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Abstract

Riemannian optimization is the task of finding an optimum of a real-valued function de-
fined on a Riemannian manifold. Riemannian optimization has been a topic of much interest
over the past few years due to many applications including computer vision, signal process-
ing, and numerical linear algebra. The substantial background required to successfully design
and apply Riemannian optimization algorithms is a significant impediment for many potential
users. Therefore, multiple packages, such as Manopt (in Matlab) and Pymanopt (in Python),
have been developed. This paper describes ROPTLIB, a C++ library for Riemannian opti-
mization. Unlike prior packages, ROPTLIB simultaneously achieves the following goals: i)
it has user-friendly interfaces in Matlab, Julia and C++; ii) users do not need to implement
manifold- and algorithm-related objects; iii) it provides efficient computational time due to its
C++ core; iv) it implements state-of-the-art generic Riemannian optimization algorithms, in-
cluding quasi-Newton algorithms; and v) it is based on object-oriented programming, allowing
users to rapidly add new algorithms and manifolds. The code and a manual can be downloaded
from http://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html.

Keywords: Riemannian optimization; non-convex optimization; orthogonal constraints; sym-
metric positive definite matrices; low-rank matrices; Matlab interface; Julia interface;

1 INTRODUCTION

Riemannian optimization concerns optimizing a real-valued function f defined on a Riemannian
manifold M:

min
x∈M

f(x).

Many problems can be formulated into an optimization problem on a manifold. For example,
matrix/tensor completion [Van12, Mis14, KM15, CA16] can be written as an optimization problem
over a manifold of matrices/tensors with fixed, low rank. As the second example, finding the
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Karcher mean (with respect to the affine invariant metric [PFA06, JVV12]) of a set of symmetric
positive definite (SPD) matrices can be written as an optimization problem over the manifold of
SPD matrices [JVV12, YHAG16]. As the third example, the registration problem between two
shapes using an elastic shape analysis framework can be written as an optimization problem on the
unit sphere in the L2 space [HGSA15]. As the final example, the phase retrieval problem can be
written as an optimization problem on the manifold of Hermitian positive definite matrices with
fixed rank [CESV13, WDAM13, HGZ16]. We refer to [AMS08, Hua13] for more applications.

Many effective and efficient optimization methods on Riemannian manifolds have been proposed
and analyzed. In 2007, Absil et al. [ABG07] exploited second order information and developed a
trust region Newton method. In 2012, Ring and Wirth [RW12] generalized two first order methods—
the BFGS method and Fletcher-Reeves nonlinear conjugate gradient method—to the Riemannian
setting. The generalization and convergence analyses rely on a step size set by the strong Wolfe
condition. In 2015, Huang et al. [HAG15] presented a Riemannian trust region symmetric rank one
update method, which combines the trust region with the quasi-Newton approach. In the same year,
Sato [Sat15] defined a Dai-Yuan-type Riemannian conjugate gradient method. This method relaxes
an assumption required in the Fletcher-Reeves nonlinear conjugate gradient method in [RW12]
and only needs the weak Wolfe condition in the line search. Again in the same year, Huang et
al. [HGA15] proposed a Broyden family of Riemannian quasi-Newton methods, which includes the
well-known Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Unlike the Riemannian RBFGS
in [Ring and Wirth 2012], which requires the differentiated retraction along an arbitrary direction,
the Riemannian BFGS by Huang et al. only requires the differentiated retraction along an particular
direction, which results in computational benefits in some cases. In 2016, Huang et al. [HAG16a]
gave a Riemannian BFGS method by further relaxing requirements on the differentiated retraction.

Several packages exist for Riemannian optimization. Some packages are applicable only to
problems on specific manifolds using specific algorithms. For example, a Matlab package [Abr07]
developed by Abrudan implements a conjugate gradient algorithm [AEK09] and a steepest descent
algorithm [AEK08] only for the unitary matrix constraint. A more recent Matlab package [WY12]
gives a Barzilai-Borwein method for manifolds with orthogonality constraints. The R package
GrassmannOptim [AW13] has a gradient descent method to solve problems defined on the Grass-
mann manifold.

The generic Riemannian trust-region (GenRTR) package introduced more flexibility by allowing
users to define their own manifolds. This package uses Matlab function handles to split function-
s related to solvers from functions related to a specific problem. Specifically, in problem-related
functions, users are asked to define cost-function-related operations, such as function evaluation,
Riemannian gradient evaluation and action of the Riemannian Hessian, and manifold-related oper-
ations such as retraction, projection, and evaluation of a Riemannian metric. The function handles
of those problem-related functions are then passed to a solver that performs the Riemannian trust
region method [ABG07]. While GenRTR allows users to treat optimization algorithms as a black
box, it requires users to supply technical operations on Riemannian manifolds.

The Matlab toolbox, Manopt, further improves the ease of use of Riemannian optimization
by implementing a broad library of Riemannian manifolds. Consequently, it makes Riemannian
optimization easily accessible to users without significant background in this field. Unfortunately,
some state-of-the-art Riemannian methods are not implemented in Manopt, such as Riemannian
quasi-Newton methods1. Further computation may be slow because of the Matlab environment.

1To the best of our knowledge, Matlab is not an efficient language for Riemannian quasi-Newton method-
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An auxiliary package to Manopt is the geometric optimization toolbox (GOPT) [HS14]. This

package implements a limited memory version of a Riemannian BFGS method and applies it to
problems on the manifold of SPD matrices. Note that its corresponding Riemannian BFGS method
does not have any convergence analysis results.

Manopt requires the commercial software Matlab which restricts the range of the potential
users. The package Pymanopt [TKW16] implements Manopt using the Python language and adds
automated differentiation for calculating gradients. The ability of auto-differentiation further in-
creases the ease of use. Note that Pymanopt contains exactly the same Riemannian optimization
algorithms and manifolds as those in Manopt. Therefore, it does not include some state-of-the-art
Riemannian algorithms. As Python is interpreted, its computational time is slower than C++. An-
other Python package is Rieoptpack [RHPA15]. This package contains a limited-memory version
of Riemannian BFGS method [HGA15], which is not included in Pymanopt.

Even though Manopt and Pymanopt are user-friendly packages and do not require users to
have much knowledge about Riemannian manifolds, it is not easy to have efficient implementations
using these two packages. To the best of our knowledge, the interpreted languages, Matlab and
Python, are often more than 10 times slower than compiled languages, such as C++ and Fortran
(see Section 5). To overcome this difficulty, Matlab and Python allows users to invoke high ef-
ficient libraries such as BLAS and LAPACK. It follows that it is difficult to obtain meaningful
computational time from a Matlab or Python package in the sense that a function using different
implementations may have very different computational time. As a result, some researchers resort
to complied languages for efficiency.

A package using a complied language for Riemannian optimization is the C++ library for opti-
mization on Riemannian manifolds (LORM) [Ehl13]. This package focuses on global optimization
of polynomials on the sphere, the torus and the special orthogonal group. Multiple initial points are
generated and a Riemannian algorithm is used for each initial point. Only a Riemannian steepest
descent method and a Riemannian nonlinear conjugate gradient method are implemented.

This paper describes ROPTLIB, a C++ library for Riemannian optimization. Unlike prior
packages, ROPTLIB simultaneously achieves the following goals: i) it has user-friendly interfaces
in Matlab, Julia and C++; ii) users do not need to implement manifold- and algorithm-related
objects; iii) it provides efficient computational time due to its C++ core; iv) it implements state-
of-the-art generic Riemannian optimization algorithms, including quasi-Newton algorithms; and
v) it is based on object-oriented programming, allowing users to rapidly add new algorithms and
manifolds. ROPTLIB uses the standard libraries BLAS and LAPACK for efficient linear algebra
operations. For examples of using ROPTLIB, see Section 3.

Using object-oriented programming to develop optimization packages is, of course, not new.
But as far as we know, most of them are restricted to Euclidean optimization, (see a review
of optimization software in [Mit10]). Here, we refer to two excellent review papers [MOHW07]
and [PJM12], which describe, respectively, a C++ and a Python Euclidean optimization package.
For those unfamiliar with object-oriented programming terminology, we refer to [LLM12].

This paper is organized as follows. In Section 2, we present the structure and the philosophy of
ROPTLIB and its main classes. Section 3 gives an example that uses ROPTLIB to solve a problem

s. Specifically, since Matlab cannot invoke the rank-1 update function dsyr in BLAS directly without through
C++ or Fortran interface, the implementation of the Hessian approximation update formula would be slow,
(see [RHPA15, HAG15, HGA15] for examples of update formulas). In addition, the efficient vector trans-
port [HAG16b] needs functions e.g., dgeqrf and dormqr, in LAPACK, which cannot be called from Matlab directly
either without through C++ and Fortran interface.
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Figure 1: A sketch of the structure of ROPTLIB.

on the Stiefel manifold. Section 4 demonstrates the importance of ROPTLIB by two applications.
A benchmark is given in Section 5. Conclusion and future work are in Section 6.

2 SOFTWARE DESCRIPTION

The idea behind the ROPTLIB software design is to guarantee the ease of use for multiple types of
users, including general users that want to solve particular optimization problems over commonly-
used manifolds and developers that want to extend ROPTLIB to include new algorithms or mani-
folds. Therefore, we divided the classes of ROPTLIB into four families: i) space-related classes, ii)
manifold-related classes, iii) problem-related classes, and iv) solver-related classes. This approach
enables maximal code reuse each time a new problem is presented, a new algorithm is developed
or a new manifold is added.

Figure 1 sketches the structure and relationship between the four families of classes. The
space-related classes define objects on manifolds, such as a point on a manifold, a tangent vector
on a manifold, and a linear operator on a manifold. It supports the copy-on-write strategy (see
Section 2.1), which avoids some unnecessary copy operations. The manifold-related classes define
operations on manifolds. Those classes receive objects, such as points on a manifold and tangent
vectors of a manifold, to perform operations, such as retraction, vector transport, and the evaluation
of a Riemannian metric. The problem-related classes define cost-function evaluation, gradient
evaluation and the action of the Hessian. The domain of a problem is specified using a pointer to
a manifold. The solver-related classes receive a problem-related class and a point on the domain
manifold (an initial iterate) to perform a specified Riemannian optimization algorithm. The class
hierarchies of the four families are described separately in detail below.

ROPTLIB has prototypes of operations for the four families of classes. The state-of-the-art Rie-
mannian optimization algorithms and many commonly-used manifolds are included in ROPTLIB
with user-friendly interfaces. If the problems given by users are defined on manifolds which have
been implemented in ROPTLIB, then the users are only required to write problem-related classes
defining their own problems. Note that ROPTLIB only needs Euclidean gradient and action
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of Euclidean Hessian since the manifold-related classes are able to convert them to corresponding
Riemannian gradient and action of Riemannian Hessian automatically.

Throughout this paper, a class or a function is written in this italics font and an object is
written in this boldface font.

Polymorphism is particularly important in ROPTLIB, since in an optimization algorithm, it is
unknown what problem or manifold is used, and polymorphism allows the solvers to automatically
choose the correct problem object and the correct manifold object. For example, in a solver, a
user-defined problem class is pointed to by a pointer of the base class, Problem. When invoking
member functions using the pointer of Problem class, the functions defined in the user-defined
derived class rather than functions in Problem are used. This property of automatically choosing
member functions based on the true type of object rather than the type of pointer is polymorphism.

2.1 Space Classes

The space-related classes support copy-on-write. If data stored in memory is used in multiple tasks
and the data only need be modified occasionally, then one does not have to create multiple copies
of the data for each of the tasks. A copy is created only if the data in a task is required to be
modified. For example, suppose A is a 1000-by-1000 matrix. When the matrix A is assigned to
a matrix B, it is not necessary to create a new copy for the 1000-by-1000 matrix immediately.
One can simply assign the address of the matrix A to B. A new copy is created only when one of
the matrices is modified. Copy-on-write is important to save computational time especially when
handling large-scaled problems. Therefore, ROPTLIB does not use the standard C++ libraries to
manipulate memory since these libraries do not support copy-on-write.

The class hierarchy of space-related classes is given in Figure 2. The class SmartSpace is the
pure virtual class that defines the most basic behavior of copy-on-write. The pointer Space points
to the memory of the data and sharedtimes gives the number of objects using this memory. Three
member functions ObtainReadData, ObtainWriteEntireData, and ObtainWritePartialData define
three different ways to handle the data in the memory. ObtainReadData returns a constant pointer
and users are not allowed to modify the data. This is the fastest way to access the data but users
have the most limited authority. Whereas, the memory functions ObtainWriteEntireData and
ObtainWritePartialData are allowed to access the data and modify them. ObtainWriteEntireData
may not preserve the old data in the memory and this function is used when users want to completely
overwrite the data. ObtainWritePartialData guarantees that the memory has the old data. This
is the most inefficient approach but it preserves the old data information and is used if users only
partially modify the data.

The Element class defines the functionalities of a point and a tangent vector of a manifold.
Besides using copy-on-write, an object of this class also has the ability to include temporary da-
ta. This functionality is crucial to avoid some redundant computations. For instance, in many
problems, the computational cost of the gradient evaluation can be significantly reduced if the cost
function evaluation has been done. Since the cost function value and gradient are related to the
current iterate, one can attach temporary data onto the current iterate in the function evaluation
and reuse this data in the gradient evaluation. To this end, ROPTLIB uses an object TempData
of a map2, whose key is string type and value is SharedSpace type which are introduced in the next
paragraph. Therefore, string can be used to attach or withdraw specific temporary data. Specif-

2It is a container class, see details in http://www.cplusplus.com/reference/map/map/.

http://www.cplusplus.com/reference/map/map/
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SmartSpace

virtual SmartSpace *ConstructEmpty(void) const = 0
virtual void Initialization(int, ...)
virtual void CopyTo(SmartSpace *) const

virtual const double *ObtainReadData(void) const
virtual double *ObtainWriteEntireData(void)
virtual double *ObtainWritePartialData(void)

double *Space int *sharedtimes

SharedSpace

Element *SharedElement

Element LinearOPE

virtual void ScaledIdOPE(double)
virtual void AddToTempData(std::string name, SharedSpace * &)
virtual const SharedSpace *ObtainReadTempData(std::string) const
virtual SharedSpace *ObtainWriteTempData(std::string)
virtual void RemoveFromTempData(std::string)

std::map$¡$std::string, SharedSpace *$¿$ TempData

virtual LinearOPE *ConstructEmpty(void) const

virtual SharedSpace *ConstructEmpty(void) const

virtual Element *ConstructEmpty(void) const = 0

ProductElement

virtual ProductElement *ConstructEmpty(void) const

virtual void CopyTo(SmartSpace *eta) const

virtual const double *ObtainReadData(void) const

virtual double *ObtainWriteEntireData(void)

virtual double *ObtainWritePartialData(void)

ObliqueVariable

StiefelVariable

SphereVariable

OrthGroupVariable

and moreSPDTVariable and more

ObliqueVector SPDTVector

StiefelVector SphereVector

OrthGroupVector

GrassVariable

GrassVector

Figure 2: The class hierarchy of space-related classes in ROPTLIB. Note that Variable and Vector
are defined to be Element.
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ically, the member function AddToTempData is used to add a temporary data, and the member
functions ObtainReadTempData and ObtainWriteTempData are used to obtain stored temporary
data. An example is given in Secton 3.1.

The classes SharedSpace and LinearOPE are derived classes of SmartSpace. SharedSpace is
only used as space for temporary data. One can either store an arbitrary length double array or an
Element object, which is a point or a tangent vector on the manifold, to an object of SharedSpace.
Allowing to attach an Element object eases implementations in some cases, see Section 3.1 for an
example. LinearOPE defines a linear operator on a tangent space and typically is a matrix.

After the class Element is defined, a point on any manifold and a tangent vector of any man-
ifold can be defined as a derived class. For example, StieVariable, GrassVariable, SPDVariable
are classes for a point on the Stiefel manifold, Grassmann manifold, and the manifold of symmet-
ric positive definite (SPD) matrices, respectively, and StiefelVector, GrassVector, SPDVector are
classes for a tangent vector of those three manifolds, respectively. For more manifolds, we refer to
the user manual [HAA16].

ROPTLIB defines ProductElement class, which can be used as a point on a product manifold or
a tangent vector of a product manifold. This class re-implements a few member functions of Element
to guarantee that the space of elements are consecutive. The motivation of this approach is to utilize
the principle of locality and improve efficiency. Some products of manifolds are implemented in
ROPTLIB, such as the Oblique manifold, (or equivalently the product of unit spheres) and the
SPD tensors (or equivalently the product of SPD manifolds).

Note that the function ConstructEmpty is declared in SmartSpace and reimplemented in all the
derived classes. This function makes use of the polymorphism and gives a virtual constructor for
all the space-related classes.

2.2 Manifold Classes

ROPTLIB has supplied many commonly-used manifolds. In addition, a user-friendly interface
is also provided for advanced users in case they would like to define their own manifolds. The
base class of all the manifold-related classes includes the prototypes of all the necessary operations
on a manifold. Figure 3 shows the hierarchy of the manifold-related classes and some important
prototypes of functions in the base class Manifold. The functions are all virtual since the ability
to automatically choose the manifold class in a solver requires treating manifold-related classes
polymorphically. The functions can be classified into three groups. The first group functions,
which are in the solid box, must be overridden in a derived class of a specific manifold in general.
Note that for the non-pure virtual functions we have provided default implementations which are
operations for the Euclidean manifold.

The functions in the second and the third groups do not need be overridden generally. The
second group functions, in the dotted box, define a vector transport satisfying the locking condition,
(see [HGA15] for the definition and the use of the locking condition). The third group functions,
in the dashed box, use the properties of operations on a manifold to verify whether the first group
functions, which may be overridden by users, are correct or not. For example, a retraction on a
manifold satisfies

d

dt
Rx(tηx)|t=0 = η,

where x ∈M and ηx ∈ TxM. The function CheckRetraction compares η and (Rx(δηx)−Rx(0ηx))/δ
for a small value of δ. We refer to the documentation in the code in [HAA16] for details.
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Manifold

virtual double Metric(Variable *x, Vector *etax, Vector *xix) const
virtual void VectorLinearCombination(Variable *x, double s1, Vector *etax, double s2, Vector *xix, Vector *result) const
virtual void Projection(Variable *x, Vector *etax, Vector *result) const
virtual void Retraction(Variable *x, Vector *etax, Variable *result) const
virtual void DiffRetraction(Variable *x, Vector *etax, Variable *y, Vector *xix, Vector *result, bool IsEtaXiSameDir) const
virtual void VectorTransport(Variable *x, Vector *etax, Variable *y, Vector *xix, Vector *result) const
virtual void InverseVectorTransport(Variable *x, Vector *etax, Variable *y, Vector *xiy, Vector *result) const
virtual void TranHInvTran(Variable *x, Vector *etax, Variable *y, LinearOPE *Hx, LinearOPE *result) const
virtual void ObtainIntr(Variable *x, Vector *etax, Vector *result) const
virtual void ObtainExtr(Variable *x, Vector *intretax, Vector *result) const
virtual void EucGradToGrad(Variable *x, Vector *egf, Vector *result, const Problem *prob) const = 0
virtual void EucHvToHv(Variable *x, Vector *etax, Vector *exix, Vector* result, const Problem *prob) const = 0

virtual void CheckIntrExtr(Variable *x) const
virtual void CheckRetraction(Variable *x) const
virtual void CheckDiffRetraction(Variable *x, bool IsEtaXiSameDir) const
virtual void CheckLockingCondition(Variable *x) const
virtual void CheckcoTangentVector(Variable *x) const
virtual void CheckIsometryofVectorTransport(Variable *x) const
virtual void CheckIsometryofInvVectorTransport(Variable *x) const
virtual void CheckVecTranComposeInverseVecTran(Variable *x) const
virtual void CheckTranHInvTran(Variable *x) const
virtual void CheckHaddScaledRank1OPE(Variable *x) const

virtual void LCVectorTransport(Variable *x, Vector *etax, Variable *y, Vector *xix, Vector *result) const
virtual void LCInverseVectorTransport(Variable *x, Vector *etax, Variable *y, Vector *xiy, Vector *result) const
virtual void LCTranHInvTran(Variable *x, Vector *etax, Variable *y, LinearOPE *Hx, LinearOPE *result) const

ProductManifold Stiefel Grassmann and more

Oblique SPDTensor and more

Figure 3: The class hierarchy of manifold-related classes in ROPTLIB. We refer to the documen-
tations in the code for the detailed explanations of the functions.

ROPTLIB is the first package that emphasizes the efficiency of quasi-Newton on Riemannian
manifolds. Unlike Euclidean quasi-Newton methods, Riemannian quasi-Newton methods usually
have extra costs on the implementations of vector transports. Specifically, suppose Bk is a Hes-
sian approximation at the iterate xk. In order to obtain a Hessian approximation at the next
iterate xk+1, one has to compute the composition Tk ◦ Bk ◦ T −1

k , where Tk is a vector transport
from TxkM the tangent space at xk to Txk+1

M the tangent space at xk+1. This composition
involves matrix multiplications in general and often dominates the cost of the entire algorithm.
A recent result shows that a vector transport is essentially an identity, which is the cheapest one
can expect, if a particular approach is used to represent a tangent vector (see [HAG15, Section
2.2] or [HAG16b, Section 3] for details). ROPTLIB follows the ideas in the papers and gives an
efficient implementation. Specifically, the function ObtainIntr (ObtainExtr) is the prototype that
converts a tangent vector from the ordinary (resp. efficient) representation to the efficient (resp.
ordinary) representation. To the best of our knowledge, this has not been done by any existing Rie-
mannian optimization packages. The improvements on vector transport benefit all algorithms that
involve vector transport, including Riemannian conjugate gradient methods and limited-memory
Riemannian quasi-Newton methods.

2.3 Problem Classes

In order to define a problem in ROPTLIB, one needs to give a derived class of the base class
Problem. Figure 4 shows the hierarchy of problem-related classes as well as some prototypes of
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the base class Problem. We once again define the prototypes in Problem as virtual functions since
polymorphism is necessary for the same reason as manifold-related and space-related classes. The
cost function f is declared as a pure virtual function, which must be overridden in derived classes.
The function Grad calls the function RieGrad and may or may not represent the gradient obtained
using the efficient representation based on given parameters. Users are able to define a gradient
evaluation by overriding the function RieGrad, which is the Riemannian gradient. Overriding
the function RieGrad requires users to have a background in Riemannian manifolds. Therefore,
we also provide another approach, which is to override the function EucGrad. In this case, the
function EucGradtoGrad, which has been implemented in Manifold, automatically converts the
resulting Euclidean gradient to the Riemannian gradient. The implementation for action of Hessian
is similar to the gradient evaluation, i.e., one of functions RieHessianEta and EucHessianEta must
be overridden if second order information is necessary for the Riemannian algorithm used.

The mexProblem class defines a problem for the Matlab interface. Specifically, the member
functions of mexProblem call the function handles given by Matlab. The member variables mxf,
mxgf, and mxHess are Matlab function handles of a cost function evaluation, gradient evalua-
tion, and action of Hessian. Since ROPTLIB and Matlab use different data structures (Element
for ROPTLIB and mxArray for Matlab), we give functions, ObtainMxArrayFromElement and Ob-
tainElementFromMxArray, to convert from one data structure to the other. It follows that the
work flow is, in gradient evaluation for example, i) convert an iterate from Element to mxArray,
ii) call the Matlab function handle mxgf, and iii) convert the obtained gradient from mxArray to
Element and return.

Similarly, the juliaProblem class defines a problem for the Julia interface. It uses the same
work flow as in mexProblem. Since it is straightforward to convert the data structures between
ROPTLIB and Julia, unlike in mexProblem we do not implement such functions in juliaProblem.

2.4 Solver Classes

The state-of-the-art Riemannian optimization algorithms listed in Table 1 are included in ROPTLIB.
We design the hierarchy of solver-related classes based on their similarities and differences. The
details are shown in Figure 5.

Table 1: Riemannian algorithms in ROPTLIB
Riemannian trust-region Newton (RTRNewton) [ABG07]

Riemannian trust-region symmetric rank-one update (RTRSR1) [HAG15]
Limited-memory RTRSR1 (LRTRSR1) [HAG15]

Riemannian trust-region steepest descent (RTRSD) [AMS08]
Riemannian line-search Newton (RNewton) [AMS08]

Riemannian Broyden family (RBroydenFamily) [HGA15]

Riemannian BFGS (RWRBFGS and RBFGS)
[RW12]

[HGA15]
Subgradient Riemannian (L)BFGS ((L)RBFGSLPSub) [HHY16]

Limited-memory RBFGS (LRBFGS) [HGA15]

Riemannian conjugate gradients (RCG)
[NW06]
[AMS08]

[SI13]
Riemannian steepest descent (RSD) [AMS08]

Riemannian gradient sampling (RGS)
[Hua13]
[HU16]
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Problem

virtual double f(Variable *x) const = 0
virtual void Grad(Variable *x, Vector *gf) const
virtual void HessianEta(Variable *x, Vector *etax, Vector *xix) const
virtual void RieGrad(Variable *x, Vector *gf) const
virtual void RieHessianEta(Variable *x, Vector *etax, Vector *xix) const
virtual void EucGrad(Variable *x, Vector *egf) const
virtual void EucHessianEta(Variable *x, Vector *etax, Vector *exix) const

virtual void CheckGradHessian(const Variable *x) const

Manifold *Domain

mexProblem

virtual double f(Variable *x) const = 0
virtual void EucGrad(Variable *x, Vector *egf) const
virtual void EucHessianEta(Variable *x, Vector *etax, Vector *exix) const
static void ObtainMxArrayFromElement(mxArray *&Xmx, const Element *X)
static void ObtainElementFromMxArray(Element *X, const mxArray *Xmx)

const mxArray *mxf
const mxArray *mxgf
const mxArray *mxHess

StieBrockett

GrassRQ

and more

SDPMean

StieSoftICA

juliaProblem

virtual double f(Variable *x) const = 0
virtual void EucGrad(Variable *x, Vector *egf) const
virtual void EucHessianEta(Variable *x, Vector *etax, Vector *exix) const

jl function t *jl f
jl function t *jl gf
jl function t *jl Hess

Figure 4: The class hierarchy of problem-related classes in ROPTLIB. We refer to the documenta-
tions in the code for the detailed explanations of the functions.
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Solvers

virtual void Run()

inline const Variable *GetXopt(void) const
inline double Getfinalfun(void) const
inline double Getnormgf(void) const
inline double GetComTime(void) const

virtual void SetProbX(const Problem *prob, const Variable *initialx)
virtual void SetDefaultParams(void)

virtual void UpdateData(void) = 0
virtual bool IsStopped(void)
virtual void PrintInfo(void)

Variable *x1, *x2
Vector *gf1, *gf2

double f1, f2
double ngf0, ngf

const Manifold *Mani
const Problem *Prob

integer iter
std::string SolverName

initialization and set default parameters

functions for general optimization

Get optimization results

common member variables

QuasiNewton
virtual void HvRBFGS(Vector *v, Vector *result)
virtual void UpdateDataRBFGS(void)

virtual void HvLRBFGS(Vector *v, Vector *result)
virtual void UpdateDataLRBFGS(void)

virtual void HvRTRSR1(Vector *v, Vector *result)
virtual void UpdateDataRTRSR1(void)
virtual void HvLRTRSR1(Vector *v, Vector *result)
virtual void UpdateDataLRTRSR1(void)

Vector *s, *y, *u
LinearOPE *H, *tildeH
Vector **S, **Y

SolversLS SolversTR

virtual void Run(void)
virtual void ChooseLinesearch(void)
virtual void GetSearchDir(void) = 0
virtual void InitialStepSize(void)
virtual void LinesearchArmijo(void)
virtual void LinesearchWolfe(void)
virtual void LinesearchStrongWolfe(void)
virtual void LinesearchWolfeLipschitz(void)

double stepsize void (SolversLS::*Linesearch)(void)

virtual void Run(void)
virtual void HessianEta(Vector *Eta, Vector *result) = 0
virtual void tCG˙TR(void)
virtual void Acceptence(void)

double Acceptence˙Rho
double Shrinked˙tau
double Magnified˙tau

SolversLSLPSub
virtual void Run(void)
void GetSearchDir(void)
double MinPnormWv(void)

RGS

RBFGSLPSub

LRBFGSLPSub

RBroydenFamily

RWRBFGS

RBFGS

LRBFGS

RNewton

RCG

RSD

RTRSR1

LRTRSR1

RTRSD

RTRNewton

update formulas for the Hessian
approximations and their actions

for optimization methods

member variables for updates
of the Hessian approximations

Figure 5: The class hierarchy of solver-related classes in ROPTLIB. We refer to the documentations
in the code for the detailed explanations of the functions.
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The base class Solvers extracts the common points of all the Riemannian methods. We cate-

gorize its members into four groups. The functions in the first group define the general behaviors
of initializations of all algorithms. The functions in the second group are used during iterations,
such as checking whether a stopping criterion is satisfied and printing iteration information. The
functions in the third group get optimization results, and the member variables in the fourth group
are needed for all the Riemannian methods.

The QuasiNewton class defines the updates for Hessian approximations, or equivalently pre-
conditioners, and their actions. Specifically, a gradient-based iterative algorithm has a line-search
iteration:

xk+1 = Rxk(−αkHk grad f(xk)),

where αk is a step size and Hk is an inverse Hessian approximation, or a trust-region iteration:

xk+1 = Rxk(ηxk),

where ηxk = arg mins∈Txk
M and ‖s‖≤δ〈grad f(xk), s〉 + 1

2〈s,Bks〉, and Bk is a Hessian approxima-

tion. This class QuasiNewton defines the commonly-used update formulas for Hk and Bk and also
defines their actions Hkξk and Bkξk for any ξk ∈ TxkM. Therefore, all the derived classes of
QuasiNewton have the ability to choose any of the preconditioners implemented.

Since all the iterative optimization methods can be categorized into either line-search-based or
trust-region-based methods, we define two classes derived from QuasiNewton. One is SolversLS
and the other is SolversTR. The former defines the base class for all the line-search-based algo-
rithms. Specifically, the functions in this class define the general procedure of line-search-based
iterations and the commonly-used algorithms for finding a step size. For smooth cost functions,
the sophisticated line search algorithms predicated on polynomial interpolation are included (see
[DS83, Algorithms A6.3.1 and A6.3.1mod] and [NW06, Algorithm 3.5] for details). For Lipschitz
continuous functions, a state-of-the-art line search algorithm [You15, Algorithm 1] is also contained.
The latter class, SolversTR, is the base class for all trust-region-based methods. Therein, besides
defining the general procedure for trust-region-based iterations, a function to approximately solve
a local quadratic model is also defined (see [AMS08, Algorithm 11] for details). Due to object-
oriented programming, all the derived classes are able to use the functions in the base classes,
which increases the extendability and reusability of the codes and allows users/us to define new
algorithms easily.

By combining a Hessian approximation update formula in class QuasiNewton and a line-search
strategy or a trust-region strategy, we define all state-of-the-art Riemanian optimization algorithms.
Note that the subgradient-based algorithms, RGS, RBFGSLPSub and LRBFGSLPSub for nons-
mooth optimization, need subgradients or need to approximate subgradients. Therefore, they have
common behaviors that do not exist in SolversLS. We extract those common points and define a
class SolversLSLPSub, which is a derived class of SolversLS. Class SolversLSLPSub redefines the
function GetSearchDir since it is different from optimization for smooth cost functions in the sense
that the search direction requires the estimation of a subgradient by computing the shortest vector
in the convex hull of a few given vectors.

3 An Example

To illustrate some of the concepts, we present an example using ROPTLIB. The problem is to
minimize the Brockett cost function [AMS08, Section 4.8] on the Stiefel manifold St(p, n) = {X ∈
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Rn×p|XTX = Ip}

min
X∈St(p,n)

trace(XTBXD) (3.1)

where B ∈ Rn×n, B = BT , D = diag(µ1, µ2, . . . , µp) and µ1 > µ2 > . . . > µp. It is known that X∗

is a global minimizer if and only if its columns are eigenvectors of B for the p smallest eigenvalues,
λi, ordered so that λ1 ≤ · · · ≤ λp [AMS08, Section 4.8].

Instructions about compiling the code can be found in the user manual [HAA16].

3.1 In the C++ Environment

The code that defines the problem (3.1) can be found in the files “StieBrockett.h” and “StieBrock-
ett.cpp” which are in the directory ROPTLIB/Problems/StieBrockett/ of the source code of
ROPTLIB.

A test file for Problem 3.1 is given in Listing 1, which is available in /ROPTLIB/test/TestSimpleExample.cpp.3

In the test file, we show i) how to define a manifold, ii) how to generate an initial iterate, iii) how
to construct a problem, and iv) how to run an optimization algorithm. Specifically, Lines 31 to 33
in Listing 1 define a Stiefel manifold and a random point on the manifold. Lines 34 and 35 defines
Problem 3.1 by invoking the constructor function of StieBrockett and setting the domain to be the
Stiefel object. Note that the problem class is supposed to be given by users. Therefore, users are
responsible for the correctness of invoking the constructor. A solver is created in Line 39. In this
case, the RTRNewton algorithm is used for finding a minimizer in Prob with the initial iterate
StieX. The algorithm is run when Line 42 is executed.

Listing 1:
1 // File: TestSimpleExample.cpp

2 #ifndef TESTSIMPLEEXAMPLE_CPP

3 #define TESTSIMPLEEXAMPLE_CPP

4 #include "StieBrockett.h"

5 #include "StieVector.h"

6 #include "StieVariable.h"

7 #include "Stiefel.h"

8 #include "RTRNewton.h"

9 #include "def.h"

10 using namespace ROPTLIB;

11 #ifdef TESTSIMPLEEXAMPLE

12
13 int main(void)

14 {

15 init_genrand (( unsigned) time(NULL)); // choose a random seed

16 integer n = 12, p = 8; // size of the Stiefel manifold

17 // Generate the matrices in the Brockett problem.

18 double *B = new double[n * n + p];

19 double *D = B + n * n;

20 for (integer i = 0; i < n; i++)

21 {

22 for (integer j = i; j < n; j++)

23 {

24 B[i + j * n] = genrand_gaussian ();

25 B[j + i * n] = B[i + j * n];

26 }

27 }

28 for (integer i = 0; i < p; i++)

3The code in the file may not be exactly the same as that in the Listings. The code in the file tests more parameters
and runs more/different algorithms. Therefore, the differences are minor and should not cause confusion.
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29 D[i] = static_cast <double > (i + 1);

30
31 StieVariable StieX(n, p); // Obtain an initial iterate

32 StieX.RandInManifold ();

33 Stiefel Domain(n, p); // Define the Stiefel manifold

34 StieBrockett Prob(B, D, n, p); // Define the Brockett problem

35 Prob.SetDomain (& Domain); // Set the domain

36 Domain.CheckParams (); // output the parameters of the manifold of domain

37 // test RTRNewton

38 std::cout << "********* Check RTRNewton **********" << std::endl;

39 RTRNewton RTRNewtonsolver (&Prob , &StieX);

40 RTRNewtonsolver.DEBUG = FINALRESULT;

41 RTRNewtonsolver.CheckParams ();

42 RTRNewtonsolver.Run();

43 // Check gradient and Hessian

44 Prob.CheckGradHessian (&StieX);

45 const Variable *xopt = RTRNewtonsolver.GetXopt ();

46 Prob.CheckGradHessian(xopt);

47 // output the minimizer to the screen.

48 xopt ->Print("Minimizer is:");

49 delete [] B;

50 return 0;

51 }

52 #endif

53 #endif

ROPTLIB allows users to output parameters of the domain manifold and the solver. For ex-
ample, the commands in Line 36 and Line 41 are used to output the parameters of Domain
and RTRNewtonsolver respectively. The resulting parameters can be found in the user manu-
al [HAA16].

ROPTLIB provides a function, shown in Lines 44 and 46 of Listing 1, to test whether the
gradient and the action of Hessian given by users are correct. We refer to the user manual [HAA16]
for details.

3.2 In the Matlab and Julia Environments

Listings 2 and 3 give two examples for the Brockett cost function 3.1 in Matlab and Julia envi-
ronments respectively. The Matlab and Julia codes of the cost function, gradient and action of
Hessian are not given here and we refer to /ROPTLIB/Matlab/ForMatlab/testSimpleExample.m

and /ROPTLIB/Julia/JTestSimpleExample.jl for completed versions of the codes. 4 Both Mat-
lab and Julia interfaces support all the functionalities of ROPTLIB, such as output all the related
parameters and check the correctness of the gradient and action of the Hessian.

In the Matlab interface, the cost function, Euclidean gradient and action of Euclidean Hessian
are passed to ROPTLIB by function handles, see codes from Line 5 to Line 7. In contrast, Julia
interface uses the names of the cost function, Euclidean gradient and action of Euclidean Hessian,
see Lines 9 to 11. The solver-related parameters and manifold-related parameters are specified by
structures in both environments.

All fields of the parameters in each solver and manifold can be found in Appendices B and C
of the user manual [HAA16].

4The code in the file may not be exactly the same as that in the Listings. The code in the file tests more parameters
and runs more/different algorithms. Therefore, the differences are minor and should not cause confusion.
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Listing 2:

1 function [FinalX , fv , gfv , gfgf0 , iter , nf, ng , nR , nV, nVp , nH, ComTime , funs , grads , times

] = testBrockett ()

2 n = 5; p = 2; % size of the Stiefel manifold

3 B = randn(n, n); B = B + B’; % data matrix

4 D = sparse(diag(p : -1 : 1)); % data matrix

5 fhandle = @(x)f(x, B, D); % cost function handle

6 gfhandle = @(x)gf(x, B, D); % gradient

7 Hesshandle = @(x, eta)Hess(x, eta , B, D); % Hessian

8
9 SolverParams.method = ’RSD’; % Use RSD solver

10 SolverParams.LineSearch_LS = 0; % Back tracking for Armijo condition

11 SolverParams.IsCheckParams = 1; % output all the parameters of this solver

12 SolverParams.IsCheckGradHess = 1; % Check the correctness of grad and Hess

13
14 ManiParams.name = ’Stiefel ’; % Domain is the Stiefel manifold

15 ManiParams.n = n; % assign size to manifold parameter

16 ManiParams.p = p; % assign size to manifold parameter

17 ManiParams.IsCheckParams = 1; % output all the parameters of this manifold

18
19 HasHHR = 0; % locking condition is not guaranteed.

20 initialX.main = orth(randn(n, p));% initial iterate

21
22 % call the driver

23 [FinalX , fv , gfv , gfgf0 , iter , nf , ng , nR , nV, nVp , nH , ComTime , funs , grads , times] =

DriverOPT(fhandle , gfhandle , Hesshandle , SolverParams , ManiParams , HasHHR , initialX);

24 end

Listing 3:
1 # set domain manifold to be the Stiefel manifold St(3, 5).

2 mani1 = "Stiefel";ManArr = [pointer(mani1)] # Domain is the Stiefel manifold

3 UseDefaultArr = [-1] # -1 means that the default value in C++ is used.

4 numofmani = [1] # The power of this manifold is 1.

5 ns = [5]; ps = [3]; # Size of the Stiefel manifold is 5 by 3.

6 IsCheckParams = 1;

7 Mparams = ManiParams(IsCheckParams , length(ManArr), pointer(ManArr), pointer(numofmani),

pointer(paramsets), pointer(UseDefaultArr), pointer(ns), pointer(ps))

8
9 fname = "func"; gfname = "gfunc"; hfname = "hfunc"; # set function handles

10 isstopped = ""; LinesearchInput = ""; # no given linesearch algorithm and stopping criterion

.

11 Handles = FunHandles(pointer(fname), pointer(gfname), pointer(hfname), pointer(isstopped),

pointer(LinesearchInput))

12
13 # A default solver -related parameter has been defined , we only need to modify it.

14 method = "RTRNewton" # set a solver by modifying the default one

15 Sparams.IsCheckParams = 1

16 Sparams.name = pointer(method)

17 Sparams.LineSearch_LS = 1 # Backing tracking for Armijo condition

18 Sparams.IsCheckGradHess = 1 # Check the correctness of grad and Hess

19
20 HasHHR = 0 # The locking condition is not guaranteed.

21
22 # Initial iterate and problem

23 n = ns[1];p = ps[1];

24 B = randn(n, n); B = B + B’; # data matrix

25 D = sparse(diagm(linspace(p, 1, p))) # data matrix

26 initialX = qr(randn(ns[1], ps[1]))[1] # initial iterate

27
28 # Call the solver and get results. See the user manual for details about the outputs.

29 (FinalIterate , fv, gfv , gfgf0 , iter , nf, ng, nR, nV, nVp , nH, ComTime , funs , grads , times) =

DriverJuliaOPT(Handles , Sparams , Mparams , HasHHR , initialX)
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4 Applications

In this section, two important applications—dictionary learning for symmetric positive definite
matrices and the matrix completion problem—are used to show the performance of ROPTLIB. To
see the importance of the two applications, we refer to [HSHL12, LWZZ13, SBMP14, CS15] for the
dictionary learning problem and [Van13, Mis14] for the matrix completion problem. Note that a
Riemannian optimization algorithm, Riemannian nonlinear conjugate gradient method, has been
used for solving these two applications [Van13, CS15].

Note that ROPTLIB has been used to solve optimization problems in many other appli-
cations such as the phase retrieval problem [HGZ16], optimization problems in elastic shape
analysis [HGSA15, YHGA15], finding an geometric mean of symmetric positive definite matri-
ces [YHAG15], role model extraction [MHB+16], and multi-input multi-output waveform optimiza-
tion for synthetic aperture sonar [MHGM16].

The codes for the applications are lengthy, therefore not included in this paper. They can be
found on ROPTLIB’s webpage [HAA16].

All the experiments are performed in Matlab R2016b on a 64 bit Windows platform with 3.4
GHz CPU (Intel(R) Core (TM) i7-6700). The code can be found at http://www.math.fsu.edu/

~whuang2/papers/ROPTLIB.htm.

4.1 Dictionary Learning for Symmetric Positive Definite Matrices

It is pointed out that the dictionary learning problem usually comes with the sparse coding problem.
For symmetric positive definite (SPD) matrices, the optimization problem in dictionary learning
for positive definite matrices with sparse coding (DLSC) given by [CS15] is defined to be

min
B∈Snd ,R∈R

n×N
+

1

2

N∑
j=1

(∥∥∥log
(
X
−1/2
j (Brj)X

−1/2
j

)∥∥∥2

F
+ λR

n∑
i=0

rij

)
+ λB trace(B), (4.1)

where B is a dictionary, R = (rij) =
[
r1 . . . rN

]
is a sparse code, Sd denotes the manifold of

d-by-d SPD matrices, Snd denotes the product of n manifolds of Sd, Rn×N+ denotes the set of n by N
matrices with entries nonnegative, λR and λB are positive constants, trace(B) =

∑n
i=1 trace(Bi),

and Bi is i-th slice of the tensor B.
Alternating descent method, which alternates between solving the dictionary learning and sparse

coding subproblems, is a popular method for solving DLSC problems and has been used [CS15].
In this section, we focus on the dictionary learning problem since it is defined on a manifold Snd .

The cost function and gradient of the dictionary learning problem have been given in [CS15].
We give them here for completeness. The cost function is

f : Snd → R : B 7→ 1

2

N∑
j=1

∥∥∥log
(
X
−1/2
j (Brj)X

−1/2
j

)∥∥∥2

F
+ λB trace(B), (4.2)

which is from (4.1) by fixing the sparse codes R, and the Euclidean gradient is ∇Bf(B) =
∇B1f(B)× . . .×∇Bnf(B), where

∇Bif(B) =

N∑
j=1

rijX
−1/2
j log

(
X
−1/2
j (Brj)X

−1/2
j

)
X

1/2
j (Brj)

−1 + λBI. (4.3)

http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.htm
http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.htm
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Table 2: Notation for reporting the experimental results.
iter number of iterations

nf number of function evaluations

ng number of gradient evaluations

nR number of retraction evaluations

nV number of vector transport

nH number of action of Hessian

gf/gf0 ‖ grad f(xk)‖/‖ grad f(x0)‖
t average wall time (seconds)

LRBFGS and RCG are used to test the performance of ROPTLIB for this problem. The
parameters in all the tested algorithms are the default choices in ROPTLIB. Parameters λB is set
to 1. Synthetic data are used and generated as follows. All the slices of the tensor B ∈ Snd are
given by Bi = W T

i Wi, i = 1, . . . , n, where Wi ∈ R(10d)×d and entries of Wi are drawn from the
standard normal distribution. The number of active atoms in the dictionary B are the same for
all the training data Xj and is denoted by κ. Every training datum Xj is generated by a linear
combination of κ atoms randomly chosen from the dictionary and the coefficients of the atoms are
drawn from the uniform distribution on [0, 1]. The matrix R in the experiments is the true sparse
code, i.e., R satisfies Bri = Xi for all i.

The notation used in the later tables is given in Table 2.
Initial iterates are important for the performance of the algorithms. To obtain an initial iterate

for the dictionary learning problem, we first denote X and B by the matrix
[
vec(X1) . . . vec(Xn)

]
and

[
vec(B1) . . . vec(Vn)

]
respectively, where vec(M) denotes the vector by stacking the columns

of M . The dictionary learning problem attempts to find a dictionary B such that X = BR.
Therefore, the proposed initial iterate is given by B = X(R†)+, where † denotes the pseudo-inverse
operator and (M)+ denotes the matrix given by nonnegative entries of M .

Tables 3 and 4 report the comparisons of LRBFGS and RCG with various sizes of d and n for
the dictionary learning problem. In particular, Table 3 presents an average of 50 random runs of
LRBFGS and RCG with N = 100, n = 20, κ = 6 and various d, and Table 4 presents an average of
50 random runs of LRBFGS and RCG for the dictionary learning subproblem with N = 500, d = 4,
κ = 0.3n and various n. Both LRBFGS and RCG methods work very well for this problem. The
number of operations, i.e., function evaluations, gradient evaluations, etc, required by LRBFGS is
less than those required by RCG and LRBFGS needs less computational time.

4.2 The Matrix Completion Problem

Among several available frameworks to address the low-rank matrix completion problem, we con-
sider the one proposed in [Van13]:

min
X

f(X) :=
1

2
‖PΩ(X)− PΩ(A)‖2F ,

subject to X ∈Mk := {X ∈ Rm×n : rank(X) = k},
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Table 3: An average of 50 random runs of (i) LRBFGS and (ii) RCG for the dictionary learning
subproblem with N = 100, n = 20, κ = 6 and various d. The subscript −k indicates a scale of
10−k.

d = 4 d = 8 d = 12 d = 16 d = 20
(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

iter 420 476 360 396 324 355 278 301 276 290
nf 426 985 365 802 328 709 282 601 280 571
ng 421 477 361 397 325 356 279 302 277 291
nR 425 984 364 801 327 708 281 600 279 570
nV 3347 952 2869 792 2579 710 2212 602 2193 580

gf/gf0 9.01−7 8.75−7 8.91−7 8.99−7 9.02−7 8.72−7 8.74−7 8.80−7 8.91−7 8.70−7

t 2.39−1 4.52−1 4.23−1 8.20−1 6.48−1 1.26 8.62−1 1.68 1.27 2.36

Table 4: An average of 50 random runs of (i) LRBFGS and (ii) RCG for the dictionary learning
subproblem with N = 500, d = 4, κ = 0.3n and various n.

n = 10 n = 20 n = 30 n = 40 n = 50
(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

iter 18 33 35 48 182 176 335 303 389 344
nf 20 42 37 67 186 333 342 593 397 682
ng 19 34 36 49 183 177 336 304 390 345
nR 19 41 36 66 185 332 341 592 396 681
nV 131 66 264 96 1444 352 2670 606 3103 688

gf/gf0 6.03−7 7.52−7 7.52−7 7.48−7 8.32−7 8.23−7 8.91−7 8.92−7 9.06−7 8.95−7

t 4.65−2 9.44−2 8.92−2 1.50−1 4.59−1 7.10−1 8.69−1 1.32 1.04 1.53

where

PΩ : Rm×n → Rm×n : Xi,j 7→
{
Xi,j , if (i, j) ∈ Ω;
0, if (i, j) /∈ Ω,

Ω is a given index set, and PΩ(A) is a given sparse matrix. Its Euclidean gradient is

grad f(X) = PΩ(X −A),

and the action of the Euclidean Hessian along direction η is

Hess f(x)[η] = PΩ(η).

Since it is well-known that Mk is a manifold, ROPTLIB can be used to solve this problem.
The matrix A is generated by GHT , where G ∈ Rm×k, H ∈ Rn×k, and the entries of G and

H are drawn from the standard normal distribution. The number of entries in Ω is fixed to be
τ = 3(m + n − k)k. Note that (m + n − k)k is the dimension of the manifold Mk. The set Ω is
given by the first τ entries of the random permutation vector with size mn. The initial iterate is
generated by X = UDV T , where U , D and V are the k dominated singular vectors and values of
PΩ(A).

The LRBFGS, LRTRSR1, RCG, RNewton, and RTRNewton solvers are tested. The default
parameters in ROPTLIB are used. Table 5 reports an average of 50 random runs of the five
algorithms. All the algorithms always managed to reduce the norm of the gradient by a factor at
least 10−6, which is the default stopping criterion, and the LRBFGS is the best one among them
in terms of computational time.
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Table 5: An average of 50 random runs of (i) LRBFGS, (ii) LRTRSR1, (iii) RCG, (iv) RNewton,
and (v) RTRNewton methods.

m = 100, n = 200, k = 10 m = 1000, n = 2000, r = 10
(i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

iter 34 46 40 12 13 57 78 67 19 18
nf 37 47 53 14 14 61 79 99 23 19
ng 35 47 41 13 14 58 79 68 20 19
nR 36 46 52 13 13 60 78 98 22 18
nV 257 46 80 0 0 445 78 134 0 0
nH 0 0 0 64 58 0 0 0 108 94

gf/gf0 6.72−7 6.81−7 7.38−7 8.72−8 4.71−8 7.59−7 7.61−7 7.71−7 8.33−8 1.32−7

t 2.94−2 4.44−2 3.44−2 8.01−2 7.38−2 4.48−1 6.57−1 5.65−1 1.44 1.26
f 1.59−8 1.31−8 1.29−8 7.53−10 5.53−10 1.49−6 1.81−6 1.22−6 6.02−8 1.23−7

5 Benchmark

We use a joint diagonalization problem on the Stiefel manifold to show a benchmark of efficiency
for ROPTLIB, Pymanopt, and Manopt. The joint diagonalization problem considers minimizing
an objective function defined as

f : St(p, n)→ R : X 7→ f(X) = −
N∑
i=1

‖diag(XTCiX)‖2,

where St(p, n) = {X ∈ Rn×p | XTX = I} denotes the Stiefel manifold, C1, . . . , CN are given sym-
metric matrices, diag(M) denotes the vector formed by the diagonal entries of M , and ‖ diag(M)‖2
thus denotes the sum of the squared diagonal entries of M . This problem has applications in
independent component analysis for blind source separation [TCA09].

All the experiments are performed on a Windows 7 platform with 3.40GHz CPU (Intel(R)
Core(TM) i7-6700). The code is available at http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.
htm. The cost function evaluation and gradient evaluation in ROPTLIB are written in C++, i.e.,
not using Matlab or Julia interface. To illustrate the performance across the three libraries, we
choose the Riemannian steepest descent (RSD) with the backtracking line search algorithm. The
number of iteration is fixed to be 30. The Pymanopt implementation was approved by the Py-
manopt authors.

An average computational time and the corresponding average number of function evaluations
of 50 random runs for multiple values of p, n, and N are given in Table 6. For small size problems,
ROPTLIB is faster than Manopt and Pymanopt by a factor of 20 or more. As n and p grow, the
factor gradually reduces to approximately 1 for large-scale problem. In order to understand the
phenomenon, we point out that i) interpreted languages (Matlab and Python) are much slower than
compiled languages (C++) by constant factors, O(1), ii) all three libraries—ROPTLIB, Manopt,
and Pymanopt—invoke highly-optimized libraries, i.e., BLAS and LAPACK, and iii) the computa-
tional complexity taken in highly-optimized libraries has higher order than a constant factor, i.e.,
O(n2p). When the n and p are small, the differences of efficiency between interpreted language and
compiled languages is the reason that ROPTLIB is faster than Manopt and Pymanopt by a factor
of 20. When n and p get large, the computational time in BLAS and LAPACK starts to dominate
the algorithms. Therefore, the factor reduces to approximately 1.

http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.htm
http://www.math.fsu.edu/~whuang2/papers/ROPTLIB.htm
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Table 6: An average computational time and the corresponding average number of function evalu-
ations of 50 random runs given by ROPTLIB, Manopt, and Pymanopt with gradient provided and
Pymanopt using auto-differentiation. Multiple values of p, n, and N are used. t and nf denote
computational time (second) and the number of function evaluations.

p, n, N 2, 4, 128 8, 16, 128 32, 64, 32 128, 256, 8 512, 1024, 2 1024, 2048, 2

ROPTLIB
t 0.001 0.004 0.016 0.174 2.989 19.78
nf 41 42 44 46 47 49

Manopt
t 0.021 0.036 0.078 0.462 4.449 26.27
nf 41 42 44 46 47 49

Pymanopt(grad)
t 0.014 0.025 0.080 0.438 5.506 36.07
nf 41 42 44 46 47 49

Pymanopt(auto)
t 0.028 0.047 0.120 0.638 7.554 48.05
nf 41 42 44 46 47 49

These experiments confirm that Manopt and Pymanopt are competitive (in terms of time effi-
ciency) with ROPTLIB only when the computation time is dominated by high-efficiency libraries.

6 Conclusion and Future Work

In this paper, we described a C++ Riemannian manifold optimization library (ROPTLIB), which
makes use of object-oriented programming to ensure the resuability, extensibility, maintainability
and understandability of the code. The interfaces for Matlab and Julia are given, which broadens
the potential users of ROPTLIB. The experiments shows that ROPTLIB is faster than two state-
of-the-art Riemannian optimization packages and is an efficient library for various sizes problems.
In the future, more manifolds and new Riemannian algorithms will be added to ensure ROPTLIB
remains state-of-the-art and applicable for most applications.
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