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Abstract

We present a sharp interface method for computing incompressible immiscible
two-phase flows. It couples the Level-Set and Volume-of-Fluid techniques and retains
their advantages while overcoming their weaknesses. It is stable and robust even for
large density and viscosity ratios on the order of 1000 to 1. The numerical method is
an extension of the second-order method presented by Sussman (2003) in which the
previous method treated the gas pressure as spatially constant and the present method
treats the gas as a second incompressible fluid. The new method yields solutions in
the zero gas density limit which are comparable in accuracy to the method in which
the gas pressure was treated as spatially constant. This improvement in accuracy
allows one to compute accurate solutions on relatively coarse grids, thereby providing
a speed-up over continuum or “ghost-fluid” methods.
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1 Introduction

Efficient and accurate computation of incompressible two-phase flow problems has
enormous value in numerous scientific and industrial applications. Applications in-
clude ship hydrodynamics, viscoelastic free surface flows, and liquid jets [10, 14, 15,
48, 36]. Current methods for the “robust”computation of immiscible two-phase flows
[51, 50, 9, 53, 32, 26, 20, 18] are all essentially spatially first-order accurate as the
treatment of the interfacial jump conditions constrains the overall accuracy to first-
order. Robustness is defined in terms of the ability of a numerical method to stably
handle wide ranges of physical and geometrical parameters. We note that Hellen-
brook et al. [21] developed a formally second-order level set method for two-phase
flows, but the applications did not include large density ratios, surface tension, or
complex geometries. It is unlikely that a straightforward application is possible to
flow configurations with such wide parameter ranges. We also note that Ye et al.
[60] presented a second-order Cartesian grid/front tracking method for two-phase
flows, but their results did not include complex geometries. Yang and Prosperetti[57]
presented a second-order boundary-fitted tracking method for “single-phase” (free
boundary problem) flows, but similarly as with Ye et al.[60], their results did not
include complex geometries.

Although the formal order of accuracy of continuum approaches [53, 9, 51, 38, 29]
or ghost-fluid approaches [26, 28] is second-order, numerical dissipation at the free
surface reduces the order to first-order. We propose a new method which extends the
functionality of the method discussed in [45] from single-phase (pressure assumed spa-
tially constant in the air) to multiphase (gas solution assumed incompressible). The
resulting matrix system(s) are symmetric, guaranteeing robustness of the method,
and are capable of stably handling wide parameter ranges (e.g., density ratio 1000:1,
large Reynolds number) and geometries (e.g., topological merging and breaking). The
method is consistent in that it captures the limiting cases of zero gas density and lin-
ear slip lines. Specifically, the present method reduces to the single fluid method [45]
in the limit that the gas density and gas viscosity approach zero (i.e.,the numerical
solution of the gas phase approaches the condition of spatially constant pressure as
the gas density approaches zero). The present method provides additional function-
ality over single fluid methods since one can accurately compute bubble entrainment,
bubble formation, effect of wind on water, liquid jets, etc. Further, we demonstrate
that the present method provides improved accuracy over existing two-fluid methods
for a given grid, and provides a speed-up over existing methods for a given accuracy,
as we can robustly compute flows on coarser meshes.
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2 Governing Equations

We consider the incompressible flows of two immiscible fluids (such as liquid/liquid
or liquid/gas), governed by the Navier-Stokes equations,

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ

∇ · U = 0,

where U is the velocity vector, ρ is the density, p is the pressure, µ is the coefficient
of viscosity, g is the gravity, I is the unit tensor, ẑ is the unit vector in the vertical
direction, and D is the deformation tensor defined by

D =
∇U + (∇U)T

2
.

At the interface, Γ, separating the two fluids, we have the normal continuity condition
for velocity,

[U · n] ≡ UL · n − UG · n = 0,

we also have the tangential continuity condition for velocity (if viscous effects are
present),

[U ] = 0,

and the jump condition for stress,

[n · (−pI + 2µD) · n] = σκ,

where n is the unit normal to the interface, σ is the coefficient of surface tension and
κ is the local curvature.

Following the derivation in [12], we can rewrite the preceding governing equations
in terms of the following equations based on the level set function φ. In other words,
analytical solutions to the following level set equations are also solutions to the orig-
inal governing Navier-Stokes equations for two-phase flow. Our resulting numerical
method will be based on the level set formulation.

If one defines the interface Γ as the zero level set of a smooth level set function, φ,
then the resulting equations are:

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ − σκ∇H (1)

∇ · U = 0

Dφ

Dt
= 0 (2)
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ρ = ρLH(φ) + ρG(1 −H(φ))

µ = µLH(φ) + µG(1 −H(φ))

κ(φ) = ∇ · ∇φ
|∇φ| (3)

H(φ) =

{
1 φ ≥ 0
0 φ < 0

(4)

3 CLSVOF free surface representation

The free surface is represented by a “coupled level set and volume-of-fluid” (CLSVOF)
method[50]. In addition to solving the level set equation (2), we also solve the fol-
lowing equation for the volume-of-fluid function F ,

DF

Dt
= Ft + U · ∇F = 0. (5)

(5) is equivalent to,

Ft + ∇ · (UF ) = (∇ · U)F

Since ∇ · U = 0, we have,

Ft + ∇ · (UF ) = 0. (6)

At t = 0, F is initialized in each computational cell Ωij ,

Ωij = {(x, y)|xi ≤ x ≤ xi+1 and yj ≤ y ≤ yj+1} ,
as,

Fij =
1

∆x∆y

∫
Ωij

H(φ(x, y, 0))dxdy.

Here, ∆x = xi+1 − xi and ∆y = yi+1 − yi.

The reasons why we couple the level set method to the volume-of-fluid method are
as follows:

• If one discretizes the level set equation (2), even in conservation form, the
volume enclosed by the zero level set will not be conserved. This problem has
been addressed by implementing global mass fixes [12], augmenting the level
set equation by advecting massless particles [16, 24], implementing adaptive
mesh refinement techniques [43, 47], and by implementing high order “spectral”
methods [49, 30]. In this paper, we preserve mass by coupling the level set
method to the volume-of-fluid method[8, 50, 58]; effectively, by coupling the
two, we are implementing a “local” mass fix instead of a “global” mass fix. The
volume-of-fluid function F is used to “correct” the mass enclosed by the zero
level set of φ during the level set redistancing step (see Figure 1).
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• If one uses only the volume-of-fluid function F to represent the interface sepa-
rating air and water, then one must be able to accurately extract the normal
and curvature from F . Also, small pieces of volume might separate from the free
surface which can pollute the solution for the velocity. Modern volume-of-fluid
methods have addressed these problems [33, 22, 18] using second-order slope
reconstruction techniques and calculating the curvature either from a “height
fraction” or from a temporary level set function. The level set function in our
implementation is used for calculating the interface normal and is used for cal-
culating density and viscosity used by the Navier-Stokes equation. The level
set function is not used for calculating the interface curvature; instead we use
the volume-of-fluid function.

To clarify what information we extract from the level set function φ, and what
information we extract from the volume-of-fluid function F , we have:

• The normals used in the volume-of-fluid reconstruction step are determined
from the level set function (see e.g. Figure 2).

• The “height fraction” (see section 5.3) and velocity extrapolation calculations
(see section 5.6) both depend on the level set function. Therefore, cells in which
F is very close to either 0 or 1 will not directly effect the accuracy of the solution
to the momentum equations.

• The volume fractions are used, together with the slopes from the level set func-
tion, to construct a “volume-preserving” distance function along with providing
“closest point” information to the zero level set (see Figure 1).

• The volume fractions are used to express the interfacial curvature to second-
order accuracy (see Section 8.2). We do not use the level set function for
finding the curvature because our level set reinitialization step is only second-
order accurate; the curvature as computed from the level set function will not
provide the second-order accuracy that is provided directly from the volume
fractions.

We observe that there are possibly more accurate representations of the interface
[49, 41, 16, 4, 3, 40]. However, it must be noted that the accuracy of the computa-
tions is limited by the order of accuracy of the treatment of the interfacial boundary
conditions and not by the accuracy of the interface representation. Even if the inter-
face representation is exact, if the velocity used to advance the interface is low order
accurate, then the overall accuracy is constrained by the accuracy at which the veloc-
ity field (specifically, the velocity field at the interface) is computed. Our results in
Sections 6.3 and 6.4 support this hypothesis. We demonstrate second-order accuracy
for interfacial flows in which only first-order methods have been previously applied.
We also show that we conserve mass to a fraction of a percent in our computations
(e.g. largest mass fluctuation on coarsest grid in section 6.3 was 0.08%).
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When implementing the CLSVOF method, the discrete level set function φn
ij and

discrete volume fraction function F n
ij are located at cell centers. The motion of the

free surface is determined by the face centered velocities, ui+1/2,j and vi,j+1/2, which
are derived from the momentum equation. A scalar quantity with the subscript ij
implies that the quantity lives at the cell center (xi, yj),

xi = xlo + (i+ 1/2)∆x

yj = ylo + (j + 1/2)∆y.

A scalar quantity with the subscript i + 1/2, j implies that the quantity lives at the
right face center of cell ij,

xi+1/2 = xlo + (i+ 1)∆x

yj = ylo + (j + 1/2)∆y.

A scalar quantity with the subscript i, j + 1/2 implies that the quantity lives at the
top face center of cell ij,

xi = xlo + (i+ 1/2)∆x

yj+1/2 = ylo + (j + 1)∆y.

A vector quantity with the subscript i, j + 1/2 implies that the first component lives
at the right face center of a cell, (xi+1/2, yj), and that the second component lives at
the top face center of a cell, (xi, yj+1/2). A diagram illustrating where our discrete
variables live is shown in Figure 3.

The discrete face centered velocity field is assumed to satisfy the discrete continuity
condition at every point in the liquid (φij ≥ 0):

(DivU)ij =
ui+ 1

2
,j − ui− 1

2
,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y
= 0. (7)

To integrate the solution for both the level set function φ and the volume-of-fluid
function F , we first simultaneously solve (6) and (2). Then, we reinitialize φ by
constructing a distance function that shares the same enclosed volume as determined
from F , and the same slopes as determined from φ.

Both the level set equation and the volume-of-fluid equation are discretized in time
using second-order “Strang splitting”[44] where for one time step we sweep in the x
direction then the y direction, then for the next time step, we sweep in the y direction,
then the x direction. Assuming that the advective velocity is independent of time,
this procedure is equivalent to solving for the x direction terms for ∆t time, solving
y direction terms for 2∆t time, then solving for the x direction terms again for ∆t
time.

8



The spatial operators are split, where one alternates between sweeping in the x
direction:

F ∗
ij − F n

ij

∆t
+
ui+1/2,jF

n
i+1/2,j − ui−1/2,jF

n
i−1/2,j

∆x
= F ∗

ij

ui+1/2,j − ui−1/2,j

∆x
(8)

φ∗
ij − φn

ij

∆t
+
ui+1/2,jφ

n
i+1/2,j − ui−1/2,jφ

n
i−1/2,j

∆x
= φ∗

ij

ui+1/2,j − ui−1/2,j

∆x
,

and in the y direction:

F n+1
ij − F ∗

ij

∆t
+
vi,j+1/2F

∗
i,j+1/2 − vi,j−1/2F

∗
i,j−1/2

∆y
= F ∗

ij

vi,j+1/2 − vi,j−1/2

∆y
(9)

φn+1
ij − φ∗

ij

∆t
+
vi,j+1/2φ

∗
i,j+1/2 − vi,j−1/2φ

∗
i,j−1/2

∆y
= φ∗

ij

vi,j+1/2 − vi,j−1/2

∆y
.

The volume-of-fluid fluxes, Fi+1/2,j and Fi,j+1/2, are calculated as the fraction of liquid
fluid to the overall fluid that is advected across a given cell face during a timestep (see
Figure 2). The level set fluxes, φi+1/2,j and φi,j+1/2 are calculated by extrapolating
the level set function in space and time to get a time-centered flux at given cell faces.
Details are presented in [50, 45].

If we add (8) to (9), then we have,

F n+1
ij − F n

ij

∆t
+

ui+1/2,jF
n
i+1/2,j − ui−1/2,jF

n
i−1/2,j

∆x

+
vi,j+1/2F

∗
i,j+1/2 − vi,j−1/2F

∗
i,j−1/2

∆y

= F ∗
ij(
ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆y
) (10)

If the right hand side of (10) is zero, then F shall be conserved since the left hand side
of (10) is written in conservation form. In other words, if the discrete divergence free
condition (7) is satisfied, then we have mass conservation. A key distinction between
the two-phase algorithm we present here and previous sharp interface methods is that
solutions derived from our method will approach the solutions of the corresponding
one-phase method in the limit that the vapor is assumed to have uniform pressure.
In order to achieve this goal, we implement a liquid velocity extrapolation procedure
in which we extrapolate the liquid velocities into the gas (therefore, we shall store
two separate velocity fields). The extrapolated liquid velocity may not satisfy (7) in
vapor cells (φij < 0). In order to maintain conservation of F , we have the additional
step,

F n+1
ij = F n+1

ij − ∆tF ∗
ij

(
ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆y

)
(11)
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The resulting advection procedure for F now becomes,

F n+1
ij − F n

ij

∆t
+

ui+1/2,jF
n
i+1/2,j − ui−1/2,jF

n
i−1/2,j

∆x

+
vi,j+1/2F

∗
i,j+1/2 − vi,j−1/2F

∗
i,j−1/2

∆y
= 0

We remark that in [45], we required that Equation (7) hold in both liquid cells
(φij ≥ 0) and extrapolated cells; this requirement necessitated an “extrapolation
projection” step. In this work, we relax this condition and instead use (11).

4 Temporal discretization: Crank-Nicolson/TVD

Runge-Kutta, Projection method

Our temporal discretization procedure for approximating Equation (1) is based on
a combination of the Crank-Nicolson projection procedure (see e.g., [5, 6]) for the
viscous terms and the second-order TVD preserving Runge-Kutta procedure [42] for
the nonlinear advective terms.

Our method follows loosely the outline below,

sweep 1

Un+1,(0) = Un + ∆tF (Un) + ∆t
G(Un) +G(Un+1,(0))

2
− ∆tGradP n (12)

sweep 2

Un+1,(1) = Un + ∆tF (Un+1,(0)) + ∆t
G(Un) +G(Un+1,(1))

2
− ∆tGradP n+1

Un+1 =
Un+1,(0) + Un+1,(1)

2
, (13)

where F corresponds to the nonlinear advective terms, G corresponds to the viscous
terms and GradP corresponds to the pressure gradient term. To be more specific, we
describe one sweep of our method below.

Prior to each timestep we are given a liquid velocity, UL,n, and a total velocity
Un. The main distinction between our method and previous sharp interface methods
is that we store UL,n in addition to storing Un. In a given time step, immediately
after solving for Un+1, we construct UL,n+1,

uL
i+1/2,j =

{
ui+1/2,j φij ≥ 0 or φi+1,j ≥ 0

uextrapolate
i+1/2,j otherwise
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In other words, UL corresponds to U except on gas faces, where we replace the gas
velocity in UL with the extrapolated liquid velocity. UL is then used to calculate the
nonlinear advective terms in the liquid, and also used to advance the free surface.

Prior to each time step, we are also given a “live pressure gradient,”

GradP n ≈
(∇p+ σκ∇H

ρ

)n

,

a level set function, φn, and a volume-of-fluid function, F n. The “live pressure gradi-
ent,” level set function, and volume-of-fluid function are stored at cell centers. The
velocity is stored at both cell centers and face-centers. As previously noted in section
3, the subscript ij refers to the center of a computational cell, the subscript i+1/2, j
refers to the right face center of a cell, and the subscript i, j + 1/2 refers to the top
face center of a cell. A vector quantity with the subscript i+ 1/2, j implies that the
first component lives at the right face center of a cell and the second component lives
at the top face center of a cell.

A representative outline of one sweep of our (two-phase) method follows as:

step 1: CLSVOF [50, 45] interface advection:

φn+1
ij = φn

ij − ∆t[UL · ∇φ]ij

F n+1
ij = F n

ij − ∆t[UL · ∇F ]ij

step 2: Calculate (cell centered) advective force terms:

AL
ij = [UL · ∇UL]nij

Aij = [U · ∇U ]nij

Details for the calculation of these terms are presented in Section 5.1 below.

step 3: Calculate (cell centered, semi-implicit) viscous forces:

Un
ij =

{
UL,n

ij φij ≥ 0
Un

ij φij < 0

Aij =

{ AL
ij φij ≥ 0

Aij φij < 0

ρij =

{
ρL φij ≥ 0
ρG φij < 0

U ∗
ij − Un

ij

∆t
= −Aij + gẑ −GradP n

ij +
1

ρij

L∗
ij + Ln

ij

2
. (14)

The discrete operator L is a second-order approximation to ∇·2µD (see Section
5.4).
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step 4: Interpolate cell centered forces to face centered forces:

AL
i+1/2,j =

1

2
(AL

i+1,j + AL
i,j)

Ai+1/2,j =
1

2
(Ai+1,j + Ai,j)

Ai+1/2,j =

{ AL
i+1/2,j φij ≥ 0 or φi+1,j ≥ 0

Ai+1/2,j otherwise

Li+1/2,j =
1

4
(L∗

ij + Ln
ij + L∗

i+1,j + Ln
i+1,j)

Un
i+1/2,j =

{
UL,n

i+1/2,j φij ≥ 0 or φi+1,j ≥ 0

Un
i+1/2,j otherwise

V i+1/2,j = Un
i+1/2,j + ∆t

(
−Ai+1/2,j +

2

ρi+1,j + ρi,j
Li+1/2,j − [

σκ∇H
ρ

]i+1/2,j + gẑ

)
(15)

See Section 5.2 for steps to discretize the surface tension force 1
ρ
σκ∇H .

step 5: Implicit pressure projection step:

∇ · ∇p
ρ

= ∇ · V (16)

Un+1
i+1/2,j = V − [

∇p
ρ

]i+1/2,j

Section 5.5 provides the spatial discretization associated with the implicit pres-
sure projection step. We solve the resulting linear system using the multigrid
preconditioned conjugate gradient method (MGPCG) [52].

step 6: Liquid velocity extrapolation; assign UL,n+1
i+1/2,j = Un+1

i+1/2,j and then extrapo-

late UL,n+1
i+1/2,j into the gas region (see Section 5.6).

step 7: Interpolate face centered velocity to cell centered velocity:

UL,n+1
ij =

1

2
(UL,n+1

i+1/2,j + UL,n+1
i−1/2,j)

Un+1
ij =

1

2
(Un+1

i+1/2,j + Un+1
i−1/2,j)
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step 8: Update the cell centered “live” pressure gradient term,

GradP n+1
ij =

U ∗
ij − Un+1

ij

∆t
+GradP n

ij

Often in this paper, we shall compare the “two-phase” algorithm just described,
to the corresponding “one-phase” algorithm. So, in the appendix (Section 8.1) we
describe the “one-phase” equations and algorithm.

Remarks:

• At the very first time step, we initialize

GradP 0 ≡ GradP 0(0) ≡ 0,

then we do five iterations of the Crank-Nicolson/Runge Kutta procedure (12. . . 13)
in order to initialize an appropriate cell centered pressure gradient,

GradP 0 = GradP 0(5).

We have found empirically that the cell centered pressure gradient term suffi-
ciently converges after 5 sweeps. For example, for the very first time step for
the problem of the break-up of a cylindrical jet due to surface tension (section
6.5), the relative error in the magnitude of GradP 0(5) is 0.0008.

• If “step 6” (velocity extrapolation) is ignored, then our method corresponds in
spirit to the sharp interface “ghost fluid” approach described in [26, 28]. This is
because, without velocity extrapolation, UL = U . In this case, when UL = U ,
the main difference separating our approach from previous sharp interface meth-
ods [26, 28] is that we treat the viscosity jump conditions implicitly; therefore
we have no time step constraints associated with viscosity. We shall label this
method, where liquid velocity extrapolation is ignored, as the “semi-implicit
ghost fluid method.”

• If “step 6” (velocity extrapolation) is not ignored, then our method has the
property that, for the limiting case of zero gas density and zero gas viscosity,
our two-phase method is discretely equivalent to the second-order “one-phase”
approach [45] in which gas pressure is treated as spatially uniform; Section 8.1
gives a review of the “one-phase” approach.

5 Spatial discretization

5.1 Nonlinear advective terms

The term,

(U · ∇U)ij
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is discretized as ⎛
⎝ uij

ūi+1/2,j−ūi−1/2,j

∆x
+ vij

ūi,j+1/2−ūi,j−1/2

∆y

uij
v̄i+1/2,j−v̄i−1/2,j

∆x
+ vij

v̄i,j+1/2−v̄i,j−1/2

∆y

⎞
⎠ .

The quantities ūi+1/2,j, v̄i+1/2,j , ūi,j+1/2 and v̄i,j+1/2 are constructed from the cell
centered velocity field U ij using upwind and slope-limited differencing; e.g.

ūi,j+1/2 =

{
uij + 1

2
uy,ij if vi,j+1/2 > 0

ui,j+1 − 1
2
uy,i,j+1 if vi,j+1/2 < 0

The slopes uy,ij are computed using second-order Van Leer slope limiting[54],

uy,ij =

{
Smin(2|ui,j+1 − ui,j|, 2|ui,j − ui,j−1|, 1

2
|ui,j+1 − ui,j−1|) if s > 0

0 otherwise

where

S = sign(ui,j+1 − ui,j−1)

and

s = (ui,j+1 − ui,j)(ui,j − ui,j−1).

5.2 Surface tension force

In this section, we describe the discretization of the face centered surface tension
term,

σκi+1/2,j(∇H)i+1/2,j

ρi+1/2,j

,

which is found in Equation (15).

The discretization of the face centered surface tension term at the face center,
(i+ 1/2, j), is written as,

σκi+1/2,j
H(φi+1,j)−H(φij )

∆x

ρi+1/2,j

(17)

where

H(φ) =

{
1 φ ≥ 0
0 φ < 0

and

ρi+1/2,j = ρLθi+1/2,j + ρG(1 − θi+1/2,j)
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The discretization of the height fraction, θi+1/2,j , is given in Section 5.3 (also see
[19, 28]).

The curvature κi+1/2,j is computed with second-order accuracy directly from the
volume fractions as described in Section 8.2.

Our treatment of surface tension can be approached from two different perspec-
tives: (1) the surface tension term is derived in order to enforce the pressure jump
condition as with the ghost fluid approach [26, 28], and (2) the inclusion of the sur-
face tension term (17) as a force term in the momentum equation (15) is equivalent
to prescribing the second-order Dirichlet pressure condition of surface tension (39)
that would occur if the gas pressure was treated as spatially constant and the gas was
assumed to be a “void” (ρG = 0).

5.2.1 “ghost fluid” perspective for the surface tension term

Here we give the “ghost fluid” [26] derivation of the surface tension term for the
inviscid Euler’s equations. Without loss of generality, we consider a free surface that
is vertically oriented between cells (i, j) and (i+1, j), at the location (xi+1−θ∆x, yj),
with liquid on the right and gas on the left (see Figure 4). At the face separating
cells (i, j) and (i+ 1, j), the updated velocity is given by,

un+1
i+1/2,j − u∗i+1/2,j

∆t
= −∇pL

ρL

un+1
i+1/2,j − u∗i+1/2,j

∆t
= −∇pG

ρG

The continuity condition requires that,

∇pL

ρL
· n =

∇pG

ρG
· n, (18)

and the pressure jump condition requires that,

pL
I − pG

I = −σκ, (19)

where the gas and liquid pressure on the free surface are pG
I and pL

I respectively. As
a result of discretizing (18), one has,

pL
i+1,j − pL

I

ρLθ∆x
=

pG
I − pG

i,j

ρG(1 − θ)∆x
. (20)

After one solves (19) and (20) for pL
I and pG

I , and substitutes the results back into
the liquid and gas pressure gradients, one has,

un+1
i+1/2,j − u∗i+1/2,j

∆t
= −

pi+1,j−pi,j

∆x

ρi+1/2

− σκI

Hi+1,j−Hi,j

∆x

ρi+1/2
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The surface tension term here is equivalent to (17). Without liquid velocity extrapo-
lation, or if the gas density is not negligible, then this discretization will be first order
accurate since we had assumed in our derivation that the free surface was oriented ei-
ther vertically or horizontally. Now suppose that we keep the liquid velocity separate
from the gas velocity during the calculation of the nonlinear advection terms, and
also suppose that the gas density is negligible, then one can relate the surface tension
term to the Dirichlet boundary condition that one would impose for a “one-phase
method:”

5.2.2 “one-phase” perspective for the surface tension

Here we give the “one-phase” [19, 45] derivation of the surface tension term for the
inviscid Euler equations. In contrast to the two-phase case where there were two
boundary conditions at the interface, there is only one condition on pressure at the
interface for the one-phase free boundary problem:

pL
I = pG

I − σκ

The momentum equation in the liquid phase is,

uL,n+1 − uL,∗

∆t
= −∇pL

ρL

Suppose we are considering a free surface that passes between cells (i, j) and (i+1, j),
at the location (xi+1 − θ∆x, yj), with liquid on the right and gas on the left (see
Figure 4). Also, denote the gas and liquid pressure on the free surface as pG

I and pL
I

respectively. Then, discretely, one has,

−∇pL

ρL
= −p

L
i+1 − (pG

I − σκI)

θ∆xρL

= −
pi+1−pi

∆x

θρL
− σκI

Hi+1,j−Hi,j

∆x

θρL
.

This latter formulation is equivalent to the former when ρG = 0 and we assume
that gas pressure is spatially uniform. In other words, our treatment for surface
tension corresponds to the treatment in a second-order “single-phase approach” (see
Section 8.1 or [45]). As mentioned by [19], this specification of the pressure boundary
condition is second order accurate; as opposed to the “ghost-fluid” perspective, we
do not have to make assumptions regarding the orientation of the interface in order
to get second order.

5.3 Height fraction

The “height fraction” θi+1/2,j ([19, 28, 45]) gives the one-dimensional fraction of water
between cells (i, j) and (i+ 1, j). Figure 5 gives an illustration of the height fraction.
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The mixed face-centered density is expressed in terms of the height fraction. The
height fraction θi+1/2,j is derived from the level set function as follows:

θi+1/2,j(φ) =

⎧⎪⎪⎨
⎪⎪⎩

1 φi+1,j ≥ 0 and φi,j ≥ 0
0 φi+1,j < 0 and φi,j < 0

φ+
i+1,j+φ+

i,j

|φi+1,j |+|φi,j | otherwise

The “+” superscript stands for the “positive part:” i.e., a+ ≡ max(a, 0).

5.4 Semi-implicit Viscous solve

An important property of our sharp-interface treatment for the viscous force terms
is that resulting solutions of our two-phase algorithm approach solutions of the one-
phase algorithm in the limit of zero gas density and zero gas viscosity (i.e. in the
limit, in which the gas pressure is treated as spatially uniform).

The viscous force terms, L∗
ij and Ln

ij , appear in the discretized Navier-Stokes equa-
tions as shown below,

U ∗
ij − Un

ij

∆t
= Aij + gẑ −GradP n

ij +
1

ρij

L∗
ij + Ln

ij

2
. (21)

L is a second-order discretization of the viscous force term, ∇ · 2µD. In two dimen-
sions, the rate of deformation tensor D is given by,

D =

(
ux (uy + vx)/2

(uy + vx)/2 vy

)

In previous work [50], we found the rate of deformation tensor D at cell faces and used
a finite volume discretization to approximate ∇ · 2µD. In other words, in previous
work we had,

(∇ · 2µD)ij ≈
⎛
⎝ 2µi+1/2,j(ux)i+1/2,j−2µi−1/2,j (ux)i−1/2,j

∆x
+

µi,j+1/2(uy+vx)i,j+1/2−µi,j−1/2(uy+vx)i,j−1/2

∆y
µi+1/2,j (uy+vx)i+1/2,j−µi−1/2,j (uy+vx)i−1/2,j

∆x
+

2µi,j+1/2(vy)i,j+1/2−2µi,j−1/2(vy)i,j−1/2

∆y

⎞
⎠ .

For a sharp interface method based on the finite volume discretization, the viscosity
at a face is given by [26, 28],

µi+1/2,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µL θi+1/2,j = 1
µG θi+1/2,j = 0
0 µG = 0 and 0 < θi+1/2,j < 1

µGµL

µGθi+1/2,j+µL(1−θi+1/2,j)
otherwise

Unfortunately, with the above discretization for the viscosity term, the “two-phase”
method does not correspond to the “single-phase” method (Section 8.1) when µG = 0.
This is because velocities in gas cells could be accidentally included in the discretiza-
tion of the coupling terms in liquid cells, even if µG = 0. Figure 6 gives an illustration
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of how gas velocities can be accidentally included in the discretization of the coupling
terms (the term (µvx)y in the first equation and the term (µuy)x in the second).
Therefore, we use the following “node based” discretization instead of the preceding
finite volume discretization:

(∇ · 2µD)ij =

⎛
⎝ (∂(2µux)

∂x
)ij + (∂(µ(uy+vx))

∂y
)ij

(∂(µ(uy+vx))
∂x

)ij + (∂(2µvy)
∂y

)ij

⎞
⎠ ,

where

(
∂(2µux)

∂x
)ij ≈

(
2µi+1/2,j+1/2(ux)i+1/2,j+1/2 − 2µi−1/2,j+1/2(ux)i−1/2,j+1/2+
2µi+1/2,j−1/2(ux)i+1/2,j−1/2 − 2µi−1/2,j−1/2(ux)i−1/2,j−1/2

)
/(2∆x)

(
∂(µ(uy + vx))

∂y
)ij ≈

(
µi+1/2,j+1/2(uy + vx)i+1/2,j+1/2 − µi+1/2,j−1/2(uy + vx)i+1/2,j−1/2+
µi−1/2,j+1/2(uy + vx)i−1/2,j+1/2 − µi−1/2,j−1/2(uy + vx)i−1/2,j−1/2

)
/(2∆y)

(
∂(µ(uy + vx))

∂x
)ij ≈

(
µi+1/2,j+1/2(uy + vx)i+1/2,j+1/2 − µi−1/2,j+1/2(uy + vx)i−1/2,j+1/2+
µi+1/2,j−1/2(uy + vx)i+1/2,j−1/2 − µi−1/2,j−1/2(uy + vx)i−1/2,j−1/2

)
/(2∆x)

(
∂(2µvy)

∂y
)ij ≈

(
2µi+1/2,j+1/2(vy)i+1/2,j+1/2 − 2µi+1/2,j−1/2(vy)i+1/2,j−1/2+
2µi−1/2,j+1/2(vy)i−1/2,j+1/2 − 2µi−1/2,j−1/2(vy)i−1/2,j−1/2

)
/(2∆y).

The viscosity at a node is given by

µi+1/2,j+1/2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µL θi+1/2,j+1/2 = 1
µG θi+1/2,j+1/2 = 0
0 µG = 0 and 0 < θi+1/2,j+1/2 < 1

µGµL

µGθi+1/2,j+1/2+µL(1−θi+1/2,j+1/2)
otherwise,

where θi+1/2,j+1/2 is a “node fraction” defined as,

θi+1/2,j+1/2(φ) =

⎧⎪⎪⎨
⎪⎪⎩

1 φi+1,j ≥ 0, φi,j ≥ 0, φi,j+1 ≥ 0 and φi+1,j+1 ≥ 0
0 φi+1,j < 0, φi,j < 0, φi,j+1 < 0 and φi+1,j+1 < 0

φ+
i+1,j+φ+

i,j+1+φ+
i,j+φ+

i+1,j+1

|φi+1,j |+|φi,j+1|+|φi,j |+|φi+1,j+1| otherwise.

The “+” superscript stands for the “positive part:” i.e., a+ ≡ max(a, 0).

The components of the deformation tensor, e.g., (ux)i+1/2,j+1/2, are calculated using
standard central differencing, i.e.,

(ux)i+1/2,j+1/2 =
ui+1,j+1 + ui+1,j − ui,j+1 − ui,j

2∆x
.

The resulting linear system (21) for U ∗ is solved using the standard multigrid
method.

Remark:
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• Our discretization of the viscous forces are second order accurate away from
the gas-liquid interface, but only first order accurate at the gas-liquid interface.
We observe first order accuracy whether we are implementing our semi-implicit
viscous solver as a part of the “single-phase” algorithm or as a part of the “two-
phase” algorithm. Only in places where the free surface is aligned exactly with
grid boundaries would our discretization be second order accurate.

• Our proposed discretization of the node fraction, θi+1/2,j+1/2, is not necessarily
the only possible choice. The critical property that any discretization technique
for the node fraction must have, is that θi+1/2,j+1/2 < 1 if any of the surrounding
level set values are negative.

5.5 Projection step

In this section, we provide the pertinent details for the discretization of the projection
step found in Equation (16),

∇ · ∇p
ρ

= ∇ · V (22)

U = V − ∇p
ρ
. (23)

Equations (22) and (23) are discretized as

Div
GradP

ρ
= DivV (24)

and

U = V − GradP

ρ
,

respectively. Div is the discrete divergence operator defined by

(DivV )ij =
ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆y
, (25)

and Grad represents the discrete gradient operator,

(Gradp)i+1/2,j =
pi+1,j − pi,j

∆x
(26)

(Gradp)i,j+1/2 =
pi,j+1 − pi,j

∆y
, (27)

so that (24) becomes,

pi+1,j−pij

ρi+1/2,j
− pij−pi−1,j

ρi−1/2,j

∆x2
+

pi,j+1−pij

ρi,j+1/2
− pij−pi,j−1

ρi,j−1/2

∆y2
= DivV .
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The face centered density is defined by

ρi+1/2,j = ρLθi+1/2,j + ρG(1 − θi+1/2,j), (28)

where the discretization of the height fraction, θi+1/2,j , is given in Section 5.3.

At impenetrable boundaries, we give the Neumann boundary condition,

∇p · n = 0,

and we also modify V to satisfy,

V · n = 0.

At outflow boundaries, we give the Dirichlet boundary condition,

p = 0,

i.e. if the top wall is outflow, then we have pi,jhi+1 = −pi,jhi
.

The resulting discretized pressure equation, (24), is solved for p using the multigrid
preconditioned conjugate gradient method ([52]).

Remark:

• In the limit as ρG approaches zero, one recovers the second-order projection
step described in [45]. In other words, in the limit of zero gas density, one
recovers the second-order discretization of Dirichlet boundary conditions at the
free surface. The discretization, using the height fractions θi+1/2,j , corresponds
to the second-order method described by [19] (in the zero gas density limit).

• By storing the velocity field at the cell faces and the pressure at the cell centers,
we avoid the “checkerboard” instability while maintaining a discretely diver-
gence free velocity field.

• We construct a temporary cell centered velocity field for calculating the advec-
tion and diffusion terms. Since at each timestep we interpolate the advective
and diffusive forces from cell centers to cell faces in preparation for the next
projection step, we avoid unnecessary numerical diffusion that would occur if
we had interpolated the velocity itself from cell centers to cell faces.

5.6 Extrapolation of MAC velocities

The liquid velocity uL
i+1/2,j is extended in a small “narrow band” about the zero level

set of the level set function φ. Extension velocities are needed on gas faces (i+1/2, j)
that satisfy φi,j < 0 and φi+1,j < 0. We describe the initialization of uL

i+1/2,j below;

the case for vL
i,j+1/2 follows similarly. The extension procedure is very similar to

that described in [45], except that (1) we choose an alternate, more stable, method
for constructing our second-order linear interpolant and (2) we do not project the
extended velocity field; in lieu of projecting the extended velocity field, we instead
discretize the volume of fluid equation (6) in conservation form.

The steps for our liquid velocity extrapolation procedure are:
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1. For each point where φi+1,j < 0 and φi,j < 0 and (1/2)(φij+φi+1,j) > −K∆x, we
already know the corresponding closest point on the interface xclosest,i+1/2,j ≡
(1/2)(xclosest,ij + xclosest,i+1,j). The closest point on the interface has already
been calculated during the CLSVOF reinitialization step (details found in [45],
also see Figure 1) since the distance at a gas cell xij is,

d = −|xij − xclosest,ij|.
2. Construct a 7x7 stencil for ui+1/2,j about the point xclosest,i+1/2,j. A point

xi′+1/2,j′ in the stencil is tagged as “valid” if φi′,j′ ≥ 0 or φi′+1,j′ ≥ 0. A
diagram of how this 7x7 stencil is created for extending the horizontal velocity
uextend

i+1/2,j is shown in Figure 7. Please see Figure 8 for a diagram portraying the

7x7 stencil used for constructing the vertical extension velocities vextend
i,j+1/2.

3. Determine the valid cell (icrit + 1/2, jcrit) in the 7x7 stencil that is closest to
xclosest,i+1/2,j.

4. Determine the slopes ∆xu and ∆yu. In the x direction, investigate the forward
differences,

∆xu = ui′+3/2,jcrit − ui′+1/2,jcrit,

where (i′ +3/2, jcrit) and (i′ +1/2, jcrit) are valid cells in the 7x7 stencil. In the
y direction, investigate the forward differences,

∆yu = uicrit+1/2,j′+1 − uicrit+1/2,j′,

where (icrit + 1/2, j′ + 1) and (icrit + 1/2, j′) are valid cells in the 7x7 stencil.

If any of the differences change sign in the x (y) direction, then the slope, ∆xu
(∆yu) is zero, otherwise the slope is taken to be the quantity ∆xu (∆yu) that
has the minimum magnitude.

5. Construct

uextend
i+1/2,j = (∆xu)(i− icrit) + (∆yu)(j − jcrit) + uicrit+1/2,jcrit

5.7 Timestep

The timestep ∆t at time tn is determined by restrictions due to the CFL condition,
surface tension, and gravity:

∆t < min
i,j

⎛
⎝1

2

∆x

| Un | ,
1

2

√
ρL

8πσ
∆x3/2,

1

2

2∆x

| un | +
√
| un |2 +4g∆x

⎞
⎠ .

The stability condition regarding gravity was determined “heuristically” in which we
have the inequality,

(u+ ∆tg)∆t < ∆x.

The stability condition for surface tension is taken from [9, 18]. Other references
regarding stability conditions for incompressible flow are [2, 31].
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6 Results

In this section we test the accuracy of our numerical algorithm. In a few cases,
we shall compare our sharp interface approach to the “semi-implicit ghost fluid”
approach. Also, we shall compare our two-phase sharp interface approach to our
“one-phase sharp” interface method. In cases where the exact solution is unknown,
we calculate the error by comparing the solutions on successively refined grids. The
error in interface position is measured as

Einterface =
∑
ij

∫
Ωij

|H(φf) −H(φc)|dx, (29)

where φf and φc correspond to the solutions using the fine resolution and coarse
resolution grids, respectively.

The “average” error in liquid velocity is measured as (for 3d-axisymmetric prob-
lems),

Eavg
Liquid =

∑
ij,φ>0

√
(uf,ij − uc,ij)2 + (vf,ij − vc,ij)2ri∆r∆z. (30)

The “maximum” error in liquid velocity is measured as,

Emax
Liquid = max

ij,φ>0

√
(uf,ij − uc,ij)2 + (vf,ij − vc,ij)2. (31)

6.1 Parasitic Currents

In this section we test our implementation of surface tension for the problem of a
static two-dimensional (2d) drop with diameter D. We assume the density ratio and
viscosity ratio are both one for this problem. The exact solution for such a problem
is that the velocity u is identically zero. If we scale the Navier-Stokes equations
by the time scale T = Dµ/σ, and by the velocity scale U = σ/µ, then the non-
dimensionalized Navier-Stokes equations become,

Du

Dt
= −∇p+Oh2∆u − Oh2κ∇H.

where the Ohnesorge number Oh is defined as,

Oh =
µ√
σρD

.

We investigate the maximum velocity of our numerical method for varying grid reso-
lutions at the dimensionless time t = 250. The dimensions of our computational grid
are 5/2x5/2 with periodic boundary conditions at the left and right boundaries and
reflecting boundary conditions at the top and bottom boundaries. A drop with unit
diameter is initially located at the center of our domain (5/4, 5/4). Our tolerance for
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Table 1: Convergence study for static droplet with surface tension (parasitic currents
test). Maximum velocity at t = 250 is shown. Oh2 = 1/12000.

∆x maximum velocity
2.5/16 7.3E-4
2.5/32 4.5E-6
2.5/64 5.5E-8

the pressure solver and viscous solver is 1.0E − 12 (the error is measured as an abso-
lute error and is the L2 norm of the residual). In Table 1 we display results of our grid
refinement study for 1/Oh2 = 12000. Our results indicate at least second-order con-
vergence. These results are comparable to those in [35] where a front tracking method
was used to represent the interface. Our results are also comparable to recent work
by [18] in which a height fraction approach for surface tension was tested.

6.2 Surface tension driven (zero gravity) drop oscillations

In this section, we perform a grid refinement study for the problem of surface tension
driven drop oscillations. In the previous example with parasitic currents, the density
ratio was 1:1 and the viscosity ratio was 1:1; in this example, the density ratio is
1000:1 and the viscosity ratio is 1000:1.

According to the linearized results derived by Lamb [27] (1932, §275), the position
of the drop interface is

R(θ, t) = a+ εPn(cos(θ)) sin(ωnt+ π/2),

where

ω2
n = σ

n(n− 1)(n+ 1)(n+ 2)

a3(ρl(n+ 1) + ρgn)

and Pn is the Legendre polynomial of order n. θ runs between 0 and 2π, where θ = 0
corresponds to r = 0 and z = a. If viscosity is present, Lamb (1932, §355) found that
the amplitude is proportional to e−t/τ , where

τ =
a2ρL

µL(2n+ 1)(n− 1)
.

We compute the evolution of a drop with a = 1, g = 0, µL = 1/50, µL/µG = 1000,
σ = 1/2, ρL = 1 and ρL/ρG = 1000. The initial interface is given by R(θ, 0), with
ε = .05 and n = 2. With these parameters we find ω2 = 2.0 and τ = 5.0. The fluid
domain is Ω = {(r, z)|0 ≤ r ≤ 1.5 and 0 ≤ z ≤ 1.5} and we compute on grid sizes
ranging from 32× 32 to 128× 128. The time step for each respective grid size ranges
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Table 2: Convergence study for zero gravity drop oscillations σ = 1/2, µL = 1/50,
µL/µG = 1000, ρL/ρG = 1000 and α = 2.

∆r Eavg
Amplitude Emax

amplitude

3/64 N/A N/A
3/128 0.00076 0.00172
3/256 0.00021 0.00057

from 0.0007 to 0.000175. Symmetric boundary conditions are imposed at r = 0 and
z = 0.

In Table 2, we display the relative error between succeeding resolutions for the
minor amplitude R∆x(0, t) of the droplet. The average error Eavg

Amplitude is given by

Eavg
amplitude ≡

∫ 3.5

0
|R∆x(0, t) − R2∆x(0, t)|dt,

and the maximum amplitude error Emax
Amplitude is given by

Emax
Amplitude ≡ max

0≤t≤3.5
|R∆x(0, t) − R2∆x(0, t)|.

In Figure 9, we plot the minor amplitude versus time for the three different grid
resolutions.

6.3 Standing wave problem

For the standing wave problem, the free surface at t = 0 is described by the equation

y = (1/4) + ε cos(2πx)

where ε = 0.025. The gravitational force is g = 2π. We assume inviscid flow,
µL = µG = 0, and the density ratio is 1000, ρL = 1, ρL/ρG = 1000. The computational
domain is a 1/2 by 1/2 box with symmetric boundary conditions at x = 0 and x = 1/2
and solid wall boundary conditions at y = 0. In Figure 10 we compare the amplitude
(at x = 0) for 4 different grid resolutions: ∆x = 1/64, ∆x = 1/128, ∆x = 1/256 and
∆x = 1/512. The timestep for each case is ∆t = 0.02, ∆t = 0.01, ∆t = 0.005 and
∆t = 0.0025.

In Table 3, we show the relative error between the 4 graphs (0 ≤ t ≤ 10). In
Table 4, we provide the percent error for the maximum mass fluctuation for the time
interval 0 ≤ t ≤ 10,

max
0≤t≤10

100
|mass(t) −mass(0)|

mass(0)
.

In Figure 11, we compare our proposed “two-phase” sharp interface method to
the corresponding “one-phase” method described in Section 8.1. They are almost
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Table 3: Convergence study: relative error between coarse grid computations with
cell size ∆xcoarse and fine grid computations with cell size ∆xfine for amplitude at
x = 0 for standing wave problem. Relative error measured for the period 0 ≤ t ≤ 10.
The physical domain size is 1/2x1/2. ∆x is the mesh spacing which is 1

2nx
where nx

is the number of cells in the x direction. For all our tests, ∆x = ∆y.
∆xcoarse ∆xfine max. error avg. error
1/64 1/128 2.4E-3 6.2E-4
1/128 1/256 6.5E-4 1.5E-4
1/256 1/512 2.8E-4 4.9E-5

Table 4: Convergence study: maximum mass fluctuation error measured as a percent
of the initial mass. Mass error measured for the period 0 ≤ t ≤ 10. The physical
domain size is 1/2x1/2. ∆x is the mesh spacing which is 1

2nx
where nx is the number

of cells in the x direction. For all our tests, ∆x = ∆y.
∆x mass error
1/32 0.078%
1/64 0.030%
1/128 0.015%
1/256 0.007%

identical, which is expected since our two-phase sharp interface approach becomes
the one-phase approach in the limit of zero gas density ρG and zero gas viscosity µG.
Also in the same figure, we study the difference between our sharp interface approach
with/without liquid velocity extrapolation (step 6 in Section 4). Without liquid
velocity extrapolation (a.k.a. the “semi-implicit ghost fluid” approach), the results do
not converge nearly as rapidly as with velocity extrapolation. The “no extrapolation”
results with ∆x = 1/512 are more poorly resolved than the ∆x = 1/64 results
corresponding to our sharp-interface approach with liquid velocity extrapolation.

We remark that in (3), we see that the order of accuracy is 1.6 on the finest
resolution grids. The order is not 2 since our method is designed to approach a
second order method as ρG approaches zero. In this test, we believe that the error is
so small, that the value of ρG is big enough to make itself the dominant contribution
to the error. One can also look at ρG as being analogous to the cutoff used for θ in
the second order discretization of the poisson equation on irregular domains[19].

6.4 Traveling Wave Problem

In [56], experiments were conducted in which traveling waves were generated from
wind. In this section we investigate the performance of our numerical algorithm for
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simulating traveling waves in the presence of wind. We shall validate our algorithm
by way of a grid refinement test. We shall also compare results of our new algorithm
to those results produced by our “semi-implicit ghost fluid” method.

According to [56], a wind velocity of U = 5m/s will generate traveling waves with
a wavelength λ = 15cm, a phase velocity C = 50cm/s, a wave period P = 0.3s, and
a trough to peak wave height H = 1cm. Also, for a wind speed of U = 5m/s, the
roughness length is z0a = 0.3cm and the friction velocity is u∗a = 30cm/s.

We initialized our computational domain as a 15x30cm rectangular box with the
initial position of the water surface given by,

ysurface(x) = 15.0 +
H

2
cos(2πx/λ).

We shall assume periodic boundary conditions on the left and right walls, and “free-
slip” boundary conditions on the upper and lower walls.

The initial velocity in the water is derived using a similar numerical procedure
as found in [59]. We compute a stream function ψ which is defined in the whole
computational domain. In the calculation of ψ, we assume the initial vorticity is
zero everywhere except on the interface. The vortex sheet strength at the air-water
interface is given by,

Γ = Hω cos(kx),

where k = 2π/λ is the wave number and ω and k satisfy the following linear dispersion
relation,

ω2 = gk +
σk3

ρL

. (32)

We have ignored the gas density ρG and the water depth (15cm) in (32) since
these values have a negligible effect on ω. In our computations, we used the ac-
tual physical properties for air and water: ρL = 1.0g/cm3, ρG = 0.001229g/cm3,
µL = 0.0089g/(cms), µG = 1.73e−4g/(cms), g = 980.0cm/s2, and σ = 72.8dyne/cm.
Given these properties, we have ω = 20.39. We remark that the linear dispersion re-
lation predicts a period of P = 2π/ω = 0.31 which is very close to the experimental
values reported by [56].

Given the vortex sheet strength, we solve for the stream function ψ using the
following equation,

ψxx + ψyy = −Γ|∇H(φ)|. (33)

|∇H| is discretized as,

√
(
Hi+1/2,j −Hi−1/2,j

∆x
)2 + (

Hi,j+1/2 −Hi,j−1/2

∆y
)2
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where,

Hi+1/2,j =

{
1 φij ≥ 0 or φi+1,j ≥ 0
0 otherwise

Once ψ is found, we have

uij =
ψi,j+1 − ψi,j−1

2∆y
(34)

vij = −ψi+1,j − ψi−1,j

2∆x
. (35)

The boundary conditions for ψ in (33) are homogeneous dirichlet conditions at the
top and bottom of the computational domain, and periodic boundary conditions on
the left and right sides.

In [59], the velocity in the air as well as in the water was given by (34) and (35).
In our test, we shall initialize the air velocity to have the characteristic logarithmic
“wind” profile given by,

u(x, y) =

{
0 y < ysurface(x) + z0a

u∗a

K
log(

y−ysurface(x)

z0a
) otherwise

v(x, y) = 0,

where K = 0.4 is von Karmon’s constant, z0a = 0.3cm is the roughness length, and
u∗a = 30.0cm/s is the friction velocity.

Given the cell centered initial velocity in the water and air, we interpolate these
respective velocity fields from cell centers to cell faces and then we initialize the face
centered velocity V as,

V i+1/2,j =

{
UL

i+1/2,j φij ≥ 0 or φi+1,j ≥ 0

UG
i+1/2,j otherwise

The initial velocity should be divergence free so we project V as described in section
5.5 in order to insure a discretely divergence free initial velocity field. After the
projection step, we initialize the liquid and gas velocity with the projected velocity
U and then we extend the liquid velocity into the gas in order to construct UL. In
Figure 12 we plot the initial velocity fields UL and U .

In Figure 13, we compare the amplitude (at x = 0) versus time for three different
grid resolutions: ∆x = 15/32, ∆x = 15/64 and ∆x = 15/128. The timestep for
each case is ∆t = 0.0008, ∆t = 0.0004, and ∆t = 0.0002. In Table 5, we show the
relative error between the 3 graphs (0 ≤ t ≤ 1). In Figure 14, we plot the ampli-
tude for our sharp interface without liquid velocity extrapolation (step 6 in Section
4). Without liquid velocity extrapolation (a.k.a. the “semi-implicit ghost fluid” ap-
proach), the results do not converge nearly as rapidly as with velocity extrapolation.
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Table 5: Convergence study: relative error between coarse grid computations with
cell size ∆xcoarse and fine grid computations with cell size ∆xfine for amplitude at
x = 0 for traveling wave problem with wind. Relative error measured for the period
0 ≤ t ≤ 1. The physical domain size is 15x30. ∆x is the mesh spacing which is 15

nx

where nx is the number of cells in the x direction. For all our tests, ∆x = ∆y.
∆xcoarse ∆xfine max. error avg. error
15/32 15/64 0.122 0.031
15/64 15/128 0.057 0.014

The “no extrapolation” results with ∆x = 15/128 are more poorly resolved than
the ∆x = 15/64 results corresponding to our sharp-interface approach with liquid
velocity extrapolation.

Remarks:

• We measured first order accuracy using our sharp-interface method (with veloc-
ity extrapolation). We attribute this to how we obtained our initial velocity field
in the liquid. The discretization to the right hand side of (33) is a low order ap-
proximation to the delta function; nonetheless, we see significant improvement
in our calculations with velocity extrapolation, as opposed to without. Without
velocity extrapolation, we do not see any convergence for the grid sizes used.

• The computations in [59] (using a “continuum approach”) were limited to a
wave Reynolds number of around 150 and a density ratio of 100:1. Also, wind
was not taken into account in their computations. In the results we present
here, using the actual physical properties of air and water, the wave Reynolds
number is Re = ρLCλ

2πµL = 12875 and the density ratio is 813:1.

6.5 Capillary Instability

In this section, we test our sharp-interface approach on the classical Rayleigh capillary
instability problem in which a slightly perturbed cylindrical column of liquid is driven
to break up into droplets by surface tension (capillary) effects. In this test problem
we use parameters that are comparable to those found in [50].

We consider an initially perturbed cylindrical column of water in air. The shape
of the initial interface is

r(z) = r0 + ε cos(2πz/λ). (36)

We compute on a 3d-axisymmetric domain Ω = {(r, z)|0 ≤ r ≤ λ/4 and 0 ≤ z ≤
λ/2}. Symmetric boundary conditions are enforced at r = 0, z = 0 and z = λ/2.
Outflow (pressure equals zero) boundary conditions are enforced at r = λ/4. The
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grid Einterface Eavg
Liquid Emax

Liquid Eavg
vapor

16x32 N/A N/A N/A N/A
32x64 14.4 8.0 0.012 24.8
64x128 7.9 4.5 0.009 11.6

Table 6: Convergence study for the Rayleigh capillary instability problem using the
two-phase sharp interface method. Elapsed time is t = 80. The viscosity and density
ratios are µL/µG = 64 and ρL/ρG = 816, respectively. The Reynolds number is 7.5.

relevant dimensional parameters for this test problem are r0 = 6.52 microns, ε = 1.3
microns, λ = 60 microns, µL = 1.138×10−2g/(cm·s), µG = 1.77×10−4g/(cm·s), ρL =
1.0g/cm3, ρG = 0.001225g/cm3, and σ = 72.8dynes/cm. In our computations we use
the following dimensionless parameters: the Reynolds number R = ρLLU/µL = 7.5,
the Weber number W = ρLLU

2/σ = 1.0, L = 1 micron, U = 8.53m/s and the density
and viscosity ratios are 816 and 64, respectively.

In Figure 15, we display the results of our computations for the capillary jet as it
breaks up. In Table 6, we measure the relative errors for the interface and velocity
field for grid resolutions ranging from 16x32 to 64x128. The time step ranged from
∆t = 0.04 to ∆t = 0.01.

As shown in Table 6, we obtain about first-order accuracy for the solution in the
liquid. We attribute our low order accuracy to how we discretize the viscosity term,

1

ρ
∇ · (2µD), (37)

at the interface. Suppose µG = 0 and the zero level set crosses between cells (i, j)
(φij < 0) and (i+ 1, j) (φi+1,j ≥ 0). In this case the values for µ and ρ jump from µG

to µL and from ρG to ρL abruptly where the level set function changes sign; i.e. our
discretization of µ and ρ in Equation (37) does not incorporate specific information
about the location of the zero level set in between cells (i, j) and (i+1, j), except that
the zero level set is somewhere between these two cells. We remark that, although
we observe first-order accuracy using our sharp interface approach, our errors are
considerably smaller than those presented in [50]. We also get comparable results
when calculating the break-up of a liquid jet using our “single-phase” method (Section
8.1, see Table 8 and Figure 16).

If we reduce the viscosity further, i.e., set the Reynold’s number R = 200, then we
get much closer to second-order convergence using our sharp interface approach, as
illustrated in Table 7.

6.6 Bubble Dynamics

In this section, we compute the steady state shapes of a gas bubble rising in a viscous
Newtonian liquid. For comparison, we use the experimental results found in [7] and
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grid Einterface Eavg
Liquid Emax

Liquid Eavg
vapor

16x32 N/A N/A N/A N/A
32x64 4.2 3.2 0.013 32.8
64x128 0.9 1.1 0.004 11.1

Table 7: Convergence study for the Rayleigh capillary instability problem using the
two-phase sharp interface method. Elapsed time is t = 80. The viscosity and density
ratios are µL/µG = 64 and ρL/ρG = 816, respectively. The Reynolds number is 200.

grid Einterface Eavg
Liquid Emax

Liquid

16x32 N/A N/A N/A
32x64 13.6 7.8 0.012
64x128 7.5 4.3 0.011

Table 8: Convergence study for the Rayleigh capillary instability problem using the
single-phase sharp interface method. Elapsed time is t = 80. The Reynolds number
is 7.5.

[25] and computational results in [39].

As in [7] and [25], we will present our computational results in terms of the following
dimensionless groups. The Reynolds number R, the Eötvös number Eo, and the
Morton number Mo are defined as follows:

R =
ρLU

ηL
Eo =

gL2U

σ
Mo =

gη4
L

ρσ3
, (38)

where ρ is the liquid density, L is the bubble diameter, U is a characteristic velocity,
ηL is the liquid viscosity, σ is the surface tension, and g is the acceleration of gravity.

Another set of useful dimensionless numbers, although not independent of those
in (38), are the Weber number We, the Froude number Fr, and the drag coefficient
CD :

We =
ρLU2

σ
Fr =

U2

gL
CD =

4ρgL2

3ηLU
.

In all of our bubble calculations, we use adaptive mesh refinement[46] with a base
coarse grid of 24x72 grid cells and three levels of adaptivity. The computational
domain size was 2.0x6.0. Our computations use 3d-axisymmetric r-z coordinates. A
comparison of computed terminal bubble rise velocity versus previous computational
and experimental results are reported in Table 9. A comparison of computed terminal
bubble shapes versus previous computational and experimental results are reported
in Figure 17. Our comparisons include oblate ellipsoidal cap bubbles studied by [7]
(Eo = 243, Mo = 266, and R = 7.77 for bubble figure 2(d) and Eo = 116, Mo = 5.51,
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Table 9: Comparison of computed terminal bubble rise speed (in terms of the Re
number) compared with experiments (Bhaga and Weber, Buckmaster) and compared
with previous calculations (Ryskin and Leal).

case sharp interface method experiment/previous result
Figure 2d (Bhaga and Weber) 8.3 7.8
Figure 3d (Bhaga and Weber) 14.1 13.3
Ryskin and Leal (Re=100, We=10) 97.5 100
Buckmaster (D=12.15) 19.8 19.4

Table 10: Comparison of computed terminal bubble rise speed (in terms of the Re
number) using the “semi-implicit” ghost fluid sharp interface method compared with
experiments (Bhaga and Weber, Buckmaster) and compared with previous calcula-
tions (Ryskin and Leal).

case semi-implicit ghost fluid experiment/previous result
Figure 2d (Bhaga and Weber) 8.1 7.8
Figure 3d (Bhaga and Weber) 13.7 13.3
Ryskin and Leal (Re=100, We=10) 97.6 100
Buckmaster (D=12.15) 19.7 19.4

and R = 13.3 for bubble figure 3(d)), spherical cap bubbles studied by Hnat &
Buckmaster [25] (R = 9.8, Mo = 0.065, and C = 4.95, where C = r

(ν2/g)1/3 ), and a

disk-bubble studied by Ryskin & Leal [39] (R = 100 and We = 10).

Finally, we remark that for these bubble rise test problems, the “semi-implicit
ghost fluid” approach (our two-phase approach with velocity extrapolation disabled)
produces results comparable with our two-phase approach. Results for the “semi-
implicit ghost fluid” approach are shown in Table 10 and Figure 18,

6.6.1 Full 3d Bubble Dynamics

As a validation of our sharp interface method in 3 dimensions, we compute bubble
motion in 3d-cartesian coordinates (x, y, and z) and compare our results to the
corresponding 3d-axisymmetric computations. The dimensions of the computational
domain was 4x4x6. We computed 3d bubble motion on an adaptive grid with base
coarse grid dimensions of 16x16x24 and 3 additional levels of adaptivity. In Figure 19
we show the computed bubble shape in which we used the same physical properties
as the D = 12.15 case in Hnat and Buckmaster’s paper[25]. The experimental rise
speed (in terms of the Re number) is 19.4 and our computed rise speed is 19.5. In
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Figure 20 we show the computed bubble shape in which we used the same physical
properties as in Figure 3-d of Bhaga and Weber’s paper[7]. The experimental rise
speed (in terms of the Re number) is 13.3 and our computed rise speed is 13.6.

6.7 Bubble Formation

In this section we compute the formation of bubbles caused by the injection of air
into a container of liquid. Our computations use 3d-axisymmetric r-z coordinates.
We enforce inflow boundary conditions at the bottom of the domain (z = 0),

∇p · n = 0,

U · n =

{
uinflow r < rnozzle

0 otherwise

Symmetry boundary conditions are given at r = 0, free-slip conditions at r = rhigh,
and outflow conditions at the top of the domain (z = zhigh):

p = 0.

Below we compare results of our two-phase sharp interface method with experi-
mental results reported by Helsby and Tuson[23]. Our target is Figure 1 (e) in [23].
This corresponds with a nozzle radius of 8.5E−4m and an inflow velocity of 0.44m/s.
Based on the physical properties of the case-e system, one has the Reynolds number
equal to 3.6, the Weber number equal to 3.06, the density ratio equal to 1015 : 1
and the viscosity ratio equal to 6923 : 1. We used Adaptive Mesh Refinement[46] to
compute the solutions for the bubble formation problem with a base coarse grid of
32x96 grid cells and three levels of adaptivity. There were 16 fine grid cells spanning
the nozzle radius. In Figure 21 we illustrate our computational results. The bubble
diameters for the 2nd and 3rd bubbles were 4.85E−3m and 4.90E−3m respectively
which is in good agreement with the experimental result 4.99E − 3m.

7 Conclusions

A sharp interface method for two-phase flows has been developed. Our method has
been designed to reduce to a “single-phase” approach in the limiting case of zero gas
density and zero gas viscosity. Also, a new cell-centered semi-implicit treatment for
the viscous terms has been developed which enables us to bypass the viscous time
step constraint while treating the viscosity jump as “sharp.” For problems with a
thin free-surface boundary layer, our results are superior to the “semi-implicit ghost
fluid” method. For problems in which the Reynolds number is large in the liquid,
our results demonstrate second-order accuracy for the liquid solution of two-phase
incompressible flows. For problems in which viscous effects are dominant, both our
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“two-phase” and “one-phase” sharp interface approaches become first-order accurate.
In fact, the errors of all three approaches, (1) our proposed sharp interface method,
(2) our “semi-implicit ghost fluid” method, and (3) our “single-phase” method are all
comparable to each other when viscous effects are sufficiently present. When viscous
effects are weak, then our sharp interface approach gives higher accuracy than our
“semi-implicit ghost fluid” approach. This is expected, since it is for this class of
problems that the solutions admitted from a ghost fluid approach (which assumes
continuity of the tangential velocity) diverge from our sharp-interface approach (and
diverge from a “one-phase” approach). The improved accuracy over conventional
first-order “continuum” approaches and “ghost fluid” approaches allows us to resolve
computations using a coarse mesh where otherwise a fine mesh is required. As demon-
strated in our bubble formation test, our new method can reliably handle complex
interfacial geometries.

8 Appendix A

8.1 One-phase algorithm

The one-phase algorithm addresses a two-phase flow problem in which the liquid is
assumed to behave incompressibly, and the pressure in the gas is spatially constant[45,
17, 11].

In the liquid we have,

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ

∇ · U = 0.

where U is the velocity vector, ρ is the density, p is the pressure, µ is the coefficient
of viscosity, g is the gravity, I is the unit tensor, ẑ is the unit vector in the vertical
direction, and D is the deformation tensor defined by

D =
∇U + (∇U)T

2
.

In the vapor, we assume p(t) is constant in space. The vapor viscosity µG and
“density” ρG are assumed to be zero. The free surface boundary conditions are
enforced by specifying the following pressure boundary condition at the free surface:

p(x, t) = pvapor(t) − σκ+ 2µL(DL · n) · n, (39)

where κ is the local mean curvature, µL is the liquid viscosity, and DL is the rate of
deformation for the liquid.

If one defines the interface Γ as the zero level set of a smooth level set function, φ,
then the resulting equations are written as:

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ − (σκ− pvapor(t))∇H (40)
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∇ · U = 0

Dφ

Dt
= 0 ρ = ρLH(φ) µ = µLH(φ) (41)

where κ(φ) and H(φ) are defined by Equations (3) and (4) respectively.

Boundary conditions must be specified in the vapor (φ < 0). The boundary
conditions are p = 0 and U = U liquid

extrapolate. In the pressure projection step, the density
is expressed in terms of the height fraction (see Equation (28) except replace ρG with
zero). The discretization of the pressure projection step is second order accurate (see
[19]). As in [19] and [45], we prescribe a cutoff for the height fraction θi+1/2,j (see
Equation (28)) which is 0.001. Further details for the discretization of (40) thru (41)
are given in [45].

8.2 Curvature discretization

The curvature on the free surface is computed to second-order accuracy directly from
the volume fractions[22]. Previous work in this area include that by Chorin[13], Poo
and Ashgriz[34], Aleinov and Puckett [1], Williams et al.[55] and more recently, using
“PROST”, Renardy et al.[37]. The method we use here is explicit, localized, and
can be shown thru Taylor series expansion to be second-order accurate for r-z or 3d
coordinate systems. The method is based on reconstructing the “height” function
directly from the volume fractions [22]. Without loss of generality, we assume that
the free surface is oriented more horizontal than vertical. The orientation of the free
surface is determined from the level set function since n = ∇φ/|∇φ|. A 3x7 stencil of
volume fractions is constructed about cell (i, j) (see Figure 22). The 3 vertical sums,
Fi′ , i

′ = i−1, i, i+1 correspond to the integrals of the height function h(x) (see Figure
23); i.e. Fi = 1

∆x

∫ xi+1/2
xi−1/2

h(x)dx + C(j). It can be shown that (Fi+1 − Fi−1)/(2∆x)

is a second-order approximation to h′(xi) and that (Fi+1 − 2Fi + Fi−1)/∆x
2 is a

second-order approximation to h′′(xi). A slightly more complicated procedure is used
in axisymmetric coordinate systems; the height function h(r) is assumed to have
the form ar2 + br + c. The integral of rh(r) is related with Fi′, i

′ = i − 1, i, i + 1
in order to solve for the 3 unknowns a, b and c. For vertically oriented interfaces
in axisymmetric coordinate systems, the Fj′ represent the integrals of the square

of the height function h(z) (up to a constant): Fj′ = 1
∆z
π
∫ zj′+1/2
zj′−1/2

(h(z))2dz + C(i).
In other words, (Fj+1 − Fj−1)/(2∆z) is a second-order approximation to dh(z)2/dz
and (Fj+1 − 2Fj + Fj−1)/∆z

2 is a second-order approximation to d2(h(z)2)/dz2. The
resulting curvature is obtained directly from the height function (whether it be h(r),
h(z) or h(x, y)).

This procedure for finding curvature will return a second-order approximation to
the curvature on the interface passing thru cell (i, j) located at x = (i + 1/2)∆x
(horizontal orientation) or y = (j + 1/2)∆y (vertical orientation). In order to find
κI(F ) to second-order accuracy (17), we have two different cases when the level set
function changes sign between cells (i, j) and (i+1, j): (1) the interface is orientated
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Table 11: Convergence study for computing curvatures from volume fractions of a
unit sphere in axisymmetric geometry. The physical domain size is 2x4. ∆x is the
mesh spacing which is 2/nx, where nx is the number of cells in the x direction. For
all of our tests, ∆x = ∆y.

∆x max. error avg. error
1/16 0.0104 0.0037
1/32 0.0024 0.0009
1/64 0.0006 0.0002

Table 12: Convergence study for computing curvatures from volume fractions of a
unit sphere in three dimensional geometry. The physical domain size is 4x4x4. ∆x
is the mesh spacing which is 4/nx, where nx is the number of cells in the x direction.
For all of our tests, ∆x = ∆y = ∆z.

∆x max. error avg. error
1/8 0.094 0.0125
1/16 0.050 0.0036
1/32 0.010 0.0009

vertically, in which case

κI =

{
κij θ < 1/2
κi+1,j otherwise,

or (2) the interface is orientated horizontally, in which case

κI = (1 − θ)κij + θκi+1,j .

In Tables 11 and 12, we display the average error and maximum error for the case
of a sphere in axisymmetric and three dimensional coordinate systems respectively.
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Figure 1: After each time step, the level set function φ is reinitialized as the closest
distance to the piecewise linear reconstructed interface. The linear reconstruction
encloses the volume given by F with its slope given by n = ∇φ

|∇φ| . In this diagram,
the shaded area fraction is Fi,j+1, the distance from point xi+1,j−1 to the closest point
becomes the new value of φi+1,j−1.
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Figure 2: In order to calculate the volume-of-fluid flux, Fi+1/2,j , one must first find the
linear coupled level set and volume-of-fluid reconstructed interface. The flux across
a face becomes the volume fraction of overall volume that is advected across a face.
For this illustration, Fi+1/2,j = shaded area

ui+1/2,j∆t∆y
.
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Figure 3: Cell centered quantities, φij, Fij, pij, live at the cell locations (i, j), (i+1, j),
(i, j+1), . . . . The horizontal MAC velocity, ui+1/2,j , lives at the vertical face centroids,
(i−1/2, j), (i+1/2, j), . . . . The vertical MAC velocity, vi,j+1/2 lives at the horizontal
face centroids, (i, j − 1/2), (i, j + 1/2), . . . .
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Figure 4: “Ghost fluid” treatment for vertical interface with Liquid on the right and
gas on the left. pi+1,j is the liquid pressure at cell (i+1, j) and pi,j is the gas pressure
at cell (i, j). pL

I is the liquid pressure on interface I and pG
I is the gas pressure on

interface I. θ∆x is the distance from the interface, I, to the liquid cell (i+ 1, j).
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Figure 5: Illustration of the face-centered height fraction, θi+1/2,j , θi,j+1/2.
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Figure 6: Illustration of how the gas velocity at cell (i + 1, j + 1) is inadvertently
included in the calculation of the coupling terms when µG = 0 and when the viscosity
coefficient is given at the cell faces, µi+1/2,j , . . . . The + and − signs refer to the sign
of the level set function. In this scenario, all the face centered coefficients are equal
to the liquid viscosity coefficient. If the viscosity coefficient is given at the nodes,
and if µG = 0, then µi+1/2,j+1/2 = 0 and the gas velocity at (i+ 1, j + 1) will not be
included in the calculation of the viscous coupling terms.
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Figure 7: Diagram hi-lighting the valid points in the 7x7 stencil used for constructing
the horizontal extension velocities.
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Figure 8: Diagram hi-lighting the valid points in the 7x7 stencil used for constructing
the vertical extension velocities.
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Figure 9: perturbation in minor amplitude for zero gravity drop oscillations. (two-
phase sharp interface method) µL = 1/50, γ = 1/2, density ratio 1000:1, viscosity
ratio 1000:1.
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Figure 10: Amplitude for inviscid standing wave problem. Density ratio 1000:1.
(two-phase sharp interface method)
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Figure 11: Comparison of two-phase sharp interface method with “single-phase”
method and “semi-implicit ghost-fluid” method. Density ratio 1000:1.
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Figure 12: Initial velocity field for wind driven wave problem. Left: initial liquid
velocity UL derived from stream function. Right: initial combined liquid/gas velocity
U . “Wind” velocity in the gas has logarithmic profile. Grid resolution is 128x256.
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Figure 13: Amplitude for traveling wave problem with wind. Density ratio 813:1.
(two-phase sharp interface method)
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Figure 14: Amplitude for traveling wave problem with wind. Density ratio 813:1.
Velocity extrapolation is disabled (“semi-implicit ghost fluid” method)
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Figure 15: Capillary Instability. Two-phase sharp interface method. ρL/ρG = 816,
µL/µG = 64. Grid resolution is 64x128.
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Figure 16: Capillary Instability. Single-phase sharp interface method. ρL/ρG = 816,
µL/µG = 64. Grid resolution is 64x128.
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Figure 17: Comparison of our numerical results (two-phase sharp interface method)
with experimental/benchmark results. Upper left: Bhaga & Weber (figure 2, bubble
(d)). Upper right: Bhaga & Weber (figure 3, bubble (d)). Lower left: Hnat &
Buckmaster. Lower right: Ryskin & Leal.
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Figure 18: Comparison of our numerical results (two-phase semi-implicit ghost fluid
method) with experimental/benchmark results. Upper left: Bhaga & Weber (figure
2, bubble (d)). Upper right: Bhaga & Weber (figure 3, bubble (d)). Lower left: Hnat
& Buckmaster. Lower right: Ryskin & Leal.
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Figure 19: Full 3d computations of a rising gas bubble in liquid. Physical properties
correspond to the D = 12.15 case in Hnat and Buckmaster. Left: side. Right:
bottom.
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Figure 20: Full 3d computations of a rising gas bubble in liquid. Physical properties
correspond to the Figure 3d case in Bhaga and Weber. Left: side. Right: bottom.
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Figure 21: Bubble formation computed using two-phase sharp interface method. Noz-
zle radius 8.5E− 4m. Inflow velocity 0.44m/s. Density ratio 1015 : 1, Viscosity ratio
6923 : 1.
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Curvature "C"

curvature "A"

curvature "B"

Figure 22: The volume fractions in the following 3x7 stencil are used to approximate
curvature “A” to second order accuracy. In order to compute curvature “B” to second
order accuracy, one must linearly interpolate between curvature “A” and curvature
“C”.
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Figure 23: Stencil for calculating the curvature in cell (i, j) when the level set function
changes sign between cells (i, j) and (i, j + 1). The shaded area corresponds to the
vertical sum of the volume fractions, ∆x∆y

∑j+3
J=j−3 Fi,J , and the shaded area also

corresponds to the integral of the height function h(x),
∫ xi+1/2
xi−1/2

h(x)dx+ C(j).
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