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Abstract

In elastic shape analysis, a representation of a shape is invariant to translation, scaling,
rotation and reparameterization, and important problems such as computing the distance and
geodesic between two curves, the mean of a set of curves, and other statistical analyses require
finding a best rotation and reparameterization between two curves. In this paper, we focus on
this key subproblem and study different tools for optimizations on the joint group of rotations
and reparameterizations. We develop and analyze a novel Riemannian optimization approach
and evaluate its use in shape distance computation and classification using two public data sets.
Experiments show significant advantages in computational time and reliability in performance
compared to the current state-of-the-art method. A brief version of this paper can be found in
[HGSA14].

Keywords: Elastic shape; Square root velocity function; Elastic closed curves; Dynamic pro-
gramming; Riemannian optimization; Riemannian quasi-Newton;

1 Introduction

Shape analysis of curves plays an important role in a variety of imaging applications. The basic
idea is to isolate contours of objects in images (2D or 3D) and use the shapes of these contours
to characterize the original objects. Hence, there is a great interest in tools for shape analysis of
planar, closed contours. Many approaches to shape analysis have been proposed in the literature
and used to varying degrees of success in applications, e.g., point-based methods, domain-based
shape representations and parameterized curve representations. A large majority of past work on
statistical shape analysis has been using landmark-based descriptions [DM98]. In this setup, one
samples contours with a fixed number of points in a pre-determined way, e.g., using uniform spacing,
and the ensuing analysis is based on Euclidean analysis of vectors of landmarks. A consequence of
this analysis is that the registration of landmarks—which points on one contour match with which
points on the other—is already predetermined. This often results in matching parts across shapes
that have different geometrical features. An important solution to this and related problems in
shape analysis of contours came in the form of elastic shape analysis which has become increas-
ingly important in recent years due to its superior theoretical basis and empirically demonstrated
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2
effectiveness. In elastic shape analysis of contour, the objects of study are parameterized contours
and, in pairwise comparisons, one solves for the optimal reparameterizations of contours using an
appropriate metric. Figure 1 shows geodesics between two closed curves with and without reparam-
eterization, and using reparameterization clearly gives a more natural transformation between the
two curves. More abstractly, elastic shape analysis leads to shape metrics and statistical summaries
of shapes that are invariant to the original parameterizations of the contours. The flexibility in
parameterizations of curves helps in improving matching of parts across shapes and has the effect of
stretching/bending the curves in optimally deforming one into the other—hence, the name elastic
shape analysis. Such a framework was first introduced for general 2D curves by Younes [You98]
and later studied by several groups. Klassen et al. [KSMJ04] narrowed the focus by studying shape
analysis of closed, planar curves but did not allow the curves to have arbitrary parameterizations.
Younes et al. [YMSM08] focused on elastic analysis of closed curves using complex representations
of 2D coordinates of curves. Srivastava et al. [SKJJ11] further extended this analysis to include
curves in general Euclidean spaces by introducing a novel mathematical representation called the
square root velocity functions (SRVFs).

An important advantage of SRVFs was that their usage transformed a complicated elastic Rie-
mannian metric into the more standard L2 metric. Naturally, it preserved the isometry property
of the elastic metric despite simplification. The isometry property is that if any two curves are
reparameterized by the same function, then the resulting distance between them under the elastic
metric does not change. Thus, one can define reparameterization (and rotation) orbits of given
contours as equivalence classes from the perspective of shape analysis, and induce the L2 norm
from the SRVF representation to a quotient space modulo rotation and reparameterization. This
leads to a definition of shape distance between any two curves as the distance between the corre-
sponding orbits in the quotient space. The accurate and efficient computation of distance between
shapes of two curves is a fundamental operation in elastic shape analysis, upon which many other
important tasks depend. This typically involves solving an optimization problem on the joint space
of reparameterizations and rotations. In this paper, we focus on this important subproblem in
elastic shape analysis and study different tools for optimizations on the joint group. We develop
and analyze a novel optimization approach to solving for optimal reparameterizations and rota-
tions between two curves and evaluate its use in computing the distance between two curves and
for classification of closed curves in the plane.

This paper is organized as follows. Section 2 presents the Riemannian framework for shape
analysis including the definition of the elastic metric for open and closed curves in Rn. Section 3
presents the algorithm of Srivastava et al. [SKJJ11], the approximations upon which it is based
and its core dynamic programming algorithm. The proposed Riemannian approach to the solution
of the optimization problem that defines the elastic metric evaluation is derived in Section 4,
and a detailed discussion of its implementation using Riemannian optimization algorithms follows
in Section 5. Empirical evaluation of the relative efficiency and effectiveness of the methods is
presented in Section 6, and our conclusions are given in Section 7.
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geodesic without reparameterization

geodesic with reparameterization

Figure 1: Geodesics without and with reparameterization are given by the frameworks of landmark-
based Kendall’s shape analysis [Ken84, DM98] and elastic shape analysis [SKJJ11] respectively.

2 Riemannian Framework and Problem Statement

2.1 Curve Representation

The derivation of the basic representation of a shape begins with a parameterized curve, i.e.,
β(t) : D → Rn, where D is the domain of the curve — D = [0, 1] for an open curve and D = S1,
i.e., the unit circle in R2, for a closed curve — and β is a smooth function on D. The shape is
taken to be invariant with respect to rescaling, translation, and rotation for inelastic shape analysis,
while elastic shape analysis adds invariance with respect to reparameterization. All four invariants
must be taken into account when developing a representation that supports efficient and robust
computation.

The framework of Srivastava et al. [SKJJ11] uses the square root velocity (SRV) function

q(t) =

{
β̇(t)√
∥β̇(t)∥2

, if ∥β̇(t)∥2 ̸= 0;

0, if ∥β̇(t)∥2 = 0.

as the basis for elastic analysis of a shape defined by the parameterized curve β(t). Observe that
β̇(t) can be recovered from q(t) by β̇(t) = ∥q(t)∥2q(t). Translation is removed automatically by the
use of β̇(t) in the definition. Rescaling is removed by the normalization of the length of the curve
to 1. Since the length of a curve, β(t), is

∫
D ∥β̇(t)∥2dt =

∫
D ∥q(t)∥

2
2dt, the normalization requires

that
∫
D ∥q(t)∥

2
2dt = 1, and the set of all SRV functions is the unit sphere in L2(D,Rn). This sphere

is called the preshape space. For open curves in Rn, the domain is D = [0, 1], and the preshape
space

lon =

{
q ∈ L2([0, 1],Rn)

∣∣∣ ∫ 1

0
∥q(t)∥22dt = 1

}
,

is the unit sphere of L2([0, 1],Rn). For closed curves, the domain is D = S1, and the preshape
space is

lcn =
{
q ∈ L2(S1,Rn)

∣∣∣ ∫
S1
∥q(t)∥22dt = 1,

∫
S1
q(t)∥q(t)∥2dt = 0

}
, (2.1)
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where

∫
S1 q(t)∥q(t)∥2dt = 0 is the closure condition. Note that the preshape space of closed curves

also can be written in a more intuitive expression:

lcn =
{
q ∈ L2([0, 1],Rn)

∣∣∣ ∫ 1

0
∥q(t)∥22dt = 1,

∫ 1

0
q(t)∥q(t)∥2dt = 0

}
(2.2)

and the closure condition requires β(0) = β(1). It is known that lcn is a submanifold of lon [SKJJ11,
Appendix]. In the later discussions, lcn denotes (2.2) rather than (2.1).

Removing rotation and reparameterization is required to define the shape space. This is done
by defining an appropriate quotient operation via isometric group actions. This, in turn, defines
the distance between curves, the associated optimization problem, and other key tasks such as
determining geodesics containing the two curves. Since the approaches taken differ for open and
closed curves, they are considered separately below. However, both approaches require the rotation
and reparameterization groups, and their actions. In these two definitions, Γ and ln are used to
indicate the reparameterization group and preshape space for both open and closed curves.

Definition 2.1. The rotation group for curves in Rn is

SO(n) =
{
O ∈ Rn×n|OTO = In, det(O) = 1

}
,

and its action is SO(n)× ln → ln : (O, q)→ Oq.

Definition 2.2. The reparameterization group for curves in Rn is

Γ = {γ : D→ D|γ ∈ D(D,D)},

and its action is ln×Γ→ ln : (q, γ)→ (q◦γ)
√
γ̇, where D(D,D) is the set of orientation-preserving,

absolutely continuous bijections.
Specifically, the reparameterization group for open curves lon is

Γo =
{
γ : [0, 1]→ [0, 1]|γ is absolutely continuous,

γ(0) = 0, γ(1) = 1, and γ̇(t) > 0 almost everywhere.
}
.

The reparameterization group for closed curves lcn is

Γc = [0, 1]× Γo,

and its action is therefore lcn×Γc → lcn : (q, (m, γ))→ (q̂ ◦ γ mod 1))
√
γ̇, where q̂(t) = (q,m)(t) :=

q(t+m mod 1).

We denote by γ−1 the reciprocal (also called inverse) of function γ. To avoid confusion, we use
1
γ for the pointwise numerical inverse.

2.2 Open Curves in Rn

The preshape space for open curves, lon, is a well-known infinite dimensional manifold. The tangent
space of q ∈ lon is

Tq l
o
n =

{
v ∈ L2([0, 1],Rn)

∣∣∣ ∫ 1

0
q(t)T v(t)dt = 0

}
.
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The Riemannian metric on lon can be taken as the endowed metric from the embedding space
L2([0, 1],Rn), i.e.,

⟨v1, v2⟩lon = ⟨v1, v2⟩L2 =

∫ 1

0
v1(t)

T v2(t)dt,

where v1, v2 ∈ Tq l
o
n. The distance function on lon induced by this Riemannian metric is

dlon(x, y) = cos−1 ⟨x, y⟩L2 . (2.3)

Observe that dlon
(
(x ◦ γ)

√
γ̇, (y ◦ γ)

√
γ̇
)
= dlon(x, y) for all γ ∈ Γo.

The shape space for open curves is given by the quotient

Lo
n = {[q]|q ∈ lon},

where the orbit [q] is the closure of the set

[q] = {O(q ◦ γ)
√

γ̇|(O, γ(t)) ∈ SO(n)× Γo},

and the closure is with respect to the L2 metric.
Another way to elaborate this is to first introduce a semigroup:

Γo
s = {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1,

γ is an absolutely continuous and non-decreasing function } .

It is shown in Theorem 2.1 that [q] is the orbit of q under the semigroup Γo
s and rotation group

SO(n) under the assumption that q−1(0n) has measure zero, where 0n ∈ Rn is the zero vector.

Theorem 2.1. Let [q]SO(n)×Γo
s
denote the orbit of q under the semigroup Γo

s and rotation group

SO(n). Then [q]SO(n)×Γo
s
⊆ [q]. Moreover, if q−1(0n) has measure zero, then [q]SO(n)×Γo

s
= [q].

Proof. See the appendix.

Now we can define a distance between orbits of Γo
s and SO(n), [q1] and [q2] as:

dLo
n
([q1], [q2]) = inf

γ1,γ2∈Γo
s,O1,O2∈SO(n)

dlon(O1(q1 ◦ γ1)
√

γ̇1, O2(q2 ◦ γ2)
√

γ̇2) .

By the definition of closure, elements in [q] can be approximated arbitrarily well by elements
in [q] with respect to L2 metric. Therefore, we have for any ϵ > 0, there exists a γ∗ ∈ Γo and an
O∗ ∈ SO(n) such that :

|dLo
n
([q1], [q2])− dlon(q1, O

∗(q2 ◦ γ∗)
√

γ̇∗)| < ϵ .

Note that since Γo and SO(n) are isometries, O and γ each can be associated with either q1 or
q2. While in the definition above both are associated with q2, it is shown below that there are
implementation and robustness reasons to associate O with q1 and γ with q2.

Our goal is to find such a pair (O∗, γ∗) ∈ SO(n) × Γo. Even though this will not be an exact
calculation of the shape distance, approximating dLo

n
([q1], [q2]) by

dlon(q1, O(q2 ◦ γ)
√
γ̇) = cos−1 ⟨q1, O(q2 ◦ γ)

√
γ̇⟩L2 , (2.4)

evaluated at (O∗, γ∗) gives an approximate distance for comparing shapes of curves in practical
situations.
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2.3 Closed Curves in Rn

The preshape space of closed curves, lcn, is a submanifold of lon, and the Riemannian metric inherited
from the embedding space is

⟨v1, v2⟩lcn = ⟨v1, v2⟩L2 =

∫
S1
v1(t)

T v2(t)dt.

The shape space for closed curves is

Lc
n = {[q]|q ∈ lcn},

where the orbit [q] is the closure of the set {O(q ◦ γ)
√
γ̇|(O, γ(t)) ∈ SO(n)× Γc}.

Proceeding as with open curves, a semigroup Γc
s = [0, 1]×Γo

s, that is closed under composition,
can be defined. It also can be shown in Theorem 2.2 that [q] is the orbit of q under the semigroup
Γc
s and rotation group SO(n).

Theorem 2.2. Let [q]SO(n)×Γc
s
denote the orbit of q under the semigroup Γc

s = [0, 1] × Γo
s and

rotation group SO(n). Then [q]SO(n)×Γo
s
⊆ [q]. Moreover, if q−1(0n) has measure zero and q is

absolutely continuous, then [q]SO(n)×Γo
s
= [q].

Proof. See the appendix.

The distance between orbits [q1] and [q2] of q1 and q2 under the semigroup Γc
s is

dLc
n
([q1], [q2]) = inf

γ1,γ2∈Γc
s,O1,O2∈SO(n)

dlcn(O1(q1 ◦ γ1)
√

γ̇1, O2(q2 ◦ γ2)
√

γ̇2),

and for any ϵ > 0, there exists a γ∗ ∈ Γc and an O∗ ∈ SO(n) such that:

|dLc
n
([q1], [q2])− dlcn(q1, O

∗(q2 ◦ γ∗)
√

γ̇∗)| < ϵ. (2.5)

Unlike the case of open curves, there is no known analytical expression of distance on lcn. Since lcn
is a submanifold of lon, dlon(q1, q2) is the extrinsic distance of q1, q2 ∈ lcn. The approximation

inf
γ1,γ2∈Γc

s,O∈SO(n)
dlcn((q1 ◦ γ1)

√
γ̇1, O(q2 ◦ γ2)

√
γ̇2)

≈ inf
γ1,γ2∈Γc

s,O∈SO(n)
dlon((q1 ◦ γ1)

√
γ̇1, O(q2 ◦ γ2)

√
γ̇2)

is used (see Section 6.4). (In fact, we could have defined dLc
n
([q1], [q2]) = infγ1,γ2∈Γc

s,O∈SO(n) dlon((q1 ◦
γ1)
√
γ̇1, O(q2 ◦ γ2)

√
γ̇2) right away.) As with open curves, approximating dLc

n
([q1], [q2]) with the

extrinsic distance
dlon(q1, O(q2 ◦ γ)

√
γ̇) = cos−1 ⟨q1, O(q2 ◦ γ)

√
γ̇⟩L2 (2.6)

evaluated at (O∗, γ∗) gives an approximate distance for comparing shapes of curves in practical
situations.
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3 The Coordinate Descent Method

The discussion in Sections 2.2 and 2.3 characterizes the reparameterization problem from the Rie-
mannian manifold point of view but does not suggest an algorithm. Sebastian et al. [SKK03]
define an edit distance to characterize differences between shapes and develop an algorithm for
closed curves with computational complexity O(N2 logN), where N is the number of points for
representing a curve. It requires the cost function to be invariant to rotation which is clearly not
the case for all the cost functions discussed above, i.e., dlon(q1, O(q2 ◦ γ)

√
γ̇) for O ∈ SO(n), γ ∈ Γo

or γ ∈ Γc, and their variations (3.1) and (3.3) discussed later.
Srivastava et al. [SKJJ11] developed a method for finding (γ∗, O∗) for open and closed curves

based on the idea of alternately optimizing on SO(n) and Γo or Γc, i.e., a generalized Coordinate
Descent method. The simpler open curve problem and algorithm are discussed first followed by the
adaptation to closed curves.

3.1 The Basic Ingredients

For open curves Srivastava et al. [SKJJ11] use the cost function

Ho(O, γ) =

∫ 1

0
∥q1(t)−O(q2 ◦ γ(t))

√
γ̇(t)∥22dt, (3.1)

that has the same extreme points as the cost function used in (2.4). This is easily seen from∫ 1

0
∥q1(t)−O(q2 ◦ γ(t))

√
γ̇(t)∥22dt =⟨q1, q1⟩L2 + ⟨q2, q2⟩L2 − 2⟨q1, O(q2 ◦ γ)

√
γ̇⟩L2

=2− 2 cos(cos−1(⟨q1, O(q2 ◦ γ)
√

γ̇⟩L2))

=2− 2 cos(dlon(q1, O(q2 ◦ γ)
√

γ̇)).

Note that the cost function (3.1) is not applied to the curve itself but to its corresponding q
function. They propose a variant of the general Coordinate Descent method approach given in
Algorithm 1.

Algorithm 1 Coordinate Descent Algorithm for Ho(O, γ)

Input: Initial γ0;
1: k = 0;
2: Find Ok+1 = argminO Ho(O, γk) using the SVD;
3: Find γk+1 ≈ argminγ H

o(Ok+1, γ) using dynamic programming;
4: If termination criterion is satisfied, stop, otherwise, k = k + 1 and go to step 2.

The minimizer Ok+1 of Ho(O, γk) is Ok+1 = UV T , where USV T is the singular value decompo-
sition (SVD) of A =

∫ 1
0 q1(t)q̃2(t)

Tdt and q̃2(t) = (q2 ◦ γk(t))
√

γ̇k(t). The SVD of a generic dense
matrix A ∈ Rn×n is well-understood and can be computed reliably and efficiently using well-known
numerical linear algebra techniques for n up to several hundred, i.e., much larger than typically
required for typical shape analysis problems. This is common to both open and closed curve prob-
lems. To find approximately the minimizer γk+1 of Ho(Ok, γ) for open curves, Srivastava et al.
[SKJJ11] use dynamic programming (DP) [Ber95].
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The approximation arises for this problem because DP works on a grid in [0, 1]×[0, 1] rather than

the continuous space Γo. Srivastava et al. use GN×GN where GN = {0/N, 1/N, . . . , (N−1)/N, 1}.
Here, we consider a more general grid, GN × G̃N , where G̃N = {g0, g1, . . . , gN} is not necessarily
uniformly-spaced, g0 = 0, gN = 1, and gi < gj if i < j. On GN × G̃N , DP uses a partial cost
function

E(s, t; γ) =

∫ t

s
∥q1(τ)−O(q2 ◦ γ(τ))

√
γ̇(τ)∥22dτ

and determines a piecewise linear path defined by connecting points in GN × G̃N moving to the
right and up, i.e., (0, 0) = (i0, j0) < (i1, j1) < (i2, j2) < . . . < (im, jm) = (1, 1) that minimize the
cost

m−1∑
r=0

E(ir, ir+1;L(ir, jr; ir+1, jr+1)),

where L(ir, jr; ir+1, jr+1) is the linear function passing though (ir, jr) and (ir+1, jr+1).
DP uses induction to construct a minimal path. Suppose S ⊆ GN × G̃N is such that for any

(p, q) ∈ S the globally minimizing path γ∗(p,q) from (0, 0) to (p, q), and the associated cost function

value W (p, q) are known. Let Ui,j :=
{
(p, q) ∈ GN × G̃N |0 ≤ p < i, 0 ≤ q < j

}
. When Ui,j ⊆ S,

the basic DP step adds (i, j) to S by computing γ∗(i,j), the globally minimizing path on GN × G̃N

from (0, 0) to (i, j), and the associated cost function value W (i, j). This is done by considering
each (p, q) ∈ Ui,j , adding the edge between (p, q) and (i, j) to the path γ∗(p,q) and determining its

cost. Formally, determining W (i, j) and γ∗(i,j) is solving

min
(k,l)∈Ui,j

E(k, i;L(k, l; i, j)) +W (k, l), with W (0, 0) = 0.

Eventually, S = GN × G̃N and a path with minimal cost on S ⊂ Γo is given by γ∗(1,1).

The complexity of DP as described above is O(N5) and too high for practical problems. To
reduce the complexity, the set Ui,j is constrained to

Ni,j = {(k, l)|max(i− h, 0) ≤ k < i,max(j − h, 0) ≤ l < j} ⊂ Ui,j (3.2)

for some h. When the grid G̃N is chosen to be uniform, i.e. G̃N = GN , the set Ni,j can be further
reduced by removing some repeated slopes, e.g., (i− 2, j− 2) is deleted because (i− 1, j− 1) exists.
Using the set Ni,j rather than Ui,j reduces the complexity of DP to O(N2). However, since the
number of slopes considered when adding (i, j) to S is constrained, the minimizer may change and
may no longer be a global minimizer on GN × G̃N .

The quality of γ∗(1,1) compared to a global minimizer, γ̃∗(1,1) on Γo is not known analytically nor
is the potential further degradation in quality compared to γ̃∗(1,1) that results in replacing Ui,j with
Ni,j .

The cost function defined on SO(n)× Γc for closed curves is

Hc(O, γ) =

∫
S1
∥q1(t)−O(q2 ◦ γ(t))

√
γ̇(t)∥22dt. (3.3)

A DP-based Coordinate Descent algorithm cannot be applied toHc(O, γ) directly since DP requires
a grid of a domain that is the cross product of two intervals, e.g., [0, 1]× [0, 1] rather than S1× S1.
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Srivastava et al. [SKJJ11] solve this by applying the open curve DP-based algorithm to a set of
open curves, {β̃(i), 1 ≤ i ≤ w} derived from the closed curve β using w break points, ti, 1 ≤ i ≤ w,
i.e.,

β̃(i)(t) =

{
β(t+ ti), if 0 ≤ t ≤ 1− ti;
β(t− (1− ti)), if 1− ti < t ≤ 1.

The open curve DP algorithm using Ho(O, γ) is applied to each open curve β̃(i) to determine
γ(i). A γ(i) with minimal cost is chosen as the closed curve reparameterization. Since DP is run
w times, the complexity for this closed curve algorithm is O(wN2), and w is usually proportional
to N , e.g., every second or third point is used as a break point, yielding O(N3) complexity. Note
that this complexity is for only one run of DP in Algorithm 1. A key consideration for closed curve
reparameterization is therefore computational complexity versus quality of γ.

3.2 Uniform Grid Coordinate Descent and Some Difficulties

The use of DP on a grid to solve approximately the optimization problem implies that γ is repre-
sented by a sequence of scalars such that the i-th scalar is γ at (i − 1)/N . The curves β1 and β2
are also represented discretely by a sequence of points in Rn, and values at points other than the
discrete set are recovered using an interpolatory parameterized polynomial, e.g., an interpolatory
spline of degree 1, 2 or 3. The theoretical descriptions of the optimization algorithms for open and
closed curves assume that the operations of rotation and reparameterization preserve the shape of
the curves. It is important to maintain this invariant in the context of the discrete representations
of γ, β1 and β2.

In this section, we consider a uniform grid on both β1 and β2, and Algorithm 2 and Algorithm
3 are two discrete representation versions of the Coordinate Descent algorithm applied to closed
curves based on the cost function (3.3). The open curve discrete versions are easily derived from
either. The differences between Algorithm 2 and Algorithm 3 are specifically designed to highlight
some crucial implementation decisions and the problems that arise in both implementations. These
problems are all overcome by the new Riemannian algorithms we propose in Section 4. A concrete
example that illustrates the difficulties of Algorithm 2 and Algorithm 3 is given in Section 6.3.

Note that cost function (3.3) applies the reparameterization, γ to β2. Also note that in Step 10
of Algorithm 2 interpolation is used when evaluating the reparameterized curve β2 ◦γ. This implies
that the vector of discrete points in Rn used to represent β2 is updated by each reparameterization.
If, equivalently from an optimization point of view, γ is associated with β1 then the vector repre-
sentation of β1 changes. Therefore, when multiple iterations of Coordinate Descent are performed,
a problem arises. Since the points upon which the interpolatory parameterized polynomial is based
change, the parameterized polynomial changes, and therefore the shape of the curve changes with
each reparameterization.

Algorithm 3 overcomes this difficulty by representing β2 as a continuous function determined by
the interpolatory parameterized polynomial (Step 1) and maintaining it throughout the algorithm.
Algorithm 3, however, has a problem that is not seen in Algorithm 2. In Step 11, the expression

β̄
(min,k)
2 = O(min,k)O

(k)
∗

(
(β2 ◦ γ(k)∗ ) ◦ ((γ(min,k) + b

(k)
min/N) mod 1)

)
(3.4)

is implicitly used when H(min,k) = Hc(O
(k)
∗ , γ

(k)
∗ ) is computed and is then explicitly used to compute

β̄
(min,k)
2 . The curves β̄

(min,k)
2 and β

(k+1)
2 are, in theory, the same. However, on the next iteration,
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k + 1, the curve β

(k+1)
2 is explicitly computed using the composition

β
(k+1)
2 = O(min,k)O

(k)
∗

(
β2 ◦ (γ(k)∗ ◦ ((γ(min,k) + b

(k)
min/N) mod 1))

)
. (3.5)

Note that associativity has been applied in the composition of functions. This is required given that
the interpolatory parameterized polynomial representing β2 is maintained for all iterations. The
change of order does not matter theoretically in the continuous form but the curves are different in
the discrete case. If the cost function value H(min,k) was computed using the order of composition
in (3.5), it may yield a different value than the cost function value used during iteration k to
update β2 mentioned above. In fact, the cost function value associated with the form (3.5) implicit
in iteration k + 1 may be larger than the cost function value actually computed in iteration k

using (3.4). Therefore, we may compute a β
(k+1)
2 that does not decrease the cost function value in

practice.

Algorithm 2 Coordinate Descent Algorithm for Hc(O, γ)

Input: Two closed curves β1 = {( 0
N , v0), (

1
N , v1), . . . , (

N−1
N , vN−1), (

N
N , v0)} and β2 =

{( 0
N , u

(0)
0 ), ( 1

N , u
(0)
1 ), . . . , (N−1

N , u
(0)
N−1), (

N
N , u

(0)
0 )} where u

(0)
i , vi ∈ Rn; a set of break indices

{b1, b2, . . . , bw};
1: k = 0;
2: for i = 1, 2, . . . , w do

3: Shift β
(k)
2 and get β̃

(i,k)
2 = {( 0

N , u
(k)
bi

), ( 1
N , u

(k)
bi+1), . . . ,

(N−1−bi
N , u

(k)
N−1), (

N−bi
N , u

(k)
0 ), . . . , (NN , u

(k)
bi

)};
4: Compute the rotation O(i,k) based on β1 and β̃

(i,k)
2 ;

5: Set β̄2 = O(i,k)β̃
(i,k)
2 ;

6: Compute γ(i,k) for β1 and β̄2 by DP;
7: Compute cost function H(i,k)

8: end for
9: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corresponding O(min,k), γ(min,k) and β̄

(min,k)
2 ;

10: Interpolate β̄
(min,k)
2 by a function F (e.g., cubic spline interpolation) and set β

(k+1)
2 =

{( 0
N , F (γ(min,k)( 0

N ))), ( 1
N , F (γ(min,k)( 1

N ))), . . . ,

(NN , F (γ(min,k)(NN )))}
11: If a stopping criterion is satisfied, then stop, otherwise k = k + 1 and goto step 2;

3.3 Nonuniform Grid Coordinate Descent

The problem in Algorithm 3 with associativity can be addressed by using a nonuniform grid that
keeps track of the reassigned parameter values of the ui’s. The details can be found in Algorithm 4.

The example shown in Figures 2 and 3 is used to understand the idea in Algorithm 4. As shown
in Figure 2, the γ(0) given by DP assigns parameter values to points on β2. Therefore, a nonuniform
grid on β2 can be used to absorb the effect of γ(0). In the next iteration as shown in Figure 3,

one finds another γ(1) which assigns new parameter values to points on β2. The accumulated γ
(2)
∗

shown in Figure 3 is exactly defined by the values of (γ
(2)
∗ )−1 at i/N . In general, the accumulated

γ
(k)
∗ can be exactly defined by the values of (γ

(k)
∗ )−1 at i/N . Therefore, the associativity difficulty
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Algorithm 3 Coordinate Descent Algorithm for Hc(O, γ)

Input: Two closed curves β1 = {( 0
N , v0), (

1
N , v1), . . . , (

N−1
N , vN−1), (

N
N , v0)} and β

(0)
2 =

{( 0
N , u0), (

1
N , u1), . . . , (

N−1
N , uN−1), (

N
N , u0)} where ui, vi ∈ Rn; a set of break indices

{b1, b2, . . . , bw}; initial γ(0)∗ = {0, 1/N, . . . , 1}; O(0)
∗ = In;

1: Compute interpolation function Fβ2 for β2, e.g., a spline cubic function;
2: k = 0;

3: Compute β
(k)
2 by evaluating Fβ2 at γ

(k)
∗ and left multiplying by O

(k)
∗ ;

4: for i = 1, 2, . . . , w do

5: Shift β
(k)
2 and get β̃

(i,k)
2 = {( 0

N , u
(k)
bi

), ( 1
N , u

(k)
bi+1), . . . ,

(N−1−bi
N , u

(k)
N−1), (

N−bi
N , u

(k)
0 ), . . . , (NN , u

(k)
bi

)};
6: Compute the rotation O(i,k) based on β1 and β̃

(i,k)
2 ;

7: Set β̄2 = O(i,k)β̃
(i,k)
2 ;

8: Compute γ(i,k) for β1 and β̄2 by DP;
9: Compute cost function H(i,k);

10: end for
11: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corresponding O(min,k), γ(min,k), β̄

(min,k)
2 and the

shift b
(k)
min;

12: Set O
(k+1)
∗ = O(min,k)O

(k)
∗ ;

13: Interpolate points γ
(k)
∗ to get a function, e.g., spline function and evaluate the function at

(γ(min,k) + b
(k)
min/N) mod 1 =

(γ(min,k)(0) + b
(k)
min/N) mod 1

(γ(min,k)(1/N) + b
(k)
min/N) mod 1

...

(γ(min,k)(1) + b
(k)
min/N) mod 1


to get γ

(k+1)
∗ ; (this is the implementation of γ

(k+1)
∗ = γ

(k)
∗ ◦ γ(min,k));

14: If a stopping criterion is satisfied, then stop, otherwise k = k + 1 and goto step 3;
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=
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G
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Figure 2: DP in the first iteration of Algorithm 4. Observe that, as annouced in Step 14 of

Algorithm 4, γ
(1)
∗ can be recovered as the piecewise-linear function that connects the ascending-

diagonal points of the grid G̃
(1)
N ×GN .

0
0 1

1

γ(1) by DP

6/15

2/15

4/15

7/10

Grid GN

G
ri
d
G̃

(1
)

N

0
0 1

1

γ
(2)
∗ = γ

(1)
∗ ◦ γ(1)

3/5

1/5

2/5

4/5

Grid G̃
(2)
N

G
ri
d
G

N

Figure 3: DP in the second iterate of Algorithm 4. Observe again that, as announced in Step 14

of Algorithm 4, γ
(2)
∗ can be recovered as the piecewise-linear function that connects the ascending-

diagonal points of the grid G̃
(2)
N ×GN .

is avoided. Even though Algorithm 4 avoids the problems in Algorithms 2 and 3, and therefore can
reliably perform more than one iteration to determine the reparameterization, this improves only the
quality of the distance approximation. The computational complexity required can be substantial
and limits the size of problem that can be handled. Specific examples are given in Section 6.9
to demonstrate that Algorithm 4 avoids the difficulties of Algorithms 2 and 3 to produce a more
accurate distance estimation.

The experiments in Srivastava et. al. [SKJJ11] simplify the optimization considerably by using
only a single iteration of the Coordinate Descent algorithm, denoted CD1. Algorithms 2, 3 and 4
are then identical and avoid both of these problems. If a more accurate optimization is demanded
therefore requiring more iterations, as done in Section 6, problems ensue. Note that these problems
are not the result of using DP to approximate the optimization problem. Rather, they arise from
updating γ by composition in the Coordinate Descent approach. The new Riemannian algorithm
discussed in Section 4 avoids these difficulties.
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Algorithm 4 Coordinate Descent Algorithm for Hc(O, γ)

Input: Two closed curves β1 and β2; a set of break indices {b1, b2, . . . , bw}; G̃(0)
N = GN ;

1: k = 0 and γ
(0)
∗ = id;

2: Compute q functions, q1 = {( 0
N , v0), (

1
N , v1), . . . , (

N−1
N , vN−1), (

N
N , v0)} and q2 =

{( 0
N , u0), (

1
N , u1), . . . , (

N−1
N , uN−1), (

N
N , u0)}, for β1 and β2, where ui, vi ∈ Rn.

3: Interpolate q2 by a function Fq2 (e.g., cubic spline interpolation)
4: for i = 1, 2, . . . , w do

5: Shift G̃
(k)
N such that the grid is from 0 to 1 to get

G̃
(i,k)
N = {g(k)bi

− g
(k)
bi

, g
(k)
bi+1 − g

(k)
bi

, . . . , g
(k)
N − g

(k)
bi

, g
(k)
1 + 1− g

(k)
bi

, . . . , g
(k)
bi

+ 1− g
(k)
bi
};

6: Shift q2 to get q
(i,k)
2 = {(g(i,k)0 , u

(k)
bi

), (g
(i,k)
1 , u

(k)
bi+1), . . . , (g

(i,k)
N−1−bi

,

u
(k)
N−1), (g

(i,k)
N−bi

, u
(k)
0 ), . . . , (g

(i,k)
N , u

(k)
bi

)}, where g
(i,k)
m denote m-th point in G̃

(i,k)
N ;

7: Resample q2 to get q̂
(i,k)
2 = Fq2(γ

(k)
∗ (t) + bi

Nmod1)|t∈GN
;

8: Compute the rotation O(i,k) based on q1 and q̂
(i,k)
2 ;

9: Set q̄
(i,k)
1 = (O(i,k))T q

(i,k)
1 ;

10: Get a piecewise linear γ(i,k) for q̄
(i,k)
1 and q

(i,k)
2 by applying DP on the grid GN ×G̃

(i,k)
N , where

L(a, b; c, d) in DP is now the linear function passing through (a/N, g
(i,k)
b ) and (c/N, g

(i,k)
d ).

Evaluate the corresponding H(i,k);
11: end for
12: Find H(min,k) = min1≤i≤w{H(i,k)} and get the corresponding γ(min,k), and G̃

(min,k)
N ;

13: Compute the new grid G̃
(k+1)
N by formula g

(k+1)
i = κ−1(g

(min,k)
i ), where κ = γ(min,k) and g

(min,k)
m

is m-th point in G̃
(min,k)
N ;

14: γ
(k+1)
∗ is the piecewise linear function passing through (g

(k+1)
i , i/N) shifted so that γ

(k+1)
∗ (0) =

γ
(k)
∗ (0) + bmin/N ;

15: If a stopping criterion is satisfied, then stop, otherwise k = k + 1 and goto step 4;
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4 A Riemannian Optimization Method

Riemannian optimization concerns minimizing (or maximizing) a real-valued function, termed the
cost function, defined on a Riemannian manifold M. Recent theoretical and algorithmic results
and a review of the state-of-the-art can be found in [Bak08, Hua13, HAG15, Qi11, RW12]. In
order to make use of Riemannian optimization theory and algorithms in the fundamental elastic
shape analysis task of efficiently and effectively computing the distance between two curves, we
must define an appropriate cost function on a Riemannian manifold, the Riemannian gradient of
the cost function, the tangent space of an element in the manifold, the retraction operation on the
manifold, and an appropriate vector transport. The definitions of Riemannian gradient, tangent
space, retraction and vector transport are standard and can be found in [O’N83, AMS08].

Several Riemannian optimization algorithms are applicable to distance computation. A repre-
sentative set is investigated and compared to the DP-based approach of Srivastava et al. for closed
curves in this and the following section. Specifically, the chosen state-of-the-art Riemannian algo-
rithms, Riemannian quasi-Newton algorithms given in [Hua13, HAG15, HGA15] including RBFGS,
LRBFGS, RTR-SR1, LRTR-SR1 and RSD (see full names in Section 6.1), are applied to the dis-
tance problem, and it is shown that a Riemannian approach is more efficient computationally and
produces a superior distance computation than the DP-based approach.

4.1 Cost Function

Using the Riemannian approach we can handle the closed curve distance problem directly, i.e.,
breaking the curve into several open curves and taking the minimal solution is avoided. The first
step in defining the cost function and associated Riemannian manifold requires reconsidering the
representation of Γc for closed curves

Γc = [0, 1]× Γo.

Note that the interval [0, 1] in the group definition removes the need for break points since the
offset has been added as a decision variable.

The cost function on the Riemannian manifold SO(n)× R× Γo is

H(O,m, γ) =

∫ 1

0
∥q1(t)−O(q2(γ(t) +m mod 1))

√
γ̇(t)∥22dt, (4.1)

where we use R to replace [0, 1] due to the use of the mod operator.
Note that any γ ∈ Γo and its derivative γ̇ satisfy the constraints γ(0) = 0, γ(1) = 1 and

γ̇(s) > 0 almost everywhere. These are equivalent to γ(0) = 0,
∫ 1
0 γ̇(t)dt = 1 and γ̇(s) > 0 almost

everywhere. The positivity constraint on the derivative can be guaranteed by replacing γ̇ with an
even power function. Let l2 = γ̇, where l ∈ L2([0, 1],R). All three constraints are condensed into
the constraints

∫ 1
0 l2(t)dt = 1 and l2(s) ̸= 0 almost everywhere. Therefore, l is an element of the

sphere, i.e.,

l ∈ L =

{
l ∈ L2([0, 1],R)

∣∣∣ ∫ 1

0
l2(t)dt = 1

}
,

and γ can be recovered by
∫ t
0 l

2(s)ds. It follows that
√
γ̇ = |l| and the cost function becomes

H̃(O,m, l) =

∫ 1

0

∥∥∥∥q1(t)−Oq2

(∫ t

0
l2(s)ds+m mod 1

)
|l(t)|

∥∥∥∥2
2

dt. (4.2)
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In order to guarantee l2(s) ̸= 0 almost everywhere, we use a barrier function

B(γ) =

∫ 1

0

(
γ̇(t) +

1

γ̇(t)

)√
1 + γ̇2(t)dt =

∫ 1

0

(
l2(t) +

1

l2(t)

)√
1 + l4(t)dt. (4.3)

When some region of γ is close to horizontal or vertical, B(γ) increases and γ∗ does not have such
a region. Observe that this specific choice of B ensures that B(κ) = B(γ) since we have

B(γ) =

∫ 1

0

(
γ̇(t) +

1

γ̇(t)

)√
1 + γ̇2(t)dt

=

∫ 1

0

(
κ̇(γ(t)) +

1

κ̇(γ(t))

)√
1 +

1

κ̇2(γ(t))
dt (since γ̇(t) = 1

κ̇(γ(t)))

=

∫ 1

0

(
κ̇(s) +

1

κ̇(s)

)√
1 +

1

κ̇2(s)
dκ(s) (substitution γ(t) = s)

= B(κ),

where κ = γ−1. Thus that (4.4) below remains symmetric with respect to q1 and q2.
Note that if the first iterate in an algorithm satisfies l0(t) > 0, then choosing a suitable step size

and using the barrier function keep all iterates li(t) > 0. Therefore the absolute sign in (4.2) can
be ignored. Exploiting the invariance of the norm under rotation, we obtain the final cost function

L(O,m, l) =

∫ 1

0

∥∥∥∥Oq1(t)− q2

(∫ t

0
l2(s)ds+m mod 1

)
l(t)

∥∥∥∥2
2

dt+ ωB(γ), (4.4)

where ω is a constant that makes the extra term relatively small. The reason we put O on q1(t)
will be discussed in Section 5.1. Note that the smaller ω is, the better (4.4) approximates (3.2).
However, it is more likely that the solution obtained by Riemannian algorithms contains a region
close to being horizontal or vertical.

4.2 The Riemannian Manifold

The Riemannian manifold used to define the constraints for the optimization problem associated
with the efficient algorithm to compute the distance function for elastic shape analysis is SO(n)×
R × L. The Riemannian gradient of the cost function, the retraction operation on the manifold,
and an appropriate vector transport can be constructed by considering each on the components of
the product [Hua13, §9.4].

SO(n) is a well-known Riemannian manifold the structure of which is discussed in the literature
[AMS08], and the associated implementation issues are considered in [Hua13, §10.5]. The required
Riemannian objects are given in this section, and their derivations can be found in the Appendix.
L is an infinite dimensional Riemannian manifold. The tangent space of L at any point is

therefore an infinite dimensional linear space with elements that are functions defined on [0, 1]. It
is well-known that the tangent space TlL of l ∈ L is

Tl L = {v ∈ L2([0, 1],R)|⟨l, v⟩L2 = 0},

and the projection onto the tangent space is

Pl(v) = v − l
⟨v, l⟩L2

⟨l, l⟩L2

.
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Let the metric of L be endowed from the embedding space L2([0, 1],R). Retraction is used in
updating iterates in a Riemannian algorithm. Vector transport is used in comparing tangent vectors
in different tangent spaces and plays an important role in quasi-Newton methods. Specifically, a
retraction R is a smooth mapping from the tangent bundle TM ontoM such that (i) R(0x) = x for
all x ∈M (where 0x denotes the origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. The
restriction of R to TxM is denoted by Rx. A vector transport T : TM⊕TM→ TM, (ηx, ξx) 7→
Tηxξx with associated retraction R is a smooth mapping such that, for all (x, ηx) in the domain of
R and all ξx ∈ TxM, it holds that (i) Tηxξx ∈ TR(ηx)M, (ii) T0xξx = ξx, (iii) Tηx is a linear map.

For L, the exponential mapping and parallel translation on L are well-known, and they are used
as retraction and isometric vector transport in Riemannian algorithms.

Lemma 4.1. The exponential mapping and parallel translation on L are

Rl(v) = cos(∥v∥L2)l +
v sin(∥v∥L2)

∥v∥L2

and

Tuv = v − 2⟨v, l̃⟩L2

∥l + l̃∥2L2

(l + l̃)

respectively, where u, v,∈ Tl L and l̃ = Rl(u).

For the cost function of interest, an analytical form of the Riemannian gradient can be derived,
and it is given in Lemma 4.2.

Lemma 4.2. The Riemannian gradient of the cost function L(O,m, l) in (4.4) is

gradL(O,m, l) =(
PO

(
−2
∫ 1

0
q2 (ρl,m(t)) l(t)q1(t)

Tdt

)
,−2

∫ 1

0

⟨
Oq1(t), l(t)q

′
2 (ρl,m(t))

⟩
2
dt, Pl(2y(t)l(t)− 2x(t) + 2z(t))

)
,

where POU = (U −OUTO)/2 is the projection to TO SO(n), ρl,m(t) denotes
∫ t
0 l

2(s)ds+m mod 1,

x(t) =
⟨
Oq1(t), q2 (ρl,m(t))

⟩
2
,

y(t) is any antiderivative of

y′(t) =
⟨
Oq1(t), 2l(t)q

′
2 (ρl,m(t))

⟩
2
,

and z(t) = ωl(t)(2− 1/l4(t))
√

1 + l4(t))).

5 Implementation Comments

5.1 Representation and Cost Function

In practice, all of the curves are represented by a set of points, and therefore, the q-function of a
curve β(t) is also represented by points that are on some smooth function. Since O is an isometry



17
in the cost functions, we can apply it to either q1 or q2. We apply it to q1 because representing
q1 does not require the use of an interpolatory function and a vector of points is sufficient, hence,
(4.4) is computationally cheaper than (4.2).

In all of the cost functions considered, q2 is composed with some function and, therefore, rep-
resenting q2 as a set of points is not sufficient. A suitable function must be used. Since the
convergence analysis of Riemannian quasi-Newton optimization algorithms requires a C2 cost func-
tion, an interpolatory cubic spline of the set of points on q2 is used, but splines of degree 1, i.e.,
piecewise linear, or degree 2 are also practical.

It should be noted however that there is nothing in the formulation that requires an interpolatory
approximation. The discrete points in the representation could be control points for a continuous
approximating parameterized curve, e.g., a parameterized B-spline.

Finally, all integrals required by the algorithms are approximated by the Composite Trapezoidal
Rule.

5.2 Symmetry Considerations

As discussed earlier and seen from (2.6) and (3.3), the optimum, denoted by γ∗, may not be
absolutely continuous and increasing almost everywhere due to a horizontal and/or vertical region
and is therefore in the closure of Γc. In order to guarantee the symmetry of the distance function

dlcn(q1, O(q2 ◦ γ̃)
√

˙̃γ) = dlcn(O
T (q1 ◦ κ̃)

√
˙̃κ, q2),

where κ̃ = γ̃−1 ∈ Γc, we must have a symmetric cost function

1− Hc(O, γ̃)

2
=

∫
S1
⟨q1(t), O(q2 ◦ γ̃(t))

√
˙̃γ(t)⟩2dt (5.1)

=

∫
S1

⟨
OT (q1 ◦ κ̃(t))

√
˙̃κ(t), q2(t)

⟩
2

dt. (5.2)

If (O, γ̃) ∈ SO(n) × Γc, then the symmetries are guaranteed by the isometry of SO(n) and Γc.
Let γ̃ ∈ Γc be represented by (m, γ) ∈ [0, 1]×Γo and κ denote γ−1. If γ is not in Γo, then there are
some problems. For γ containing a flat region, γ(t) = a,∀t ∈ [b, c], the cost function (5.1) is well
defined. However, (5.2) is not due to the non-existence of κ(a). One way to guarantee symmetry is
to define κ(a) to be b or c and κ̇(a) be any finite number. In fact, for the purpose of computing the
value of the cost function, κ(a) can be defined as any finite number since the jump discontinuity
of κ at a does not change the integral. For γ containing a vertical region, γ(a) = [b, c], it is not a
function. Similarly to the previous idea, we can redefine γ(a), γ̇(a) to be any finite number and κ
to satisfy κ(t) = a,∀t ∈ [b, c] and symmetry is satisfied.

Theoretically, therefore, when γ is not in Γo, evaluation and symmetry of the cost function
can be handled. In practice, however, numerically evaluating the cost function Hc(O, γ) requires a
quadrature rule that depends on every point in the discrete set. If γ has a vertical or near vertical
segment then γ̇ is infinite or very large and numerical overflow may occur. γ containing a flat
region does not cause numerical problems when evaluating the cost function. In some versions,
e.g., Algorithms 3 and 4, an interpolatory spline is used to represent γ. If a spline of degree 1, i.e.,
piecewise linear, is used there is no numerical problem. However, a higher degree spline requires
care to guarantee that it is nondecreasing. This is not an issue during the iteration of the new
Riemannian algorithm.
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These theoretical and practical issues can be avoided for both the Coordinate Descent DP-

based Algorithms 3 and 4 and the new Riemannian algorithm. In Section 3.1, the DP algorithm
constrains the set of slope choices Ni,j to remain sufficiently far from 0 or ∞ and thereby avoids
horizontal and vertical regions in γ∗. In the Riemannian algorithm, the barrier function B(γ) in
(4.3) is added, and it does not destroy the symmetry of the cost function. There is no explicit lower
or upper bound for the slopes of γ unlike the approach above for the DP-based algorithm.

5.3 Escaping Local Minima

Practical Riemannian optimization methods guarantee convergence to local (possibly not global)
minima. There are many approaches to escape from nonglobal local minima when working in
Euclidean space. Two standard ones are the MCMC simulated annealing algorithm and the use
of multiple runs with different initial conditions. For Riemannian optimization, we can use similar
ideas.

We have tested a Riemannian gradient-based MCMC simulated annealing algorithm using a
Metropolis-Hastings acceptance test. For sufficiently small “temperature”, the algorithm changes
to one of the Riemannian quasi-Newton algorithms. The basic idea of this algorithm is to search
the domain sufficiently and find a satisfactory minimum. Unfortunately, the dimension of domain
SO(n) × R × L is infinite, and the dimension of the finite approximation used is large enough so
that a sufficiently thorough search was often found to be unacceptably expensive.

A simpler, and in practice effective, choice in this setting is to run the Riemannian quasi-Newton
algorithms with multiple initial conditions. Let (O0,m0, l0) ∈ SO(n) × R × L denote the initial
iterate. The initial rotation O0 is given by the method of computing the SVD used in Algorithm
1. The initial l0 is given by choosing a small number of points on the curve, Ns, and running DP
with small h, where h is used in (3.2). The motivation is to make use of the global minimization
property of DP on a coarse grid with slope constraints and then improve the quality of the solution
by Riemannian quasi-Newton algorithms.

The initial value of m, denoted m0, can be chosen uniformly spaced or randomly on [0, 2π].
However, we automatically choose a set of m0’s as well as Ns for Riemannian quasi-Newton algo-
rithms by exploring the structure of the curves. For example, let the curves in Figure 4 be two parts
of two closed curves. If the rest of the curves are ignored, there are two minima that correspond
to the peak of curve 1 matching the first peak or second peak of curve 2. The two minima can
be obtained by using only two m0’s. Suppose the starting point of curve 1 is the point marked
with a cross on the graph. The starting point on curve 2 can be any point in the green parts of
curve 2. For these two initial conditions, Riemannian algorithms are able to search for the best
matching point. Using this idea, if the total change of the angle for some interval along the curve
is greater than a specified threshold Tm, an m0 is added at the end of the interval. In order to
avoid the effect of noise on curves, it is required that the difference between consecutive m0 points
is greater than or equal to some positive value z. Each of the m0’s produced generates a distinct
initial condition for the Riemannian optimization. Ns is taken as a linear function of the total
angle variation along the curve 2, i.e., τ1 + τ2θT , where θT denotes the total angle variation along
a curve. The Algorithm to generate the set of initial iterates is stated in Algorithm 5.

In practice, when one curve changes direction frequently and the other curve is relatively simple
in shape, choosing which curve is used as the basis for the generation of the set of m0’s depends
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Part of closed curve 1 Part of closed curve 2

Figure 4: Choosing initial m for Riemannian algorithms.

Algorithm 5 Generate a set of initial iterates {(O(i)
0 ,m

(i)
0 , l

(i)
0 )}

Input: Two q functions of closed curves q1 = (v1, v2, . . . , vN , v1) ∈ Rn×(N+1) and q2 =
(u1, u2, . . . , uN , u1) ∈ Rn×(N+1); positive integer z; positive constant τ1, τ2 > 0, Tm > 0.

1: Define θ = 0, θ̃T = θT = 0, idx = 1, u0 = uN and v0 = vN ;
2: Initialize all the lists: ms = ∅, Os = ∅ and ls = ∅;
3: for i = 1, 2, . . . , N do
4: Compute the angle α between vi− vi−1 and vi+1− vi and the angle α̃ between ui− ui−1 and

ui+1 − ui;
5: θ ← θ + α; θT ← θT + α; θ̃T ← θ̃T + α̃;
6: if θ > θm and i− idx ≥ z then
7: Add i to the list ms;
8: idx← i; θ ← 0;
9: end if

10: end for
11: Let Ns ← round(τ1 + τ2max(θT , θ̃T ));
12: for i = 1, 2, . . . , length(ms) do
13: Define q̃1 = (vms(i), vms(i)+1, . . . , vN , v1, . . . , vms(i)) ∈ Rn×(N+1) and q̃2 =

(ums(i), ums(i)+1, . . . , uN , v1, . . . , ums(i)) ∈ Rn×(N+1);

14: Compute O = UV T , where U, V are from the singular value decomposition USV T =
q̃1 diag(

1
2N , 1

N , . . . , 1
N , 1

2N )q̃T2 ; (the diagonal matrix diag( 1
2N , 1

N , . . . , 1
N , 1

2N ) ∈ R(N+1)×(N+1)

defines the composite trapezoidal rule.)
15: q̃2 ← OT q̃2;
16: Resample q̃1 and q̃2 using a cubic interpolatory spline and obtain Ns uniformly-spaced points

for each curves. Denote by q̃s1 and q̃s2 respectively;

17: Use DP method to obtain a γs that optimizes
∫ 1
0 ∥q̃

s
1 − (q̃s2, γ)∥dt;

18: Compute the initial l from γs;
19: Add O to the list Os and add l to the list ls;
20: end for
21: {(Os(i),ms(i), ls(i))} is the set of initial iterates.
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Figure 5: Comparisons for choosing one curve or the other to generate m0’s. The black stars in the
left column curves represent the start/end points. The black stars in the middle column represent
all m0’s generated by the curves. The colors in the right column curves indicate corresponding
points.

on the context of the distance computation. Two curves with significantly different shape are
expected to have a large distance. If the application requires an accurate approximation of the
large distance then the curve with the more complicated shape should be used to generate the
m0’s. If, however, large distances need not be approximated accurately, e.g., when distances are
used to determine that the shapes are not in the same class, then the simpler curve should be
used to generate the m0’s, and the computational complexity of the optimization is reduced. One
example is given in Figure 5. This asymmetry of the resulting distance comes from the asymmetry
of the algorithm. This is quite different from DP which often requires a large number of break
points to get a satisfactory result in either case above.

6 Experiments

6.1 Overview of Experiments

The performance of the Riemannian optimization approach and Coordinate Descent methods to
computing the elastic distance metric for curves in R2 is assessed in this section. In Section 6.2, the
performances of the Riemannian optimization algorithms, including the Riemannian trust region
symmetric rank-one update method (RTR-SR1) [HAG15, Algorithm 1], the limited-memory RTR-
SR1 (LRTR-SR1) [HAG15, Algorithm 2], the Riemannian BFGS (RBFGS) [HGA15, Algorithm 1
with ϕk ≡ 0], the limited-memory RBFGS (LRBFGS) [HGA15, Algorithm 2], and the Riemannian
steepest descent (RSD) [AMS08, Page 62] are compared to identify the preferred Riemannian
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Figure 6: Samples of leaves from the Flavia leaf dataset. One sample per species is illustrated.

method. In Section 6.3, the difficulties that Algorithms 2 and 3 have with multiple coordinate
descent iterationsare illustrated. In Section 6.4, the quality of using the extrinsic distance dlon to
approximate the intrinsic distance dlcn is shown. The preferred Riemannian method is then com-
pared systematically with an adapted version of CD1 (coordinate descent with one single iteration)
termed CD1H that consists of doing “one and a half iteration”: specifically, we do one iteration of
the CD (coordinate descent) method followed by the computation of the best rotation. This is done
since empirically the rotation found with γ0 = id is usually not sufficiently close to O∗ and updating
O based on γ1 improves the quality of the rotation. Section 6.5 presents the comparisons of the
accuracies of the CD1H and the preferred Riemannian method. Section 6.6 illustrates the influence
of representing the curves with different sets of points. Section 6.7 shows more concrete examples,
and in Section 6.8, the computational time, the final values of the cost function and the quality of
the distances given by the preferred Riemannian method and CD1H are compared. Finally, the
problems with complexity and optimization effectiveness for Algorithm 4 are also demonstrated in
Section 6.9.

Two public datasets are used in the experiments: the Flavia leaf dataset [WBX+07] and the
MPEG-7 dataset [Uni]. The Flavia leaf dataset contains images of 1907 leaves from 32 species.
Figure 6 shows an example leaf from each species. MPEG-7 contains 1400 images in 70 clusters each
of which contains 20 shapes. Figure 7 shows an example shape from each cluster. The boundary
curves of the shapes are extracted using the bwboundaries function in Matlab. 100 uniformly-
spaced points are chosen to represent the shape unless indicated otherwise in the description of the
experiments.

6.2 The Preferred Riemannian Quasi-Newton Algorithm

The two public datasets were used to compare the performances of several Riemannian optimization
algorithms in minimizing the cost function (4.4). For these experiments, the stopping criterion for
the Riemannian algorithms requires the relative change of the cost function in two successive iterates
to be less than 10−3 for more than 5 consecutive iterations, and the minimum number of iterations
is set to 10. The number of points used to get the third component of the initial condition for the
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Figure 7: Samples of curves from the MPEG-7 dataset. One sample per cluster is illustrated.

Riemannian algorithms, Ns, is set as described in Section 5.3. The weight, ω, in the cost function
(4.4) is 1/100 initially and decreases on each iteration by ω ← 0.8ω. The more complex curve in
the pair of β1 and β2 , i.e., the curve such that the total change of the angle along the curve is
larger, is used for setting m0 and Ns. The values Tm = π/2, z = 4, τ1 = 30 and τ2 = 2/π are used.
These settings of parameters are used for all experiments using Riemannian algorithms.

All codes are written in C++ using BLAS and LAPACK, compiled with g++ and run on a 64
bit Ubuntu system with 3.6 GHz CPU (Intel (R) Core (TM)). The code can be found on
www.math.fsu.edu/~whuang2/papers/RORCESA.htm.
The output time is the average CPU time of 10 runs with identical parameters. (The times observed
had very low variance.)

To find the preferred Riemannian method, all of the methods were run on several sets of
randomly chosen pairs of shapes from the two datasets. Table 1 reports tave, the average time
to compute the distance between two shapes, and Lave, the average cost function value for one of
these sets from the Flavia and MPEG-7 shapes. The trends in other sets were similar.

The complexity of RBFGS and RTR-SR1 per iteration is O(N2) due to the use of a dense matrix
vector product. This also implies the O(N2) space complexity. In contrast, their limited memory
versions, LRBFGS and LRTR-SR1, require O(N) complexity. It follows that the computational
time of RBFGS and RTR-SR1 per iteration is larger than LRBFGS and LRTR-SR1 respectively.
The total computational time further depends on the number of iterations, and it is shown in Table
1 that RBFGS and RTR-SR1 are slightly slower than the LRBFGS and LRTR-SR1 respectively.

All the Riemannian quasi-Newton methods produce similar final function values. Among them,
RBFGS and RTR-SR1 perform similarly while LRBFGS gives the smallest final cost function
values.

The RSD method has low computational times per iteration due to its relatively low O(N)
computational complexity, but it does not result in a competitive final cost function value due to
the simplicity of the approach and the large number of iterations required.

In summary, all of the Riemannian algorithms were competitive with CD1H. LRBFGS with
its small final cost function and its low computational and storage complexity is chosen as the
preferred Riemannian algorithm. It will be used in further comparisons to CD1H from the point
of view of quality of shape distance computations.

www.math.fsu.edu/~whuang2/papers/RORCESA.htm
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Table 1: Comparison of Riemannian Methods for representative sets from the Flavia (F) and
MPEG-7 (M) datasets: average time per pair (tave) in seconds and average cost function per pair
(Lave).

RBFGS LRBFGS RTR-SR1 LRTR-SR1 RSD CD1H

Lave(F) 0.16338 0.16182 0.16367 0.16723 0.20665 0.22323

tave(F) 0.08963 0.07954 0.11603 0.10862 0.06488 0.42895

Lave(M) 0.33214 0.31893 0.33258 0.3418 0.48732 0.51664

tave(M) 0.19945 0.19318 0.24696 0.23102 0.14373 0.42817
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Figure 8: Two shapes from the MPEG-7 dataset. Successive points are connected by straight lines
for display purposes.

6.3 Examples of Coordinate Descent Difficulties

For the experiments using Coordinate Descent based on DP, the mesh size, h defined in (3.2), is 6,
and every 4-th point is chosen as a break point. γ0 is the identity, i.e., γ0(t) = t for all experiments
using CD1H.

The shapes from MPEG-7 dataset shown in Figure 8 are used to illustrate the difficulties of
Algorithm 2 and Algorithm 3, The variation in the shape of curve β2 in Algorithm 2 was identified
as a serious problem. Figure 9 shows the shape of β2 initially and in the first 4 iterations of the
algorithm along with the value of the cost function. The change to the shape is clear with many
of its details disappearing gradually. Most significantly, the cost function is increasing, and the
algorithm is not reliable for optimization.

The potential conflict in Algorithm 3 between the value of the cost function, Hc, evaluated

during iteration k for β̄
(min,k)
2 computed using (3.4) and the value ofHc for the theoretically identical

curve β(k+1) computed using (3.5) is also observed for the illustrative pair of shapes. Table 2 shows
the variations of the cost function. The value of Hc in the second row for iteration k should be the
same as the value in the first row for iteration k + 1. Clearly, the values are significantly different.
Note also the values in the second row, which are the ones used by the algorithm in optimization
decisions, are not decreasing. They in fact increase in subsequent iterations, and the algorithm is
unreliable.

The difficulties encountered with Algorithm 2 and Algorithm 3 can be avoided by only per-
forming a single iteration of Coordinate Descent, i.e., CD1. This was done by Srivastava et al.
[SKJJ11], and as a result they did not observe the problems. However, the accuracy of the dis-



24

Original Curve 1st : 0.343 2nd : 0.251 3rd : 0.234 4th : 0.253

Figure 9: The variation of curve β2 during the iteration in Algorithm 2. Curves are shown by
connecting consecutive points using straight lines. The cost function values are given in the titles.

Table 2: The variations of the cost function values in Algorithm 3

iteration (k) 1 2 3

Hc for β(k) of (3.5) 1.561523 0.365177 0.355348

Hc for β̄
(min,k)
2 of (3.4) 0.343090 0.270597 0.284996

tance computed using a single iteration is thereby limited by the quality of the choice of the initial
reparameterization and rotation.

Figure 10 includes the optimization results for CD1, CD1H, and for the Riemannian algorithm
LRBFGS iterating until the cost function value is invariant to three digits. The final cost function
LRBFGS is smaller than CD1, and the superior quality of the final rotation from LRBFGS is clearly
illustrated. The relationship of LRBFGS and CD1H is discussed in more detail in the following
sections.

6.4 Extrinsic Distance Versus Intrinsic Distance

In this section, the differences between the intrinsic distance dlcn and the extrinsic distance dlon are
shown based on 1000 randomly chosen pairs from the Flavia and MPEG-7 data sets. The distance
dlcn is computed by the path-straightening algorithm [SKJJ11, Section 4.3]. The ratios of dlon and
dlcn are shown in Figure 11 and all of them are close to 1, i.e., between 1 and 1.007. Therefore, it is
acceptable to use dlon to approximate dlcn in practical situations. For situations where the intrinsic
distance dlcn and the associated minimal geodesic are required, e.g., Karcher mean computations,
the computational time for the algorithm of [SKJJ11] can be a problem. An improved algorithm
based on Riemannian optimization has been developed and used for Karcher means see [YHGA15]
and [?].

6.5 Accuracy of CD1H and LRBFGS

CD1H improves somewhat the quality of the distance approximation of CD1 by improving the
rotation while still avoiding the problems of Algorithms 2 and 3 and the potential high computa-
tional cost of Algorithm 4 by avoiding additional iterations. However, this results in limitations
on the ultimate quality of the distance approximation. In this section and the following sections,
we focus on comparing the state-of-the-art CD1H and the LRBFGS method with respect to com-
putational time and final cost function value. For those pairs that do not achieve acceptable cost
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Figure 10: Results for LRBFGS, CD1 and CD1H. The optimal rotation and reparameterization
are applied to β2. The interpolation points of both curves are kept for display purpose. The colors
indicate corresponding points on the two curves. The black stars represents the start/end points
of the curves. The title of the matching curves includes the final values of the cost function.
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Figure 11: The histogram of the ratio of the intrinsic distance dlcn and the extrinsic distance dlon .
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function values (and therefore distance approximations) we know that Algorithm 4 could improve
the approximations. This is discussed in Section 6.9.

For the remainder of the experiments LRBFGS indicates algorithm choice along with using ini-
tial iterates given by Algorithm 5 unless indicated otherwise in the description of the experiments.

To show this, a selected curve is compared to a second curve specifically created to be very close
to the first using changes that should be detectable by the distance metric and the algorithms. Two
methods for specifying these changes are considered to highlight particular difficulties with CD1H
compared to LRBFGS. In the comparisons, the first ten curves of the ordered list of shapes defining
each cluster of the two data sets, 1020 in total, are used.

In the first set of comparisons, each curve in the set of 1020 is taken as β2, in turn, and β1 is
defined by

β1 = OT (β2 ◦ γT ), (6.1)

using cubic spline interpolation for β2, where γT (t) = (t + sin(2πt)/(4π)) and OT ∈ SO(2) is
randomly generated. Intuitively the optimal reparameterization should be close to γ−1

T , and the
structures and positions in β2 should map to the same structures and positions in β1.

Figure 13 shows the histogram of diffγ =
∫ 1
0 |γCD1H(t) − γLRBFGS(t)|dt, where γCD1H and

γLRBFGS denote the optimal reparameterizations given by CD1H and LRBFGS respectively. The
difference of γ given by CD1H and LRBFGS satisfies diffγ < 0.1 for most of the samples, and
the differences are caused by the accuracies of the solutions. Figure 12(a) shows an example and
there is almost no visible difference between the reparameterizations given by CD1H and LRBFGS.
However, if one has a closer look, the number of points on the belly of the cow on the right given
by CD1H does not exactly match the points on the cow on the left, but the points on the bellies of
the two curves resulting from LRBFGS match very well. Additionally, the rotation given by CD1H
is also slightly off. While this pair shows that CD1H can produce results close to those of LRBFGS
visually, the CD1H results are typically less satisfactory from a structural point of view for these
specially created pairs of curves.

For 64 of the 1020 pairs of very close curves, the difference in reparameterization computed by
the two algorithms is significant in the sense of diffγ > 0.1. Those 64 samples can be categorized
into two classes. The first class contains 39 samples satisfying the property that rotating the
samples by an angle θ < 2π gives a shape close to the original one, e.g., the shape in Figure 12(b).
For this kind of shape, there are multiple equivalent global minimizers. CD1H and LRBFGS
may find different minimizers, and therefore the difference in reparameterization is understandable
and not problematic. The second class contains 25 samples for which CD1H cannot give intuitive
reparameterizations while LRBFGS can. Figures 12 (c), (d) and (e) are three such examples. These
examples demonstrate that the quality of the initial guess at the reparameterization is crucial to
finding a good rotation and, similarly, a bad approximation of the rotation can cause significant
inaccuracy in the associated reparameterization found using DP.

The second set of experiments on pairs of curves specifically created to be near each other
considers the effect of the choice of break points on CD1H and the strategy used with LRBFGS
to avoid simple subset selection for break points. The first set of tests above chose β1 to be (6.1)
which indicates that the correct break point is always used. This can be seen from noting that
γT (0) = 0 implies no shifting and the initial break point is always used. In particular it is seen
that the accuracy of CD1H may suffer significantly when not every point is available on a curve as
a break point.

The same 1020 sample curves are used. β1 is chosen to be one of the samples, and β2 is created
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Figure 12: Matching curves given by LRBFGS and CD1H. The optimal rotation and reparameter-
ization are applied for the right curve, i.e., β2. The color of points on the two curves represents
correspondence between two curves.
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28

Table 3: The results of final cost function values given by LRBFGS (L) and CD1H (C) with
multiple p values. #< denote the number of final cost function values that is smaller than 10−3.

p 0 1 2 4 8

Lave(L) 3.28−14 5.04−4 9.71−4 3.38−2 1.04−1

#<(L) 1020 900 891 731 444

Lave(C) 3.66−14 2.53−2 9.22−2 2.66−1 4.54−1

#<(C) 1020 0 0 0 0

by shifting all points on β1 by p positions and applying a random rotation. (Examples of shifting
8 points clockwise and counterclockwise are given in the left column of Figure 14.) Note merely
shifting p points does not affect, e.g., rotate, the curve in the plane. It simply changes the choice
of the initial point in the discrete data representing the curve. For this set of tests, LRBFGS and
CD1H only use one initial point and one break point respectively.

Table 3 shows the average of the final cost function values given by CD1H and LRBFGS and
the number of those values fewer than 10−3 with varying values of p. When there is no shift on β2,
the cost functions given by both LRBFGS and CD1H are essentially 0. (The small values are noise
due to finite precision.) The average final cost function values given by LRBFGS are smaller than
those given by CD1H for all values of p. More importantly, even though the shift on β2 is not zero,
the final cost function values given by LRBFGS are smaller than 10−3 for many samples, whereas,
all of the final cost function values given by CD1H are greater than 10−3. This demonstrates the
power of the inclusion of the location m on the curve as an optimization variable. Essentially,
this allows LRBFGS to move in an intelligent manner the initial point for its reparameterization.
CD1H, on the other hand, is at the mercy of the initial choice and can only respond by considering
many such choices independently thereby increasing the computational time required. Figure 14 is
one such example where β2 is shifted 8 points clockwise or counterclockwise and LRBFGS adjusts
the position of m effectively while the breakpoint used for CD1H is clearly not a good choice and
others must be considered.

6.6 Points for Representing Curves

The set of boundary points extracted from a high resolution image usually contain a large number
of points. As points are removed to reduce time and space complexity important structures may
be lost. Figure 15 shows this phenomenon by an example in the MPEG7 database. The boundary
set extracted from the image initially contains 5150 points which is too large for computations that
involve multiple distance computations, e.g., classification. A method for choosing points must be
defined, and the effects on the distance computation considered. The results of different numbers
of points for representing the boundary curve are shown. The blue and red points are chosen using
different uniformly-spaced points in Figure 15. Table 4 illustrates the cost function values given
by CD1H and LRBFGS when β1 and β2 are the blue and red points respectively. LRBFGS always
gives a smaller cost function value than CD1H.

In addition to choosing a sufficient number of points in the proper places to capture appro-
priately the structure of the curves, the influence of increasing the number of points used on the
computational time is much more significant for CD1H than for LRBFGS. The substantial differ-
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original matching CD1H LRBFGS

original matching CD1H LRBFGS

Figure 14: Matching curves given by CD1H and LRBFGS with only one initial point. β2 is given
by shifting 8 points on β1 in clockwise or counterclockwise directions. The black stars represents
the start/end points of the curves.

50 points 100 points

200 points 400 points

Figure 15: 5150 points extracted from the image in data base. Different numbers of points are
chosen for representing the same curve. Red and blue points represent extracting uniformly-spaced
points from different initial points.
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Table 4: The values of cost function L given by LRBFGS and CD1H when β1 and β2 are the blue
and red curves in Figure 15.

# of points 50 100 200 400

L by LRBFGS 3.09−2 4.23−2 1.18−3 2.67−3

L by CD1H 1.27−1 1.29−1 4.27−2 3.03−2
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Figure 16: Comparison of complexities of CD1H and LRBFGS.

ence in the complexities of LRBFGS and CD1H is illustrated in Figure 16 for a representative pair
of leaf shapes from the 27th species of the Flavia dataset. Boundary curves were extracted with
different numbers of points N to test the relationship between N and time costs for LRBFGS and
CD1H. LRBFGS needs much smaller computational time than CD1H as the number of points in-
creases. The computational complexity for LRBFGS with DP on a coarse grid is O(Nkms+N2

sms)
where k is the number of iterations, ms is the number of initial conditions. CD1H, due to the DP
portion of the computation, contains an O(N3) term. Note the rise in time for LRBFGS as N
increases is not indicative of a nonlinear growth in the number of iterations required but due to
the cubic term in the complexity of a very coarse grid, i.e., much smaller than N , used by DP to
compute the initial reparameterization.

6.7 Evaluation with Representative Pairs from Flavia and MPEG-7 Datasets

All previous pairs used nearby pairs constructed by very specific changes from a given image to
compare and highlight particular performance characteristics of CD1H and LRBFGS. Figure 17
presents more detailed results for some representative examples from the datasets in which β1 and
β2 are significantly different shapes. The differences between the reparameterizations and rotations
computed by LRBFGS and CD1H are clearly shown in those figures. Although a quantitative
comparison between the results from the two algorithms is not possible except by the cost function,
examining the results shows that LRBFGS produces more reasonable rotations and mappings of
structures from one curve to the other.

Since the closed solutions of reparameterization and rotation are unknown for this data, it is
unknown whether global minima are obtained. LRBFGS produces smaller cost function values
than CD1H for these pairs. Furthermore, LRBFGS gives smaller cost function values for more
than 99% pairs of shapes in datasets FLAVIA and MPEG-7 as shown in Section 6.8.
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Figure 17: Results of LRBFGS (R) and CD1H (C) for pairs of shapes from Flavia and MPEG-7
datasets. The final rotation and reparameterization are applied to β2 to compare with β1. The
colors of points on the two curves represent correspondence between two curves. The black stars
represent the start/end points of the curves. The title of the matching curves includes the final
values of the cost function.
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6.8 Performance Comparison for Flavia and MPEG-7 Datasets

In order to compare the computational cost and efficacy of the preferred Riemannian algorithm,
LRBFGS, to those of the current state-of-the-art, CD1H, all pairwise distances in the Flavia and
MPEG-7 data sets were computed (1, 819, 278 and 980, 700 pairs respectively) using the testing
environment described in Section 6.2. For CD1H, the effect of the number of break points was
considered by running each pair with a break point every 2, 4, 8 and 16 points given a fixed initial
point, i.e., the sets are nested.

In addition to comparing the computation times and cost function values for the two algorithms,
the quality of the distance computations was assessed using the one-nearest-neighbor (1NN) metric
of cluster (species) preservation for the MPEG-7 (Flavia) shapes. The 1NN metric, µ, computes
the percentage of points whose nearest neighbor is in the same cluster, i.e.,

µ =
1

n

n∑
i=1

C(i), C(i) =


1 if point i and its

nearest neighbor are

in the same cluster;

0 otherwise.

(6.2)

A very significant improvement in the final value of the cost function achieved by LRBFGS
compared to the value achieved by CD1H is observed. For the Flavia dataset, LRBFGS reduces
the cost function more than CD1H in 99.16%, 99.45%, 99.68% and 99.83% of the pairs when
choosing break points every 2, 4, 8 and 16 points for CD1H respectively. For the MPEG-7 dataset,
LRBFGS minimizes the cost function better than CD1H in 99.73%, 99.81%, 99.89% and 99.93% of
the pairs when choosing break points every 2, 4, 8 and 16 points for CD1H respectively.

The distribution of the ratio of the cost function value of CD1H to that of LRBFGS is shown in
the histograms in Figure 18. Ratios where LRBFGS was more than 4 times better are not included
for presentation purposes. The maximum ratios for the Flavia data set (and the number of ratios
exceeding 4) were 1184 (1683), 1184 (3348), 1184 (13748) and 1184 (110096) when choosing break
points every 2, 4, 8 and 16 points for CD1H respectively. The maximum ratios for the MPEG-7 data
set (and the number of ratios exceeding 4) were 6.73∗1024 (564), 6.73∗1024 (1035), 4.76∗1025 (2285)
and 1.00∗1026 (5115) when choosing break points every 2, 4, 8 and 16 points for CD1H respectively.
The amazingly large ratios beyond 4 occur for pairs of shapes that are fairly close in shape where
LRBFGS achieves a very small cost function value. Not only is it clear from this data that, in
general, LRBFGS reduces the cost function more than CD1H, but also in the cases when CD1H
produces a smaller cost function value it is usually very close to the value produced by LRBFGS.

Of course, if the improvement in the reduction of the cost function requires a very large increase
in computation time then the argument in favor of LRBFGS and the other Riemannian methods
weakens. The histograms of computation times for CD1H and LRBFGS for the MPEG-7 and
Flavia datasets in Figure 19 show that most of the computation time of LRBFGS is smaller than
that of CD1H with break points chosen to be every 2 and 4.

A more careful examination of the times indicates an advantage of the Riemannian approach.
Specifically, the computation time for a pair of shapes using CD1H is essentially proportional to
the number of break points used. There is very little variation between computation times when
using the same number of break points as is seen in the CD1H spikes in Figure 19.

Figure 19 also shows that the, much smaller, computation times for LRBFGS have significant
variation. Recall that the Riemannian methods automatically select the position and number of
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Figure 18: Histograms of ratios of the CD1H cost function value to the LRBFGS cost function value
(C/L) for MPEG-7 and Flavia datasets. N/i, i = 2, 4, 8, 16 denote the number of break points in
CD1H. Bins are (0, 0.1), . . . , (0.9, 1.0), . . . , (3.9, 4.0).
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datasets.



34

0 0.2 0.4 0.6
0

2

4

6
x 10

4

time(seconds)

nu
m

be
r

MPEG−7

 

 

time

0 0.2 0.4
0

1

2

3
x 10

5

time(seconds)

nu
m

be
r

Flavia

 

 

time

0 0.01 0.02 0.03
0

5

10

15
x 10

4

time(seconds)

nu
m

be
r

MPEG−7

 

 

PIC

0 0.01 0.02
0

2

4

6
x 10

5

time(seconds)
nu

m
be

r

Flavia

 

 

PIC

Figure 20: Histograms of computation times of LRBFGS and computation times per initial condi-
tion (PIC) of LRBFGS for MPEG-7 and Flavia datasets. The standard deviation of time and PIC
for MPEG-7 is 0.090 and 0.003 respectively. The standard deviation of time and PIC for Flavia is
0.067 and 0.002 respectively.

initial conditions used to compute the distance for a pair of shapes. The computation time per
initial condition (PIC) for LRBFGS varies only slightly as is shown also in Figure 20, and the
computation time for a pair of shapes is essentially proportional to the number of initial conditions
used. Since the number of initial conditions is a simple measure of the complexity of one or both
of the shapes in the pair, the Riemannian methods have the additional advantage of only requiring
a computation time that reflects the difficulty of the problem.

Table 5 shows the average time cost and 1NN metric for both datasets. The trends are as
expected given the examples in Figures 6, 7. For the MPEG-7 dataset, the shapes in different
clusters are very distinct compared to the significantly greater similarity of shapes in certain pairs
of species in the Flavia dataset, e.g., species 1 and 21. Therefore, the µ values in (6.2) are expected
to be higher for MPEG-7 distances since the distinctions are easier to make while lower µ values
are expected for Flavia distances. For CD1H it is expected that µ values would increase as the
number of break points increases. All of these trends are observed in the µ data.

The comparison of µ achieved by LRBFGS to those of CD1H shows a clear advantage to
LRBFGS. LRBFGS achieves a value of µ higher than CD1H using the densest set of break points.
Not surprisingly, given the distributions of computation times discussed earlier, the average time
for LRBFGS is smaller than the average time for even the second sparsest set of CD1H break points
(N/8).

All of the distances computed so far have used the more complex curve, i.e., the one with
greater angular change, to drive the reparameterization. This is the preferred approach to get an
accurate approximation of the distance. If the simpler curve is used to drive the reparameterization
a reduction in the computational cost is observed for pairs of curves that are sufficiently differen-
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Table 5: The average computation time and 1NN metric of LRBFGS and CD1H with break points
chosen to be every 2, 4, 8 and 16 points for Flavia (F) and MPEG-7 (M) data sets. Results includes
using complex (C) curves and simple (S) curves to generate m0’s.

LRBFGS CD1H

(C) (S) N/16 N/8 N/4 N/2

tave(F) 0.088 0.047 0.126 0.233 0.448 0.897

1NN(F) 89.51% 89.04% 79.55% 83.01% 85.95% 87.52%

tave(M) 0.181 0.134 0.127 0.236 0.454 0.908

1NN(M) 97.79% 98.07% 90.29% 93.86% 96.07% 96.79%

t. However, this results in a less accurate overestimation of the distance and a less satisfactory
reparameterization. In some applications, the accuracy of the reparameterization is not the main
concern, and accuracy can be usefully traded for lower computational time. Of course, since this
is for all pairs in the datasets the distance for pairs of nearby curves do not change significantly.
Nevertheless, there is a reduction in the average computational time without a negative effect on
the 1NN metric percentage.

6.9 Performance of Algorithm 4

The nonuniform grid-based Algorithm 4 does not have the problems of Algorithm 2 and Algorithm 3
described earlier and therefore is a potential alternative coordinate descent method, especially when
CD1H does not yield a sufficiently small final cost function value. We next compare Algorithm 4
to LRBFGS to determine if it is competitive. The shapes in Figure 22 show the points of the
resampled β2 on a uniform grid and the cost function value at each iteration when Algorithm 4 is
applied to the shapes in Figure 21. The resulting matching curves, final cost function values and
computational time given by LRBFGS and Algorithm 4 are shown in Figure 23.

Algorithm 4 reduces the cost function more than Algorithm 2 and Algorithm 3 therefore im-
proving the distance approximation. However, LRBFGS produces smaller cost function values and
uses significantly less computational time. Over the set of experiments, that includes the pairs
presented here, Algorithm 4 is never faster than LRBFGS and has computational times that range
from 10 to 100 times more than those of LRBFGS. So while Algorithm 4 is more robust than the
other implementations of the DP-based approaches, it is simply not competitive with LRBFGS
with respect to computational time and effectiveness.

7 Conclusion

We have explored the computation of the elastic distance metric for open and closed curves in
Rn and reviewed DP-based coordinate descent algorithms including the state-of-art CD1/CD1H
of Srivastava et al., [SKJJ11]. The difficulties for the coordinate descent methods with respect to
convergence, robustness and computationaly complexity were identified and an improved coordinate
descent method based on a nonuniform grid DP that fixes all of the difficulties was given. As
an alternative to the coordinate descent algorithms, we have derived a Riemannian approach to
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Figure 21: Successive points are connected by straight lines for display purposes.

original curve 1-th iter., Hc:0.70741

2-th iter., Hc:0.69576 3-th iter., Hc:0.69575

4-th iter., Hc:0.68804

5-th iter., Hc:0.62897 6-th iter., Hc:0.6596

original curve
1-th iter., Hc:0.71377

2-th iter., Hc:0.58409 3-th iter., Hc:0.57451

4-th iter., Hc:0.55123 5-th iter., Hc:0.55113 6-th iter., Hc:0.56245

Figure 22: For display purposes, the β2 is re-sampled such that points on uniformly-spaced are
displayed, and successive points are connected by straight lines. The cost function values are given
in the titles.
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LRBFGS, L:0.46052, time:0.103s
CD, L:0.62897, time:5.720s

LRBFGS, L:0.54745, time: 0.089s CD, L:0.55113, time:5.648s

Figure 23: Matching curves obtained by LRBFGS and Algorithm 4. The color of points on the two
curves represents correspondence between two curves. The cost function values and computational
time are given in the titles.

computing the elastic distance metric and developed an efficient implementation using various
Riemannian optimization algorithms.

Empirical comparisons of the Riemannian approach using LRBFGS with CD1H using shapes
from the MPEG-7 and Flavia datasets were performed. The results highlight the difficulties and
inaccuracies associated with CD1H and demonstrate that the Riemannian approach produces more
accurate distance estimates in significantly less time since the computational time required adapts
appropriately to the complexity of the shapes compared. The nonuniform grid coordinate descent
method Algorithm 4 was verified to improve the final cost function value compared to CD1H but
only at a significant computational cost compared to CD1H and therefore also the Riemannian
approach.

The efficiency and efficacy of the Riemannian approach to computing the elastic distance metric
promises to improve substantially shape analysis computations that are based upon distance, e.g.,
the Karcher mean of a set of shapes, geodesic paths between shapes, and inferences on shapes.
These improvements will be demonstrated in future work.
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A Proofs

Proof of Theorem 2.1:

Proof. By definition, for any q̃ ∈ [q]SO(n)×Γo
s
, there exist Õ ∈ SO(n) and γ̃ ∈ Γo

s such that q̃ =

Õ(q, γ̃). It follows from [LRK15, Lemma 11] that there exists a sequence {γi} ⊂ Γo such that
(q, γi)→ (q, γ̃) with respect to the L2 metric. Since SO(n) is isometric for L2, we have Õ(q, γi)→
Õ(q, γ̃), which implies that q̃ ∈ [q]. Therefore, we obtain [q]SO(n)×Γo

s
⊆ [q]. We finished proving the

first statement.
For any v ∈ [q], there is a sequence of {Oi} and {γi} such that Oi(q, γi) → v with respect

to the L2 metric. Since SO(n) is a compact set, there exists a convergent subsequence of {Oi},
i.e., {Oij} ⊆ {Oi} and Oij → Õ with respect to 2-norm. Let q̃ denote ÕT v. It follows that

Oij (q, γij )→ Õq̃. We have

∥Oij (q, γij )− Õq̃∥L2 = ∥Oij (q, γij )− Õ(q, γij ) + Õ(q, γij )− Õq̃∥L2

≥ ∥Õ(q, γij )− Õq̃∥L2 − ∥Oij (q, γij )− Õ(q, γij )∥L2 = ∥(q, γij )− q̃∥L2 − ∥Oij − Õ∥2∥q∥L2 .

It follows that

∥Oij − Õ∥2∥q∥L2 + ∥Oij (q, γij )− Õq̃∥L2 ≥ ∥(q, γij )− q̃∥L2 , (A.1)

which implies (q, γij ) → q̃. Since q−1(0n) has measure zero, it follows from [LRK15, Corollary 3]

that there exists γ̃ ∈ Γo
s such that q̃ = (q, γ̃). Therefore, v = Õ(q, γ̃) ∈ [q]SO(n)×Γo

s
, which implies

[q] ⊆ [q]SO(n)×Γo
s
.
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Proof of Theorem 2.2:

Proof. By definition, for any q̃ ∈ [q]SO(n)×Γc
s
, there exist Õ ∈ SO(n) and (m̃, γ̃) ∈ Γc

s such that

q̃ = Õ((q, m̃), γ̃). It follows from [LRK15, Lemma 11] that there exists a sequence {γi} ⊂ Γo such
that ((q, m̃), γi) → ((q, m̃), γ̃) with respect to the L2 metric. Since SO(n) is isometric for L2, we
have Õ((q, m̃), γi)→ Õ((q, m̃), γ̃), which implies that q̃ ∈ [q]. Therefore, we obtain [q]SO(n)×Γo

s
⊆ [q].

We finished proving the first statement.
For any v ∈ [q], there is a sequence of {Oi}, {mi} and {γi} such that Oi((q,mi), γi) → v

with respect to the L2 metric. Since SO(n) and [0, 1] are compact sets, there exists a convergent
subsequence of {Oi} and mi, i.e., {Oij} ⊆ {Oi} and Oij → Õ with respect to 2-norm and {mij} ⊆
{mi} and mij → m̃. Let q̃ denote ÕT (v,−m̃). It follows that Oij ((q,mij ), γij )→ Õ(q̃, m̃).

Proceeding as (A.1), we have

∥Oij − Õ∥2∥(q,mij )∥L2 + ∥Oij ((q,mij ), γij )− Õ(q̃, m̃)∥L2 ≥ ∥((q,mij ), γij )− (q̃, m̃)∥L2 . (A.2)

It holds that

∥((q,mij ), γij )− (q̃, m̃)∥L2 = ∥((q,mij ), γij )− ((q, m̃), γij ) + ((q, m̃), γij )− (q̃, m̃)∥L2

≥ ∥((q, m̃), γij )− (q̃, m̃)∥L2 − ∥(q,mij )− (q, m̃)∥L2 . (A.3)

Since q is absolutely continuous, mij → m̃ implies ∥(q,mij ) − (q, m̃)∥L2 → 0. Therefore, using
(A.2) and (A.3) yields ((q, m̃), γij ) → (q̃, m̃). Since q−1(0n) has measure zero, (q, m̃)−1(0n) also
has measure zero. It follows from [LRK15, Corollary 3] that there exists γ̃ ∈ Γo

s such that (q̃, m̃) =
((q, m̃), γ̃). Therefore, v = Õ((q, m̃), γ̃) ∈ [q]SO(n)×Γc

s
, which implies [q] ⊆ [q]SO(n)×Γc

s
.

Proof of Lemma 4.2:

Proof. The cost function L(O,m, l) is equal to

2− 2

∫ 1

0
trace(q2 (ρl,m(t)) l(t)q1(t)

TOT )dt+ ω

∫ 1

0

(
l2(t) +

1

l2(t)

)√
1 + l4(t)dt.

Consider the cost function defined on the embedding manifold

L̄(O,m, l) : Rn×n × R× L2 → R : (O,m, l) 7→

2− 2

∫ 1

0
trace(q2 (ρl,m(t)) l(t)q1(t)

TOT )dt+ ω

∫ 1

0

(
l2(t) +

1

l2(t)

)√
1 + l4(t)dt.

The gradient for the variable O is

∇OL̄(O,m, l) = −2
∫ 1

0
q2 (ρl,m(t)) l(t)q1(t)

Tdt ∈ Rn×n.

The gradient for the variable m is

∇mL̄(O,m, l) = −2
∫ 1

0
⟨Oq1(t), l(t)q

′
2 (ρl,m(t))⟩2dt.



41
The gradient for the variable l is not easy to compute directly. First, consider the directional

derivative along v ∈ Tl L.

Dl L̄(O,m, l)[v] =− 2

∫ 1

0

⟨
Oq1(t), v(t)q2 (ρl,m(t)) + 2l(t)q′2 (ρl,m(t))

∫ t

0
l(s)v(s)ds

⟩
2
dt

+ ω

∫ 1

0
2v(t)l(t)(2− 1/l4(t))

√
1 + l4(t)dt.

Simplifying, we have

Dl L̄(O,m, l)[v] =− 2

∫ 1

0
⟨Oq1(t), q2 (ρl,m(t))⟩2v(t)dt

− 2

∫ 1

0
⟨Oq1(t), 2l(t)q

′
2 (ρl,m(t))⟩2

∫ t

0
l3(s)v(s)dsdt

+ 2ω

∫ 1

0
l(t)(2− 1/l4(t))

√
1 + l4(t)v(t)dt.

If

x(t) = ⟨Oq1(t), q2 (ρl,m(t))⟩2
y′(t) = ⟨Oq1(t), 2l(t)q

′
2 (ρl,m(t))⟩2

z(t) = ωl(t)(2− 1/l4(t))
√

1 + l4(t),

then

Dl L̄(O,m, l)[v]− ⟨2z(t), v(t)⟩L2 = −2
∫ 1

0
x(t)v(t)dt− 2

∫ 1

0
y′(t)

∫ t

0
l(s)v(s)dsdt

= −2
∫ 1

0
x(t)v(t)dt− 2

(
y(t)

∫ t

0
l(s)v(s)ds|10 −

∫ 1

0
y(t)l(t)v(t)dt

)
(integration by parts)

= −2
∫ 1

0
x(t)v(t)dt+ 2

∫ 1

0
y(t)l(t)v(t)dt (by v ∈ Tl L)

=

∫ 1

0
(2y(t)l(t)− 2x(t))v(t)dt = ⟨2yl − 2x, v⟩L2 .

Since the gradient is the vector that satisfies

DlL̄(O,m, l)[v] = ⟨∇lL̄(O,m, l), v(t)⟩L2 ,

we obtain
∇lL̄(O,m, l) = 2y(t)l(t)− 2x(t) + 2z(t).

Finally, the Riemannian gradient is given by projecting each component of L̄(O,m, l) to its associ-
ated manifold.
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