring charac-
teristics of the viscoelastic fluid and is given by

f (R) = 1

1 − tr(A)/L2
. (1.2)

In particular, we observe that (1.1) preserves A as a positive definite matrix. The discretiza-
tion of (1.1) should preserve the positive definite property of A as well. In our previous
work [2], we only preserved the diagonal entries of A to be positive. We remark that there
are many choices of schemes for discretizing (1.1), see e.g. [16, 17] and [18], but they are
complicated, and ultimately one must reduce the order of accuracy of a method to first order
in order to preserve positive definiteness of A. We instead base our discretization on the
following observation that one can rewrite (1.1) as follows,

A(x, t + �t) = I + ((I + �t∇U)A(x − U�t, t)(I + �t∇U)T − I )e
−f (R)

λ
�t + O(�t2).

(1.3)
We show that we can robustly calculate viscoelastic bubbly flows using our new method

for updating the configuration tensor together with our sharp interface approach.
We remark that a similar “matrix transformation” technique as given in (1.3) was also

implemented by [14]. I.e., [14] also implemented a semi-Lagrangian advection step to
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find ε(x − U�t, t) and then computed the similarity transformation SεST where S =
1
2 (∇U − ∇UT ). The viscoelastic model in [14] was based on the corotational Maxwell
model and the viscoelastic model in this paper is based on the FENE–CR model. The nu-
merical discretization in [14] does not preserve the positive definite property of their elastic
strain tensor, whereas our numerical discretization does preserve the configuration tensor,
A, as a positive definite matrix.

2 Governing Equations

The governing equations for incompressible, immiscible two-phase flow was written by
Chang et al. [19] as:

ρ
DU

Dt
= ∇·

(
−pI + 2μD + η̃P

λ
f (R)A

)
+ ρgẑ − σκ(F )∇H,

∂A
∂t

+ U · ∇A = A · (∇U)T + ∇U · A − f (R)

λ
(A − I),

(2.1)
∇ · U = 0,

Dφ

Dt
= 0,

DF

Dt
= 0,

ρ = ρLH(φ) + ρG(1 − H(φ)), μ = μLH(φ) + μG(1 − H(φ)), η̃P = ηP H(φ),

H(φ) =
{

1, φ ≥ 0,

0, φ < 0,

φ is a level set function which is positive in liquid and negative in gas. F is a volume-of-fluid
function which represents the fraction of fluid that is liquid for each computational cell. Our
method follows the time-splitting that was used in Sussman and Ohta [3] for decoupling the
viscous terms, and also uses the previously developed CLSVOF method by Sussman and
Puckett [20] by coupling the solutions of φ and F .

Other variables used are defined as: U is the velocity field, p is the pressure, D =
1
2 (∇U + ∇UT ) is the rate of deformation tensor, g corresponds to the acceleration due
to gravity, μL(μG) is the viscosity of liquid (gas), ρL(ρG) is the density of liquid (gas),
κ(F ) = ∇ · ∇F

|∇F | is the curvature, and σ is the coefficient of surface tension. The gradient
terms on the right hand side of the equation for A are defined as

A · (∇U)T + ∇U · A = Aαγ

∂Uβ

∂xγ

+ ∂Uα

∂xγ

Aγβ .

3 Viscosity: An Adaptive, Sharp Interface Treatment for the Viscous Force Terms

We present a simple and robust adaptive method for computing the viscous forces as they
appear in (2.1),

∇ · (2μD). (3.1)
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Our algorithm follows the same strategy as proposed by Li, Renardy, and Renardy [7] and
as implemented in Sussman-Ohta [3] by discretizing the coupling terms in (3.1) explicitly
and the remainder of the terms implicitly. It was shown by Li et al. [7] that the following
temporal discretization for the viscous forces is stable for any time step:

ρ
u∗∗ − u∗

�t
= ∇ · μ∇u∗∗ + (

μu∗∗
x

)
x
+ (

μν∗
x

)
y
+ (

μw∗
x

)
z
,

ρ
ν∗∗ − ν∗

�t
= ∇ · μ∇ν∗∗ + (

μν∗∗
y

)
y
+ (

μu∗
y

)
x
+ (

μw∗
y

)
z
,

ρ
w∗∗ − w∗

�t
= ∇ · μ∇w∗∗ + (

μw∗∗
z

)
z
+ (

μu∗
z

)
x
+ (

μν∗
z

)
y
.

The non-coupling terms are discretized using standard finite volume techniques. For exam-
ple, we approximate the terms ∇ · μ∇u∗∗ + (μu∗∗

x )x from above as,

2μi+1/2,j,k(ui+1,j,k − ui,j,k) − 2μi−1/2,j,k(ui,j,k − ui−1,j,k)

�x2

+μi,j+1/2,k(ui,j+1,k − ui,j,k) − μi,j−1/2,k(ui,j,k − ui,j−1,k)

�y2

+μi,j,k+1/2(ui,j,k+1 − ui,j,k) − μi,j,k−1/2(ui,j,k − ui,j,k−1)

�z2
.

The face centered viscosity, μi+1/2,j,, is defined “sharply” as,

μi+1/2,j, = 1
θi+1/2,j

μL
+ 1−θi+1/2,j

μG

.

θi+1/2,j is the height fraction [7, 8] given by:

θi+1/2,j (φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, φi+1,j , φi,j ≥ 0,

0, φi+1,j , φi,j < 0,

φ+
i+1,j + φ+

i,j

|φi+1,j | + |φi,j | , otherwise.

(3.2)

The “+” superscript stands for the positive part, i.e. a+ ≡ max(a,0). The combined density
is also defined sharply as,

H(ρ) =
{

ρL, φ ≥ 0,

ρG, φ < 0.

In Sussman and Ohta [3], the coupling terms were discretized in two dimensions as

∂(μνx)

∂y
≈ (

μi+1/2,j+1/2(νx)i+1/2,j+1/2 − μi+1/2,j−1/2(νx)i+1/2,j−1/2

+μi−1/2,j+1/2(νx)i−1/2,j+1/2 − μi−1/2,j−1/2(νx)i−1/2,j−1/2
)
/2�y,

∂(μuy)

∂x
≈ (

μi+1/2,j+1/2(uy)i+1/2,j+1/2 − μi−1/2,j+1/2(uy)i−1/2,j+1/2

+μi+1/2,j−1/2(uy)i+1/2,j−1/2 − μi−1/2,j−1/2(uy)i−1/2,j−1/2
)
/2�x.
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The viscosity at a node was given by

μi+1/2,j+1/2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μL, θi+1/2,j+1/2 = 1,

μG, θi+1/2,j+1/2 = 0,

0, μG = 0 and 0 < θi+1/2,j+1/2 < 1,

μLG, otherwise,

where

μLG = μGμL

μGθi+1/2,j+1/2 + μL(1 − θi+1/2,j+1/2)
.

θi+1/2,j+1/2 is a “node fraction” defined as,

θi+1/2,j+1/2(ϕ) =

⎧⎪⎨
⎪⎩

1, φi+1,j , φi,j , φi,j+1, φi+1,j+1 ≥ 0,

0, φi+1,j , φi,j , φi,j+1, φi+1,j+1 < 0,

θND, otherwise.

The “+” superscript stands for the positive part, i.e. a+ ≡ max(a,0), and

θND = φ+
i+1,j + φ+

i,j+1 + φ+
i,j + φ+

i+1,j+1

|φi+1,j | + |φi,j+1| + |φi,j | + |φi+1,j+1| .

The components of the parts of the deformation tensor that are handled explicitly, e.g. the
coupled terms, (uy)i+1/2,j+1/2 in the equation for ν and (νx)i+1/2,j+1/2 in the equations for
u, were calculated at nodes using standard central differencing, i.e.,

(uy)i+1/2,j+1/2 = ui+1,j+1 − ui+1,j + ui,j+1 − ui,j

2�y
.

The discretization of the viscous terms in [3] had the following properties:

1. If the gas viscosity is zero, the velocity in gas cells, ϕi,j < 0, is never used. This enabled
our two-phase method to be equivalent to the corresponding one-phase method in the
limit of zero gas density and zero gas viscosity (i.e. gas treated as vacuum with uniform
pressure).

2. The resulting matrix system for each velocity component is written in the following form,

α(x)p + β∇ · (A(x, y)∇p) = f (x, y). (3.3)

Where (3.3) is solved for p. A is a diagonal matrix. Reference [3] solved (3.3) on an
adaptive hierarchy of grids as also described in Sect. 5.

In this paper, we discretize the coupling terms differently from [3]; in three dimensions,
they appear as:

∂u

∂y

∣∣∣∣
i−1/2,j,k

= ω
i,j,k

i,j+1,k(ui,j+1,k − ui,j,k) + ω
i,j−1,k

i,j,k (ui,j,k − ui,j−1,k)

�y(ω
i,j,k

i,j+1,k + ω
i,j−1,k

i,j,k + ω
i−1,j,k

i−1,j+1,k + ω
i−1,j−1,k

i−1,j,k )

+ω
i−1,j,k

i−1,j+1,k(ui−1,j+1,k − ui−1,j,k) + ω
i−1,j−1,k

i−1,j,k (ui−1,j,k − ui−1,j−1,k)

�y(ω
i,j,k

i,j+1,k + ω
i,j−1,k

i,j,k + ω
i−1,j,k

i−1,j+1,k + ω
i−1,j−1,k

i−1,j,k )
,
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∂u

∂z

∣∣∣∣
i−1/2,j,k

= ω
i,j,k

i,j,k+1(ui,j,k+1 − ui,j,k) + ω
i,j,k−1
i,j,k (ui,j,k − ui,j,k−1)

�z(ω
i,j,k

i,j,k+1 + ω
i,j,k−1
i,j,k + ω

i−1,j,k

i−1,j,k+1 + ω
i−1,j,k−1
i−1,j,k )

+ω
i−1,j,k

i−1,j,k+1(ui−1,j,k+1 − ui−1,j,k) + ω
i−1,j,k−1
i−1,j,k (ui−1,j,k − ui−1,j,k−1)

�z(ω
i,j,k

i,j,k+1 + ω
i,j,k−1
i,j,k + ω

i−1,j,k

i−1,j,k+1 + ω
i−1,j,k−1
i−1,j,k )

,

where,

ω
L,M,N
I,J,K =

{
1, sφI,J,K ≥ 0 and sφL,M,N ≥ 0,

0, otherwise
and

s =
{

1, φi−1,j,k ≥ 0 or φi,j,k ≥ 0,

−1, otherwise,

∂ν

∂x

∣∣∣∣
i,j−1/2,k

= ω
i,j,k

i+1,j,k(νi+1,j,k − νi,j,k) + ω
i−1,j,k

i,j,k (νi,j,k − νi−1,j,k)

�x(ω
i,j,k

i+1,j,k + ω
i−1,j,k

i,j,k + ω
i,j−1,k

i+1,j−1,k + ω
i−1,j−1,k

i,j−1,k )

+ω
i,j−1,k

i+1,j−1,k(νi+1,j−1,k − νi,j−1,k) + ω
i−1,j−1,k

i,j−1,k (νi,j−1,k − νi−1,j−1,k)

�x(ω
i,j,k

i+1,j,k + ω
i−1,j,k

i,j,k + ω
i,j−1,k

i+1,j−1,k + ω
i−1,j−1,k

i,j−1,k )
,

∂ν

∂z

∣∣∣∣
i,j−1/2,k

= ω
i,j,k

i,j,k+1(νi,j,k+1 − νi,j,k) + ω
i,j,k−1
i,j,k (νi,j,k − νi,j,k−1)

�z(ω
i,j,k

i,j,k+1 + ω
i,j,k−1
i,j,k + ω

i,j−1,k

i,j−1,k+1 + ω
i,j−1,k−1
i,j−1,k )

+ω
i,j−1,k

i,j−1,k+1(νi,j−1,k+1 − νi,j−1,k) + ω
i,j−1,k−1
i,j−1,k (νi,j−1,k − νi,j−1,k−1)

�z(ω
i,j,k

i,j,k+1 + ω
i,j,k−1
i,j,k + ω

i,j−1,k

i,j−1,k+1 + ω
i,j−1,k−1
i,j−1,k )

,

where,

ω
L,M,N
I,J,K =

{
1, sφI,J,K ≥ 0 and sφL,M,N ≥ 0,

0, otherwise
and

s =
{

1, φi,j−1,k ≥ 0 or φi,j,k ≥ 0,

−1, otherwise,

∂w

∂x

∣∣∣∣
i,j,k−1/2

= ω
i,j,k

i+1,j,k(wi+1,j,k − wi,j,k) + ω
i−1,j,k

i,j,k (wi,j,k − wi−1,j,k)

�x(ω
i,j,k

i+1,j,k + ω
i−1,j,k

i,j,k + ω
i,j,k−1
i+1,j,k−1 + ω

i−1,j,k−1
i,j,k−1 )

+ω
i,j,k−1
i+1,j,k−1(wi+1,j,k−1 − wi,j,k−1) + ω

i−1,j,k−1
i,j,k−1 (wi,j,k−1 − wi−1,j,k−1)

�x(ω
i,j,k

i+1,j,k + ω
i−1,j,k

i,j,k + ω
i,j,k−1
i+1,j,k−1 + ω

i−1,j,k−1
i,j,k−1 )

,

∂w

∂y

∣∣∣∣
i,j,k−1/2

= ω
i,j,k

i,j+1,k(wi,j+1,k − wi,j,k) + ω
i,j−1,k

i,j,k (wi,j,k − wi,j−1,k)

�y(ω
i,j,k

i,j+1,k + ω
i,j−1,k

i,j,k + ω
i,j,k−1
i,j+1,k−1 + ω

i,j−1,k−1
i,j,k−1 )

+ω
i,j,k−1
i,j+1,k−1(wi,j+1,k−1 − wi,j,k−1) + ω

i,j−1,k−1
i,j,k−1 (wi,j,k−1 − wi,j−1,k−1)

�y(ω
i,j,k

i,j+1,k + ω
i,j−1,k

i,j,k + ω
i,j,k−1
i,j+1,k−1 + ω

i,j−1,k−1
i,j,k−1 )

,
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where,

ω
L,M,N
I,J,K =

{
1, sφI,J,K ≥ 0 and sφL,M,N ≥ 0,

0, otherwise
and

s =
{

1, φi,j,k−1 ≥ 0 or φi,j,k ≥ 0,

−1, otherwise.

We may now write the viscous coupling terms as

∂
(
μ∂u

∂y

)
∂x

∣∣∣∣
i,j,k

≈
μi+1/2,j,k

∂u
∂y

∣∣
i+1/2,j,k

− μi−1/2,j,k
∂u
∂y

∣∣
i−1/2,j,k

�x
,

∂
(
μ∂u

∂z

)
∂x

∣∣∣∣
i,j,k

≈
μi+1/2,j,k

∂u
∂z

∣∣
i+1/2,j,k

− μi−1/2,j,k
∂u
∂z

∣∣
i−1/2,j,k

�x
,

∂
(
μ∂ν

∂x

)
∂y

∣∣∣∣
i,j,k

≈
μi,j+1/2,k

∂ν
∂x

∣∣
i,j+1/2,k

− μi,j−1/2,k
∂ν
∂x

∣∣
i,j−1/2,k

�y
,

∂
(
μ∂ν

∂z

)
∂y

∣∣∣∣
i,j,k

≈
μi,j+1/2,k

∂ν
∂z

∣∣
i,j+1/2,k

− μi,j−1/2,k
∂ν
∂z

∣∣
i,j−1/2,k

�y
,

∂
(
μ∂w

∂x

)
∂z

∣∣∣∣
i,j,k

≈
μi,j,k+1/2

∂w
∂x

∣∣
i,j,k+1/2

− μi,j,k−1/2
∂w
∂x

∣∣
i,j,k−1/2

�z
,

∂
(
μ∂w

∂y

)
∂z

∣∣∣∣
i,j,k

≈
μi,j,k+1/2

∂w
∂y

∣∣
i,j,k+1/2

− μi,j,k−1/2
∂w
∂y

∣∣
i,j,k−1/2

�z
.

3.1 Justification for New Method for Discretizing the Viscous Coupling Terms

In Sussman and Ohta [3] the discretization of the coupling terms was done in a manner so
that the gas velocity would not be included in the discretization of the viscous force terms
in the case μG = 0. This restriction sacrificed consistency in the discretization of the cou-
pling terms near the interface. We believe that this inconsistency is the reason why we have
encountered instability for some problems when treating the coupling terms explicitly. In
order to illustrate the problem, and in order to illuminate the reasoning behind our solution,
we refer the reader to Fig. 1. If we were to implement the method described by Sussman and
Ohta [3], one would define the following nodal viscosities:

μi+1/2,j+1/2 = 0, μi+1/2,j−1/2 = μL.

The resulting discretization for the following coupling term ∂(μuy)

∂x
would be,

(
∂(μuy)

∂x

)
≈ (

μi+1/2,j−1/2(uy)i+1/2,j−1/2 + (0)(uy)i+1/2,j+1/2

−μi−1/2,j−1/2(uy)i−1/2,j−1/2 − μi−1/2,j+1/2(uy)i−1/2,j+1/2

)
/2�x. (3.4)

The first two terms of (3.4) combines to be an inconsistent discretization of the quantity,

μL

(
∂u

∂y

)
i+1/2,j

. (3.5)
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Fig. 1 Stencil for calculating the
viscous force term at cell (i, j).
For the zero gas viscosity case,
the quantity in the upper right
hand corner should not be
included but at the same time, the
discretization of the components
of the stress tensor should be
consistent in the limit that the
mesh size goes to zero

The level set function does not change sign between cells (i, j) and (i + 1, j) so one should
consistently define all components of the rate of deformation tensor that are located at the
face (i + 1/2, j). In particular the previous method is off by a factor of two. Instead we
propose the following discretization for the coupling term, ∂(μuy)

∂x
,

∂
(
μ∂u

∂y

)
∂x

∣∣∣∣
i,j

=
μi+1/2,j

(
∂u
∂y

)
i+1/2,j

− μi−1/2,j

(
∂u
∂y

)
i−1/2,j

�x

= μL 1
3

( ui,j −ui,j−1
�y

+ ui+1,j −ui+1,j−1
�y

+ ui,j+1−ui,j

�y

) − μL
( ui,j+1−ui,j−1+ui−1,j+1−ui−1,j−1

4�y

)
�x

. (3.6)

4 Positive Preserving Update of the Configuration Tensor and the Calculation of the
Viscoelastic Force Term

The equation for the configuration tensor,

∂A
∂t

+ u · ∇A = A · (∇u)T + ∇u · A − f (R)

λ
(A − I),

is solved in the following steps:

1. A∗
i,j = An(�x − �u�t). (4.1)

Equation (4.1) corresponds to a semi-Lagrangian approach in which we use linear in-
terpolation in order to evaluate An(�x − �u�t). Linear interpolation guarantees that A∗ is
positive definite if An is.

2. A∗∗
i,j = SA∗

i,j S
T , S = I + �t[∇UL]ni,j .

3.

An+1
i,j = �t

f (R)

λ

1 + �t
f (R)

λ

I + 1

1 + �t
f (R)

λ

A∗∗
i,j .

4. Extrapolate An+1
i,j from the liquid regions (φi,j ≥ 0) into the gas regions (φi,j < 0) us-

ing “constant” extrapolation. The extrapolation is carried out by overwriting An+1
i,j in a
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gas cell with the corresponding value from the nearest liquid cell. Constant extrapola-
tion guarantees that the extrapolated configuration tensor remains positive definite if the
original was positive definite as well.

The viscoelastic force term, ∇ · ( η̃P

λ
f (R)A), is calculated in the following steps:

(a) extrapolate the tensor, Bi,j = η̃P

λ
f (R)i,jAi,j , from cell centers to cell faces. E.g.

Bi+1/2,j = (η̃p)i+1/2,j

λ

(f (R)A)i+1,j + (f (R)A)i,j

2
, where

(η̃P )i+1/2,j =
{

ηP , φi+1,j ≥ 0 and φi,j ≥ 0,

0, otherwise.

(b) The components of the viscoelastic force vector are then written as:

(Lviscoelastic
i,j )γ = (Bi+1/2,j )γ,1 − (Bi−1/2,j )γ,1

�x
+ (Bi,j+1/2)γ,2 − (Bi,j−1/2)γ,2

�y
.

4.1 Proof of the Positive Definite Preserving Property for the Configuration Tensor
Update Step

Each of the steps one thru four in Sect. 4 above preserves the configuration tensor as a
positive definite symmetric matrix. This fact can be proved so long as the following stability
constraint is satisfied,

�t <
1

2d

�x

max |U | , (4.2)

where d is the dimension of the problem (2 or 3). We first consider step 1 above. Without
loss of generality, we consider step 1 (4.1) in one dimension with positive velocity u. Then
one has

A∗
i = An(x − u�t) = u�t

�x
An

i−1 +
(

1 − u�t

�x

)
An

i . (4.3)

The stability constraint (4.2) insures that the coefficients of A in (4.3) are positive which in
turn insures that A∗ is positive definite symmetric since the linear combination of positive
definite symmetric matrices, with positive coefficients, is also positive definite symmetric.
In step 2 of Sect. 4 above, the stability constraint (4.2) insures that the matrix,

S = I + �t[∇UL]ni,j ,

is nonsingular. Since S is nonsingular, and A∗ is positive definite symmetric, this implies that
the matrix A∗∗ = SA∗ST is also a positive definite symmetric matrix. In step 3 of Sect. 4
above, we have the linear combination of two positive definite symmetric matrices, with
positive coefficients, which insures that An+1 is also positive definite symmetric. Finally,
the extrapolation step (step 4) preserves the extrapolated values of An+1 as positive definite
symmetric since we are implementing a piecewise constant extrapolation algorithm. We note
that for our choice of f (R) in (1.2), we have to treat the special case when trace(A) ≥ L2; in
this case we assume a relaxation time of zero and therefore replace the configuration tensor
Awith the identity matrix I .
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5 Matrix Solver

The equations resulting from the calculations of the viscous force terms or the pressure
projection steps can be written generally as,

α(x)p + β∇ · (A(x, y)∇p) = f (x, y) + α(x)q + β∇ · V, (5.1)

where A is a diagonal matrix. We discretize (5.1) as,

αijpijβ(DGp)ij = fij + αij qij + β(DV )ij , (5.2)

where

(Gp)i+1/2,j = (A11)i+1/2,j

pi+1,j − pij

�x
, (Gp)i,j+1/2 = (A22)i,j+1/2

pi,j+1 − pij

�y
,

(DV )i,j = ui+1/2,j − ui−1/2,j

�x
+ νi,j+1/2 − νi,j−1/2

�y
.

We solve (5.2) with a combination of the multigrid method and the mutligrid preconditioned
conjugate gradient method (MGPCG) [21]. The adaptive composite solver will converge to
any specified tolerance ε, as long as we compute the solution on each level (using MGPCG)
to a tolerance of ε × 10−2 each time the outer multigrid solver visits a level. Our Multi-
grid+MGPCG algorithm for solving (5.2) follows the same “V-cycle” procedure as outlined
by Briggs, et al. [22]:

Put (5.2) in residual correction form:
For l = 0 . . . lmax

V l = V l − Gpl
predict

ql = ql − pl
predict

pl = pl
predict

EndFor

Then, call recursive subroutine MV(l):

subroutine MV(l)
1. if l < lmax then restrict V l+1 to level l

2. Rl = f l + αql + βDV l

3. if l < lmax then restrict Rl+1 to level l

4. V l
save = V l, ql

save = ql,Rl
save = Rl

5. pl
cor = 0

6. Iterate until the residual on level l is less than the tolerance ε × 10−2.
Iterate using MGPCG,

αpl
cor + βDGpl

cor = Rl
save

7. Rl = Rl
save − αpl

cor − βDGpl
cor, V l = V l − Gp1

cor, ql = ql − pl
cor

8. if l > 0 then

{
call MV (l − 1)

prolongate pl−1
cor to level l, pl

cor = pl
cor + I l

l−1p
l−1
cor

9. Iterate until the residual on level l is less than the tolerance ε × 10−2.
Iterate using MGPCG,

αpl
cor + βDGpl

cor = Rl
save

10. V l = V l
save − Gpl

cor, ql = ql
save − pl

cor, pl = pl + pl
cor
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6 Overall Numerical Algorithm for Two-Phase Viscoelastic/Viscous Flow

Prior to each time step, we are given a liquid velocity, UL,n, and a total velocity Un. UL,n

corresponds to Un except on gas faces, where we replace the gas velocity in UL,n with the
extrapolated liquid velocity. UL,n is then used to calculate the nonlinear advective terms in
the liquid and also used to advance the free surface.

Prior to each time step, we are also given a level set function, ϕn and a volume-of-
fluid function Fn. The level set function and the volume-of-fluid function are stored at cell
centers. The velocity is stored at both cell centers and face-centers.

An outline of our numerical algorithm is as follows:

1. CLSVOF; interface advection [1]:

ϕn+1
ij = ϕn

ij − �t[UL · ∇φ]ij , F n+1
ij = Fn

ij − �t[UL · ∇F ]ij .
2. Calculate (cell centered) advective force terms:

AL
ij = [UL · ∇UL]nij , Aij = [U · ∇U ]nij .

The nonlinear advective terms are discretized using upwind, second order Van-Leer slop
limiting [1, 23].

3. Update the configuration tensor (viscoelastic flows):

An+1
i,j = �t

f (R)

λ
I + (SAn(�x − �u�t)ST )i,j

1 + �t
f (R)

λ

, S = I + �t∇U. (6.1)

Please see Sect. 4 for details that describe the discretization of (6.1).
4. Calculate (cell centered) semi-implicit viscous forces and explicit viscoelastic forces:

Un
i,j =

{
U

L,n
i,j , φi,j ≥ 0,

Un
i,j , φi,j < 0,

Aij =
{

AL
i,j , φi,j ≥ 0,

Ai,j , φi,j < 0,

U ∗
i,j = Un

i,j + �t(−Ai,j + Lviscoelastic
i,j + gẑ),

ρ
U ∗∗ − U ∗

�t
= L∗∗,uncoupled + L∗,uncoupled.

The term L∗∗,uncoupled represents the uncoupled viscous force terms which are handled
implicitly, and the term L∗,coupled represents the coupled viscous force terms which are
handled explicitly.

5. Interpolate cell centered forces to face centered forces and calculate the face centered
surface tension force:

Vi+1/2,j = Un
i+1/2,j + �t

(
−Ai+1/2,j + 2

ρi+1,j + ρi,j

(Li+1/2,j + Lviscoelastic
i+1/2,j )

−
[

σκ∇H

ρ

]
i+1/2,j

+ gẑ

)
.

The Surface tension term,
σκi+1/2,j (∇H)i+1/2,j

ρi+1/2,j
, is discretized as

σκi+1/2,j
H(φi+1,j )−H(φi,j )

ρi+1/2,j �x
, where H(φ) =

{
1, φ ≥ 0,

0, φ < 0,
and

ρi+1/2,j = ρLθi+1/2,j + ρG(1 − θi+1/2,j ).
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Table 1 Comparison of
computational results with
analytical solution for Re � 1

Previous New

Computational Re number 0.0524 0.0524

Analytical solution by Hadamard-Rybczynski 0.0534 0.0534

The discretization of the height fraction θi+1/2,j is described by (3.2). The curvature
κi+1/2,j is computed with second-order accuracy directly from the volume fractions as
described in [24] or [1].

6. Implicit pressure projection step:

∇ · ∇p

ρ
= ∇ · V, Un+1

i+1/2,j = Vi+1/2,j −
[∇p

ρ

]
i+1/2,j

.

We solve the resulting linear system using a composite solver for an adaptive hierarchy
of grids [25] (see also Sect. 5).

7. Liquid velocity extrapolation; assign U
L,n+1
i+1/2,j = Un+1

i+1/2,j and then extrapolate U
L,n+1
i+1/2,j

into the gas region.
8. Interpolate face centered velocity to cell centered velocity:

U
L,n+1
i,j = 1

2

(
U

L,n+1
i+1/2,j + U

L,n+1
i−1/2,j

)
, Un+1

i,j = 1

2

(
Un+1

i+1/2,j + Un+1
i−1/2,j

)
.

7 Results

7.1 Spherical Bubble or Drop with Dominant Viscous Effects and Large Viscosity Jump:
Comparison with Analytical and Experimental Results

For a spherical bubble, drop and particle freely moving relative to a fluid of infinite ex-
tent with a steady velocity with Re � 1.0, the analytical solution derived by Hadamard-
Rybczynsk [26, 27] is well-known as follows:

Re = Eo1.5

6M0.5

(
1 + κ

2 + 3κ

)
. (7.1)

Here, Eo is the Eotvos number, M denotes the Morton number and κ(= μD/μC) is the vis-
cosity ratio. Equation (7.1) reduces to Re = Eo1.5

12M0.5 as κ → 0 and becomes Eo1.5

18M0.5 for κ → ∞.
We show results for a spherical bubble with low Reynolds number. The computational con-
dition is logM = 2.85,Eo = 8.67 which is an experimental condition performed by Bhaga
and Weber [28]. Although they examined bubble rise dynamics, in this computation, we
changed to a density ratio λ (= ρD/ρC) = 0.95 and κ = 100 to clearly specify a problem
with a large viscosity jump. The numerical simulations were performed on a 3-d axisym-
metric computational domain with a domain length of R = 4D (r-direction) and a domain
height of Z = 6D (z-direction). In the computation, one mesh size on the finest level grid
was set to �x = 0.0104 in terms of the dimensionless bubble/drop diameter (D = 1.0).
Comparison of computational results with analytical solution is indicated in Table 1. The er-
ror between our computational results and analytical solution is only about 2%. We reiterate
that the fluid properties for this problem exhibit very large viscosity.
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Fig. 2 Left: previous method,
right: present method,
logM = 2.93, Eo = 116

We then recomputed the previous example (λ = 0.95, κ = 100), except with logM =
2.93 and Eo = 116; this test was also performed by Bhaga and Weber [28]. Figure 2 shows
a comparison of results using our previous method from [3] and the new methodology de-
scribed in this paper. Computational conditions are the same as the case for low Re number.
In Fig. 2, the left side is the previous method and the right side corresponds to the new
method.

7.2 Drop Formation in a Miscible Viscous Liquid

Figure 3 corresponds to the drop formation process in a miscible viscous liquid. Bright [29]
injected n-decane into water from a submerged nozzle with d = 1.6 X 10−3 m, and he inves-
tigated the drop formation process in the system (λ = 0.7327 and κ = 0.90). Richards et al.
[30] numerically calculated the Bright’s experimental result on the drop formation process
using the SOLA-VOF method [31] with the continuum surface force (CFS) model [32].
In their computation, Richards et al. [30] used the value of the interfacial tension experi-
mentally estimated by Johnson and Dettre [33] instead of the interfacial tension measured
by Bright [29]. Our computational conditions for the physical properties follow the paper of
Richards et al. [30]. The computations were carried out in a 3-d axisymmetric computational
domain with a domain length of R = 16d (r-direction) and a domain height of Z = 32d (z-
direction). Also, one mesh size on the finest level grid was �x = 0.0125 in terms of the
dimensionless diameter of nozzle (= 1.0). In Fig. 3, the left side is the previous method [3]
and the right side corresponds to the new method. We have confirmed that the appearance
of the drop formation reproduced numerically agrees with the experimental result.

7.3 Bubble Formation; Injection of High Speed Gas into Liquid

In test problems with fluids that have a large viscosity, such as the test problem described
in Sect. 7.1 above, a fully implicit treatment of the coupled viscous terms would lead to
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Fig. 3 Drop formation in a
viscous liquid. Left: old method,
right: new method

Table 2 Grid resolution study for bubble formation problem. Relative errors are displayed. Inflow velocity
is 0.9 m/s; density ratio = 1015, viscosity ratio = 70000

Eff. Grid Resolution 64 × 128 128 × 256 256 × 512

Interface Error 0.74 0.45

Gas Velocity Error 1.44 0.65

a matrix system that could not be solved via a standard matrix iterative approach. On the
other hand we have found that, for the bubble formation problem, the explicit treatment of
the viscous coupling terms, as described by [3], leads to instabilities. Here, we perform a
grid refinement study using our new approach for a problem that we had previously failed to
compute using the approach described in [3]. The physical properties of the system, together
with the inflow velocity condition, are given by the following dimensionless quantities,

ReG = ρGV d

μG

= 99.2, WeG = ρGV 2d

σ
= 0.024, Fr = V 2

gd
= 46.6,

ρL

ρG

= 1015,
μL

μG

= 70000.

The relative errors in Table 1 indicate that we have first order convergence for this problem
using our new treatment for the viscous coupling terms.
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Fig. 4 Bubble formation,
left:64 × 128, middle: 1 level of
adaptivity, right: 2 levels of
adaptivity; inflow velocity is
0.9 m/s; density ratio = 1015,
viscosity ratio = 70000

Fig. 5 Computational setup; dynamic adaptive gridding used around the viscoelastic bubble

7.3.1 Viscoelastic Bubbles

We consider a gas-liquid system with the physical properties defined by the Morton num-
ber M (= gη4

S(ρS − ρG)/ρ2
Sσ

3) = 78, the density ratio ρS/ρG = 845 and the viscosity ra-
tio ηS/ηG = 55000. We shall investigate the effect of FENE–CR model parameters given
these physical properties. The computational domain for the 2d-axisymmetric computa-
tions is shown schematically in Fig. 5. In terms of the dimensionless diameter of bubble
d = 1.0, the computational domain has an r-directional dimensionless length R = 3.0 and
a z-directional dimensionless height H = 7.5. In our computations, as initial conditions,
a spherical bubble was artificially imposed at H = 4.5. The physical boundary conditions
were as follows: inflow at the top wall, outflow boundaries at the bottom and right walls,
and reflecting boundary conditions at the axisymmetric center (r = 0).
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Fig. 6 Bubble shapes depending
on the Deborah number

Fig. 7 Left: transient dynamics of bubble for L = 20, c = 0.1, De = 5.0. Right: distribution of tr(A) for
Eo = 19.6, L = 10, c = 0.1, De = 5.0

Figure 5 is a schematic drawing of the AMR system. The left side of Fig. 5 shows an
example of the grid structure and the right side of Fig. 5 shows a computational example
of a 2d-axisymmetric bubble rising. The mesh hierarchy is composed of different levels of
refinement ranging from coarsest (� = 0, we label as “Level 0”.) to finest (� = �max), and
the refinement ratio between levels is 2; i.e. �x�+1 = 0.5�x�. In Fig. 5, five levels (Level
0–4) are indicated. In the computations, one mesh size on the finest adaptive level �xfine

was about 0.0078 in terms of d = 1.0. The value �xfine = 0.0078 was adopted as a result
of a mesh refinement study for the stiffest flow condition. This means there are (effectively)
about 85 cells per bubble diameter.

Figure 6 shows bubble shapes depending on the Deborah number De (= V λ/D, V : char-
acteristic velocity (bubble rise speed), D: bubble diameter). The upper figures are obtained
under the condition of the Eötvös number Eo (= g(ρS −ρG)D2/σ) = 19.6, L = 5.0, c = 0.1
and the lower figures use Eo = 78.3,L = 10.0, c = 0.1. As a basis of comparison, the re-
sults for the corresponding Newtonian bubble are indicated together with the viscoelastic
results. For the largest De number, bubbles have the well-known sharp cusp-like trailing
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edge. Especially, regardless of the largely dimpled Newtonian bubble for Eo = 78.3, it is
surprising that the bubble for L = 10.0, c = 0.1,De = 5.0 has a very long sharp cusp. This
result indicates that our computational method can capture largely deformed shapes having
large curvature. It is verified that viscoelastic effects (cusp shape) emerge notably as the De
number becomes larger. Noh et al. [34] gave good physical explanations about the effect of
the parameters of the FENE–CR model, and our results support their observations. Figure 7
shows transient dynamics of bubble motion for the condition of L = 20, c = 0.1,De = 5.0.
In this case, the bubble trailing edge is pulled out due to the strong viscoelastic effect (vis-
coelastic stress). Consequently, the pulling motion leads to the local breakup of the bubble at
the trailing edge. As an example of the tr(A) profile, the distribution of tr(A) for Eo = 19.6,
L = 10, c = 0.1,De = 5.0 is shown as well in Fig. 7. tr(A) is a measure of the degree of
polymer extension. In Fig. 7, a contour plot of tr(A) is shown in which 40 contours are plot-
ted ranging from the maximum trace (tr(A) = 95.0) to the minimum trace (tr(A) = 3.0). The
outer contour corresponds to the minimum value. As is clear in Fig. 7, the value of tr(A) is
relatively large near the interface and that the local maximums of tr(A) are near the top and
bottom surfaces. Due to these viscoelastic stresses, it can be recognized that the trailing cusp
at the bottom is formed and the vertical bubble length increases.

8 Conclusions

We have tested two improvements for discretizing the viscosity force terms, and viscoelas-
tic force terms as they appear in the Navier-Stokes equations for two-phase flows. These
improvements preserve the property of our sharp interface approach in that solutions of the
two-phase problem approach solutions of the corresponding one-phase problem in the limit
of zero gas density and zero gas viscosity. These two improvements enable us to robustly
calculate viscous and viscoelastic two-phase flows over a very large range of physical prop-
erties of the flow. For example, in Sect. 7.1 we have validated our approach for problems
where Re � 1. In Sect. 7.3, we validated our new approach for a bubble formation prob-
lem with a relatively large Reynolds number: ReG = 99.2. The method described by [3]
becomes unstable for the bubble formation problem. As illustrated by Fig. 3 and Fig. 7, our
coupled level-set and volume-of-fluid approach for representing and updating the interface
can accurately handle sharp corners, and changes in interface topology.
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