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The optimized high-order Dispersion-Relation-Preserving finite difference scheme is extended so as to be able
to compute multiple-scales aeroacoustics problems effectively and efficiently. It is proposed that a multi-size
mesh is used in the computation. In implementing the time marching scheme, the computation domain is first
partitioned into a number of subdomains. In each subdomain, a single size mesh is used. The mesh size of
adjacent subdomain changes by a factor of two. The time step of adjacent subdomains also changes by the same
ratio. This choice serves not only to maintain numerical stability but also to avoid unnecessary computations in
regions with large size mesh. To pass information between subdomains, special optimized stencils are used at
the subdomain interface region. Because rapid changes takes place at the mesh-size-change interfaces, they are
likely sources of spurious numerical waves. To prevent the generation and spreading of spurious numerical
waves, special artificial selective damping terms are developed for inclusion in the discretized scheme. As an
illustration of the efficacy of the multi-size-mesh multi-time-step scheme, it is applied to the simulation of an
automobile door cavity tone problem. The computed tone frequencies are found to agree well with experimental
measurements.
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1. INTRODUCTION

Most aeroacoustics problems involve multiple length
and time scales. In many problems, the intrinsic sizes
and scales of the noise sources are an order of
magnitude smaller than the acoustic wave length.
This large disparity in length scales leads to the
classical multiple-scales problem. In jets, the fine
scale turbulence or small eddies generate the
dominant component of noise that radiates to the
sideline directions. The eddies are very small
compared to the diameter of the jet. The acoustic
wave lengths, on the other hand, are typically more
than one jet diameter long. Thus, there is a large
difference among these characteristic lengths.
Sometimes an aeroacoustics problem becomes a
multiple-scales problem because of the change in the
physics governing the problem in different parts of
the domain. A good example is the shedding of
vortices at the edge of a resonator or a solid edge
induced by high intensity incident sound waves.
Away from the solid surface the fluid is practically
inviscid. But viscous effect dominates in the wall
region. The oscillatory motion of the incident sound
waves induces a very thin viscous layer called the
Stokes layer on the solid surface. The Stokes layer

rolls up at the edge of a solid surface into vortices
that shed periodically. To simulate the vortex
shedding process computationally, it is necessary to
use very fine mesh on the solid surface and around
the edge to resolve the Stokes layer. But away from
the solid surface, a coarse mesh with, say, 7 to 8
mesh points per acoustic wave length is all that is
needed to capture the sound waves accurately.

One effective way to treat a multiple-scales
problem is to use a multi-size mesh. The computation
domain is first divided into subdomains. The mesh
size is uniform in each subdomain but changes from
subdomain to subdomain. Figure 1 shows a typical
multi-size mesh. In this case, the mesh size changes
by a factor of 2 across the mesh-size-change
interface. A factor of 2 change in the mesh size is not
an absolute necessity. Experience indicates that it is a
good choice, because a larger change may result in a
strong artificial discontinuity at the interface. Such a
strong discontinuity is undesirable for it tends to
become a source of spurious numerical waves and
even numerical instability. On the other hand, a
smaller change may require several steps of changes
to achieve the same total change in mesh size. This
will give rise to a large number of mesh-size-change
interface, which is also undesirable.



Figure 1. Special stencils for use in the mesh-size-change buffer
region. • mesh points at which finite difference approximation of
spatial derivatives is to be found. ¥ stencil points. °  points used
for interpolation.

When a different size mesh is used, it has a
significant impact on the time steps used in a
computation. It is well known that numerical
instability requirement links Dt, the time step, to the
mesh size Dx, typically by the CFL number. If one
uses a single time step marching scheme such as the
Runge-Kutta method, then D t is dictated by the
smallest size mesh. This results in an inefficient
computation. The optimum situation is to use a Dt
that meets the local numerical stability requirement.
In such an arrangement, most of the computation is
concentrated in regions with the finest mesh, as it
should be. In the coarse mesh region, the solution is
updated only occasionally with a much larger time
step. We will refer to this type of algorithm as “multi-
size-mesh multi-time-step” schemes. If the mesh-size
change is a factor of 2 across mesh block interface,
the time step should also change by a factor of 2 to
maintain numerical stability. For multi-level time
marching schemes, the use of multiple time steps
with a factor of 2 change between adjacent mesh
block is easy to arrange. This will be discussed in this
paper.

In carrying out a multi-size-mesh multi-time-step
computation, the computation scheme in each of the

uniform mesh subdomain is the same as if a single
size mesh is used throughout the entire computation
domain. The exception is for a narrow buffer region
at the subdomain interface. In the buffer region,
special stencils are to be used so that information on
the solution can be transmitted through accurately.
Also, as stated before, any surface of discontinuity,
no matter if it is a mesh-size-change interface or an
internal or external boundary, is a likely source of
short spurious numerical waves. To suppress the
generation of these unwanted waves, special artificial
selective damping stencils must be incorporated into
the computation scheme for mesh points in the
interface region.

Because of the need to propagate waves over long
distances, computational aeroacoustics (CAA)
schemes must ideally be nondispersive and
nondissipative. To meet these requirements, the use
of high-order schemes becomes a necessity. In the
literature, there are a number of high-quality high
order schemes (Hirsh, 1975; Lele, 1992; Casper,
1994; Gaitonde et al., 1997; Gaitonde and Visbal,
1999). Recently Tam and Webb (1993) developed a
high-order finite difference method known as the
Dispersion-Relation-Preserving (DRP) scheme
specifically designed for CAA and wave propagation
applications. The scheme is a central difference
scheme and thus has no intrinsic numerical damping.
Numerical dispersion is controlled by the group
velocity of the numerical method. The stencil
coefficients of the DRP scheme are chosen not only
to ensure that the computation has a wide resolved
bandwidth in wavenumber space but also the group
velocity is equal to wave propagating velocity of the
physical system. One unique characteristic of the
scheme is that it would automatically preserve the
dispersion relations of the partial differential
equations in the resolved range of wavenumber and
frequency. This assures that the wave mode
supported by the original equations are reproduced
faithfully by the finite difference equations. In this
paper the DRP scheme will be used in each of the
subdomains. Special stencils needed at the buffer
region of the mesh-size-change interface will be
designed by an optimization procedure similar to the
approach of Tam and Webb. These stencils will also
possess the dispersion relation preserving
characteristic. Thus the resulting algorithm is a truely
multi-size-mesh multi-time-step DRP scheme.

The rest of this paper is as follows. In Section 2,
the design of special spatial stencils for the buffer
region will be discussed. Optimized stencil
coefficients are determined. The wave propagation
characteristics of the stencils as well as their
accuracies in wavenumber space are examined. In
Section 3, a multi-time-step marching scheme is



formulated. The use of multi-time-step method is
capable of reducing the computation time of some
problems by a large factor. Details of how multi-
time-step is to be implemented are described.

Artificial selective damping stencils for the buffer
region are considered in Section 4. Optimized
damping stencil coefficients are provided. Finally,
the multi-size-mesh multi-time-step DRP scheme is
applied to the study of tone generation induced by
flow over an automobile door cavity. This example
serves to illustrate a practical application of the
computational method.

2. SPATIAL STENCILS FOR USE IN MESH-
SIZE-CHANGE BUFFER REGION

If a factor of two increase in the mesh size between
adjacent blocks is used, then every other mesh line in
the fine mesh block continues into the coarse mesh
block as shown in figure 1. The remaining set of
mesh lines terminates at the mesh-size-change
interface (see figure 1). To compute the x-derivative
for points on the coarse grid, including points on the
interface such as point A , the 7-point central
difference DRP scheme may be used even though
part of the stencil is extended into the fine mesh
region. For mesh points on the fine grid, again the 7-
point central difference DRP scheme may be used
except for the first three columns (or rows) of mesh
points right next to the coarse grid. For points on the
continuing mesh lines such as points B  and C  in
figure 1, special central difference stencils as
indicated are to be used. These stencils may be
written in the form,
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To find the stencil coefficients 
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a j
B  and 
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a j
C  (j=–3 to

3), the optimization procedure of Tam and Webb
(1993) will be followed. Now first consider the
stencil for point C. It will be assumed that f(x) has a
Fourier transform 

† 

˜ f (a)  with absolute value 
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and argument 
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f(a) ; i.e.,
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A a( ) = ˜ f a( ) ,        f a( ) = arg ˜ f a( )[ ].

The Fourier transform may be written as,
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f x( ) = A a( )ei[ax+f (a )]
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In other words, f(x) is made up of a superposition of
simple waves, fa(x), of the form,

† 

fa x( ) = ei[ax+f (a )] (4)

weighted by

† 

A(a) . We may now examine the
approximation (2) on each simple wave component
of f(x). Upon substituting fa(x) into (2), the finite
difference approximation becomes,

† 

afa x( ) @ a fa x( )

where
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a =
2

Dx
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C sin aDx( ) + a2
C sin 2aDx( )[

+a3
C sin 4aDx( )]

(5)

is the wavenumber of the finite difference stencil. In
deriving (5), the antisymmetric condition,

† 

a- j
C = -a j

C , has been invoked.

We will impose the condition that (2) or (5) be of
order (Dx)4 accurate. By means of Taylor series
expansion, this condition yields the following
restrictions on the stencil coefficients,
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The coefficients will now be chosen so that the
error of using 
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a Dx  to approximate 

† 

aDx  over the
band of wavenumber |a Dx |<k , E , is minimum
subjected to the conditions (6). For this purpose, the
error is defined as
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The condition for a minimum is given by (after
eliminating 
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a2
C  and 
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a3
C  by (6)
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An extensive numerical study of the effects of the
choice of k  on 

† 

a (a)  and 

† 

da / da  has been carried
out. Based on the numerical results, it is deemed that
a good choice of the values of k  is 1.0. For this
choice of k the stencil coefficients are,
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.

Figures 2 and 3 show the corresponding 

† 

a (a)  and

† 

da / da  curves. The resolution and dispersion



characteristics of the stencil lie in-between those of
the central difference DRP scheme on the two sides
of the interface.

Figure 2. Dependence of 

† 

a Dx  on aDx for stencil C. k =1.0.

Figure 3. The d(

† 

a Dx )/d(aDx) curve for stencil C. k =1.0.

On proceeding as for stencil C , the stencil
coefficients for stencil B may be found. For this case,
it is recommended that the value k=0.85 be used. The
stencil coefficients are,
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B = 0.595328177715

a2
B = -a-2
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.

Figure 4. Dependence of 

† 

a Dx  on aDx for stencil B. k =0.85.

Figure 5. The d(

† 

a Dx )/d(aDx) curve for stencil B. k =0.85.

Figures 4 and 5 show the corresponding 

† 

a (a)  and

† 

da / da  curves for this stencil. Again the resolution
and dispersion characteristics lie in-between those of
the central difference DRP scheme on the two sides
of the interface.

For mesh points lying on the terminating mesh
lines such as points A’, B’ and C’ of figure 1, the
same stencils as for A , B  and C  may be used,
However, the stencils extend into points in the coarse
mesh region where the solution is not computed. To
obtain the values of the solution at these points, such
as point D , it is recommended that interpolation be
used. The interpolation stencil, a symmetric
optimized stencil is preferred (see Tam and
Kurbatskii, 2000a), makes use of the values of the
adjacent six mesh points, D1 to D6, as shown in figure



1. In actual computation, the interpolation step is
executed only after the solution on the coarse mesh
region has been advanced by a time step. The
interpolated values allow the solution on the fine
mesh side to continue advancing in time.

3. TIME-MARCHING STENCIL FOR USE IN
MESH-SIZE-CHANGE BUFFER REGION

The time marching step, Dt, is constrained by the
numerical stability or accuracy requirement of a
computation scheme. In general, the stability or
accuracy requirement links Dt directly to the mesh
size Dx. Thus in a region with large mesh size, a large
Dt may be used. When more than one mesh size is
used. The optimum strategy is to use the largest time
step permissible in each region. It follows, if the
mesh size changes by a factor of two in adjacent
domains, the time step should also change by the
same ratio. Figure 6 shows the time levels of the
computation in the mesh-size-change buffer region.
In the fine mesh region on the left, the time step is Dt.
In the coarse mesh region on the right, the time step
is 2Dt. Effectively, the fine mesh region is computed
twice as often as the coarse mesh region.

Figure 6. Special time-marching stencil for use in the mesh-size-
change buffer region. ° mesh point at which solution is to be
found at half-time level. ƒ stencil points.

Suppose the solution is known at time level n (see
figure 6), the solution in the fine mesh region may be
advanced by a time step Dt to time level (n+(1/2)) in
the usual way. Once this is completed, the next step
is to advance the solution to time level (n+1) in both
the fine and coarse mesh regions. It is straightforward
to carry out this step in the coarse mesh region by
using the solution on time levels n, (n–1), (n–2) and
(n–3). However, for points in the buffer region on the
fine mesh side, the stencils extend into the coarse
mesh region. However, there is no information at the
(n+(1/2)) time level at these points on the coarse
mesh side. To provide the needed information of the

solution, it is necessary to compute the solution at the
time level (n+(1/2)) for the first two rows or columns
of the mesh point on the coarse mesh side based on
the solution at time levels n, (n–1), (n–2) and (n–3).
To advance the solution by a half time step as shown
in figure 6, the following four level scheme may be
used.
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where K=du/dt is given by the governing equation.
(l,m) are the spatial indices.

To find the stencil coefficients 

† 

b j
* of (9), one may

consider u to be made up of a Fourier spectrum of
simple harmonic components of the form e–iwt where
w  is the angular frequency. The effect of time
marching algorithm (9) on each Fourier component
of frequency w  can be analyzed by substituting

  

† 

u(l,m)
(n) = u(l,m) (t) = Ae-iwn(2Dt)  into (9). It is easy to

find,
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Since dul,m/dt=–iwul,m, the factor, on the right side of

(10) multiplying ul,m, must be equal to 

† 

-iw  to where

† 

w  is the angular frequency of the time marching
finite difference scheme. Thus one finds,
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There are four coefficients, namely, 
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*. Here the condition that 
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w @ w  be accurate to
order (Dt)2 is imposed. By expanding (11) by Taylor
series, it is straightforward to find that the four
coefficients are related by the following three
conditions.
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There is no loss of generality in assuming that b0 is
the remaining free parameter. The value of b0 is



chosen so that 

† 

w  is a good approximation of w over
the frequency band –l≤wDt≤ l. This is done by
minimizing the integral
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E b0( ) = s Re w Dt( ) - wDt[ ]{ 2
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             + 1- s( ) Im w Dt( )[ ]2} d wDt( )

(15)

where s is the weight parameter. The condition for
minimization is dE/db0=0.

A numerical study of the real and imaginary parts
of 

† 

(w Dt - wDt)  for different choice of l and s  has
been carried out. Based on the results of this study,
the values l=0.5 and s=0.42 are chosen for use. For
this choice of parameters, the optimized coefficients
are,
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b0
* = 0.773100253426

b1
* = -0.485967426944

b2
* = 0.277634093611

b3
* = -0.064766920092

.

Figure 7. The dependence of the seven roots of wDt on 

† 

w Dt . (a)
Real part. (b) Imaginary part.

For a given 

† 

w Dt , (11) yields 7 roots of wDt. As in
the original DRP scheme, only one of the roots yields
the physical solution. All the other roots are spurious
and should be damped if the scheme is to be stable.
Figure 7 shows the dependence of the roots on 

† 

w Dt .
The scheme is stable if 

† 

w Dt <0.88. If 

† 

w Dt  is
restricted to less than or equal to 0.19, then the
damping rate, Im(wDt), of the physical root is less
than 0.78¥10–5, which is quite small. The accuracy of

this scheme when restricted to this range is
comparable to that of the standard DRP scheme.

4. ARTIFICIAL SELECTIVE DAMPING

In numerical computation, surfaces of discontinuity,
such as at a mesh-size-change interface, are potential
sources of spurious numerical waves. For this reason,
it is necessary to add artificial selective damping in
the buffer region of the interface. For points A and A’
the 7-point damping stencils discussed in Tam, Webb
and Dong (1993) and Tam (1995) may be used. For
points B or B’, C or C’ special damping stencils are
necessary.

Consider the x -momentum equation of the
linearized Euler equations.
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The discretized form of (16) at point B including the
artificial selective damping terms is
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where the damping stencil coefficients satisfy the
symmetric condition 
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d- j
B = d j

B . n a is the artificial

kinematic viscosity. Dx is the mesh size at B.
Let u be a single Fourier component   
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ˆ u (t)eialDx .
Substitution into (17) yields
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Upon integration, it is found
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u ~ e
-naDB (aDx) t

(Dx )2
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where the damping function DB(aDx) is given by,
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As in Tam, Webb and Dong (1993), we will require
that there is no damping if u  is a constant (or
aDxÆ0). This leads to
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The normalization condition is DB(p)=1.0 or
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In addition, it is intended to select the remaining
parameters such that (20) is a good approximation to
a Gaussian function of half width s  centered at
aDx=p. Specifically, the integral

† 

DB aDx( ) - e-(ln 2)(aDx-p /s )2[ ]2

0

k

Ú d aDx( )

is to be minimized. Numerical experiments suggest
that a good choice of k and s are:

† 

k = 0.8,        s = 0.2p . (23)

This yields the following damping stencil
coefficients,
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d0
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d1
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d2
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B = 0.052389707989

d3
B = d-3

B = -0.007412214693

. (24)

The damping function corresponding to this stencil is
shown in figure 8.

On following the above steps, the coefficients of
the damping stencil for points C or C’ may be found.
In this case, numerical experiments suggest the
choice of k=0.7 and s=0.2p. The damping stencil
coefficients are,
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d0
C = 0.350576727483

d1
C = d-1

C = -0.25

d2
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C = 0.0788677598279

d3
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. (25)

Figure 8. Damping function for stencil B. k =0.8, s=0.2p.

The damping function is shown in figure 9.

Figure 9. Damping function for stencil C. k =0.7, s=0.2p.

Spurious numerical waves are often generated at
the mesh-size-change interface. For boundary layer
or similar problems, the mesh size is reduced toward
the wall. This mesh arrangement could lead to the
amplification of short spurious waves as described
below. The continuous reduction of mesh size toward
the wall makes it possible for grid-to-grid oscillations
to be trapped between one of the nested mesh layers
and the wall. This provides an environment for the
grid-to-grid oscillations to grow. If left unchecked, it
could lead to numerical instability. For a nested mesh
layer of this category, artificial selective damping
must be included across the entire layer. For an
estimate of the magnitude of the mesh Reynolds
number that should be imposed in the computation, it
is noted that for grid-to-grid oscillations (aDx=p), the
time, T, taken for the short waves to propagate from
one side of the layer to the other side, is equal to the
distance travelled divided by the speed of
propagation. Here the group velocity of the spurious
grid-to-grid oscillations is taken to be approximately
equal to twice the speed of sound a0.

† 

T =
NDx
2a0

(26)

where N  is the number of mesh points across the
width of the layer, Dx is the mesh size. The total
damping in this time period is given by (19) with
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˜ D (p ) = 1.0 ; i.e.,
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e
- naT

(Dx )2
= e- N

2RD (27)

where RD=Dxa0/na is the mesh Reynolds number. It is
desirable to have this factor equal to 10–2 or less. On
setting the factor of (27) to 10–2, a criterion for the



choice of the mesh Reynolds number is established,
namely,

† 

N
RD

≥ 9.2 . (28)

As an example, if the layer has 20 mesh points,
N=20, then 

† 

RD
-1 ≥ 0.46 , say 0.5, should be used. This

value is much larger than the value recommended for
general background damping, which is

† 

RD
-1 ≥ 0.05 .

(Note: away from the solid boundaries a smaller and
smaller inverse mesh Reynolds number should be
used.) Formula (28) also suggests that any uniform
subdomain in a multi-size-mesh computation should
not have much fewer than 20 mesh points. This is to
avoid the necessity of using excessively large
artificial damping.

5. APPLICATION

To illustrate the effectiveness of multi-size-mesh
multi-time-step computing, the automobile door
cavity tone problem of the Third CAA Workshop on
Benchmark Problems is considered (Dahl, 2000).

The benchmark problem specifies a turbulent
boundary layer flow over the cavity. To properly
model and compute the turbulent boundary layer flow
and its interaction with the cavity is a task that will
require extensive time and effort. Here a laminar
boundary layer is considered instead. It is believed
that the cavity tone frequency would most likely be
about the same whether the flow is turbulent or
laminar, but the tone intensity is expected to be
different.

A boundary layer flow will definitely be laminar if
Rd*<600. This is the Reynolds number below the
stability limit of the Tollmien-Schlichting waves. In
modern facilities with low free stream turbulence and
sound, a boundary layer may remain laminar if Rd* is
larger than 600 but less than 3400. For a free stream
velocity of 50.9m/s and 26.8m/s (velocities
prescribed by the benchmark problem), this
corresponds to a boundary layer thickness of 2.9mm
and 5.5mm, respectively. In this investigation, we
will, therefore, restrict our consideration to a
boundary layer thickness of 2mm and 1mm for flow
velocities of 50.9m/s and 26.8m/s.

5.1. The Computation Domain and Grid Design

The computation domain is shown in figure 10. It is
designed primarily for the case U=50.9m/s and a
boundary layer thickness d=2mm. In the actual
computation, the outside dimensions of the

computation domain change somewhat with flow
velocity and boundary layer thickness.

In the cavity opening region, viscous effects are
important. To capture these effects, a fine mesh is
needed. Away from the cavity, the disturbances are
mainly acoustic waves. By using the Dispersion-
Relation-Preserving (DRP) scheme in the
computation, only a very coarse mesh would be
necessary in the acoustic region. The mesh design is
dictated by these considerations. The computation
domain is divided into a number of subdomains as
shown in figure 10. The finest mesh with
Dx=Dy=0.0825mm is used in the cavity opening
region. The mesh size increases by a factor of 2 every
time one crosses into the next subdomain. The mesh
size in the outermost subdomain is 32 times larger
than the finest mesh.

Figure 10. Computation domain showing the division into sub-
domains and their mesh size. D=3.3mm.

5.2. The Governing Equations and the
Computational Algorithm

The governing equations are the compressible
Navier-Stokes equations in two-dimensions.
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In this study, the above equations are solved in
time by the multi-size-mesh multi-time-step DRP
algorithm. In each subdomain of figure 10, the
equations are discretized by the DRP scheme of Tam
and Webb (1993). At the mesh size change
boundaries, special stencils as given in Section 2 are
used. The time-steps of adjacent subdomains differ
by a factor of 2 just as the mesh size. By using the
multi-size-mesh multi-time-step algorithm most of
the computation effort and time are spent in the
opening region of the cavity where the resolution of
the unsteady viscous layers is of paramount
importance.

5.3. Artificial Selective Damping

Artificial selective damping is added to the time
marching DRP scheme to eliminate spurious short
waves and to prevent the occurrence of numerical
instability. The damping stencil with a damping
curve of half-width 0.2p  is used for background
damping. Near the solid walls or the outer boundaries
where a 7-point stencil does not fit, a 5- or 3-point
stencil as provided in by Tam (1995) is used instead.
For general background damping an inverse mesh
Reynolds number (

† 

RD
-1 = n a /(a•Dx) where na is the

artificial kinematic viscosity and a∞ is the speed of
sound) of 0.05 is used everywhere. Along walls and
mesh change interfaces, additional damping is
included. The added damping has an inverse mesh
Reynolds number distribution in the form of a
Gaussian function with the maximum value at the
wall or interface and a half-width of four mesh
points. On the wall, the maximum value of 

† 

RD
-1  is set

equal to 0.15. The corresponding value at a mesh-
size-change interface is 0.3. There are three external
corners at the cavity opening. They are likely sites at
which short spurious waves are generated. To prevent
numerical instability from developing at these points,
additional artificial selective damping is imposed.
Again a half-width of 4 mesh point Gaussian
distribution of the inverse mesh Reynolds number
centered at each of these points is used. The
maximum value of 

† 

RD
-1  at these points is set equal to

0.35. By implementing artificial selective damping
distribution as described, it is our experience that no
numerical instability nor excessive short spurious
waves have been found in all the computations.

5.4. Numerical Boundary Conditions

Along the solid surfaces of the cavity and the outside
wall, the no-slip boundary condition is enforced by
the ghost point method of Tam and Dong (1994).

Along the external boundary region (3 mesh points
adjacent to the boundary), the flow variables are split
into a mean flow and a time dependent component.
The mean flow, with a given boundary layer
thickness, is provided by the Blasius solution. The
time dependent part of the solution is the only portion
of the solution that is computed by the time marching
scheme (for the split variable method, see Tam
(1998)). The boundary conditions used for the
computation are as follows. Along the top and left
external boundaries the asymptotic radiation
boundary conditions of Tam and Webb (1993) are
imposed. Along the right boundary, the outflow
boundary conditions (Tam and Webb, 1993) are used.

5.5. Numerical Results

In this work, the time-marching computation uses the
time independent boundary layer solution without the
cavity as the initial condition. Computation continues
until a time periodic state is reached.

Figure 11. Instantaneous vorticity contours showing the shedding
of small vortices at the trailing edge of the cavity. U=50.9m/s,
d=2mm.

The characteristic features of the flow in the
vicinity of the cavity opening and the acoustic field
can be found by examining the instantaneous
vorticity, steamlines and pressure contours. Figure 11
shows a plot of the instantaneous vorticity contours
for the case U=50.9m/s and d=2.0mm. As can easily
be seen, vortices are shed periodically at the trailing
edge of the cavity. Some shed vortices move inside
the cavity. Other vortices are shed into the flow
outside. The shed vortices outside are convected
downstream by the boundary layer flow. These
convected vortices are clearly shown in the pressure
contour plot of figure 12. They form the low pressure
centers. These vortices persist over a rather long
distance and eventually dissipated by viscosity.



Figure 13 shows the instantaneous streamline pattern.
It is seen that the flow at the mouth of the cavity is
completely dominated by that of a single large
vortex. Below the large vortex, another vortex of
opposite rotation often exists. The position of this
vortex changes from time to time and does not
always attach to the cavity wall. The far field
pressure contour pattern is shown in figure 14. This
pattern is the same as that of a monopole acoustic
source in a low subsonic stream. That the noise
source is a monopole and not a dipole is consistent
with the model of Tam and Block (1978). The sound
is generated by flow impinging periodically at the
trailing edge of the cavity.

Figure 12. Near field pressure contours showing the convection of
shed vortices along the outside wall. U=50.9m/s, d=2mm.

Figure 13. Instantaneous streamline pattern. U=50.9m/s, d=2mm.

Figure 14. Far field pressure contours showing a monopole
acoustic field. U=50.9m/s, d=2mm.

5.6. Noise Spectrum

Experiments indicate that cavity resonance may
consist of a single tone or multiple tones. The number
of tones found depend on the flow conditions and the
cavity geometry. Figure 15 shows the noise spectrum
measured at the center of the left wall of the cavity at
U=50.9m/s, d=2mm. The spectrum consists of a
single tone at 1.99KHz.

Figure 15. Noise spectrum at the center of the left wall of the
cavity. U=50.9m/s, d=2mm ——— numerical simulation, ………
experiment (Henderson).

Figure 16. Noise spectrum at the center of the left wall of the
cavity. U=26.8m/s, d=1mm ——— numerical simulation, ………
experiment (Henderson).

Shown in this figure also is the experimental
spectrum measured by Henderson (2000). There is
good agreement between the tone frequency of the
numerical simulation and that of the physical
experiment. In the experiment, the boundary layer is
turbulent, therefore, we do not expect good
agreement in the tone intensity. Figure 16 shows the
noise spectrum at the lower speed U=26.8m/s and



d=1mm. In this case, there are two tones. One is at a
frequency of 1.32KHz and the other at 2.0KHz. This
is in fair agreement with the experimentally measured
spectrum. Again, the tone frequencies are reasonably
well reproduced in the numerical simulation. But the
tone intensities are different. Figures 15 and 16
together suggest that as the flow velocity increases,
one of the tones disappears. The strength of the
remaining tone intensifies with flow speed.

6. CONCLUDING REMARKS

Most aeroacoustics problems are, by nature, multiple-
scales problems. In this paper, the Dispersion-
Relation-Preserving (DRP) scheme of Tam and
Webb (1993) is extended specifically for the solution
of such a class of problems. The extended scheme
involves the use of multi-size-meshes and multi-time-
steps in different regions of the computation domain.
By adopting multi-size meshes, optimal local spatial
resolution can be achieved. By employing multi-size
time steps, not only local numerical stability
requirement can be met, but also overall computation
efficiency can be drastically improved. The use of
multi-time-steps appears to be new. It distinguishes
the present method from most other CAA/CFD
methods in the literature. The present method retains
the dispersion relation preserving property of the
original DRP scheme. This important feature assures
that when solving the Euler equations or a set of
partial differential equations, the wave modes of the
discretized system are good approximations of the
original continuous system.

The present paper is a fuller description of the
multi-size-mesh multi-time-step DRP scheme
developed and improved over a period of time at the
Florida State University. The scheme, in one form or
the other, has been used to solve a host of practical
CAA problems including the numerical simulation of
the jet screech phenomenon (Shen and Tam, 1998,
2000) and the investigation of resonant acoustic liner
dissipation mechanism (Tam and Kurbatskii, 2000b,
Tam et al., 2001). Experience indicates that when the
method is applied in conjunction with a properly
designed computation mesh, very efficient
computation and accurate results are obtained. It is
particularly useful for the solution of wave generation
and propagation problems.
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