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ABSTRACT. [t is shown in this paper that a scalar test function in R" is the divergence
of a vector valued test function if and if its integral over the domain vanishes. Using this
result, we are able to give an elementary proof of the characterization of the gradient
of a distribution. Also an application on characterization of the curl of a distribution
in R? is presented.
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One of the basic results about distributions that has been frequently used in fluid
mechanics for the theory of Navier-Stokes equations is the characterization of the
gradient of a distribution, which says

Theorem Let Q be an open set in R™ and f = (fi, -, fn) € (D'(Q)". 4
necessary and sufficient condition that £ = grad(p) for some p in D'(Q ) is that

<f,v >(or@yn, D))= 0, YveV.

where
v={v € (D(Q))", divv=0}

Also related, in the theory of mathematical physics, it is often important to know
whether a given vector field is conservative, that is whether it is the gradient of a
scalar field. However, to the author’s knowledge, this important property was only
proved by using a profound result on currents of de Rham {Lions?, Témam?). Here we
present an elementary argument using only integration by parts. Instead of working
on distributions, we work on test functions and prove a decomposition theorem for
them and then use duality to construct the distribution p stated in the theorem. The

decomposition result on test functions seems new and seems to be of interest on its
OWIL.

35



36 XIAOMING WANG

Definition. An open set 2 in R™ is said to have property (P), if for any ¢ € D(Q)
with [ ¢(z)dz = 1 and for any ueD(R), there cxists ve(D(Q))", such that
Q

u:divv+¢>/ud1‘ (1)
Q

Proposition Any open connected set in R™ has property (P). Moreover, the v in
the definition can be chosen in such a way that it depends continously on u and ¢ for
the usual topology of D(Q)(Schwart®).

Proof. We prove this proposition in three steps.

Step 1. Any n-dimensional rectangle has property (P).

Without loss of generality, we can assume that Q=(0,1)". Indeed, given u and ¢,
we choose ¢; € D(0,1),i=1, -, n with fol ¢di(tydt =1 and let

u,:u_¢!u (2)

/w:O (3)
Q

We can write w = u — ¢ [ u=div v and in this case we have an explicit form for
Q

then

v(Adams'). Indeed

n(z,2) = /OIl [w(t,z") — gﬁl(t)/o w(sy,z") dsy]dt

Io 1 1 1
vz, 32,2") = /0 &1 (xl)[/ w(sy,t,z") - ng(t)/ / w(sy, s2,2" ) ds| dsy] di
0 o Jo

Un(zl’... T )

Ty 1 1
:/0 ¢1(I1)"'¢n—l(zn——l)[/ / W(Sl,"',Sn_l,t)d.’:i]"'dsn_l“qﬁn(T)/w]df
0 0
Q

Ty 1 1
=/0 ¢1(“’1)"‘<f>n—1($n-1)/ / w(s1,++ ,8p_1,1)dsy o dsp_y df
0 0

1t is obvious that v depends continously on u and ¢ and it is casily checked that
div v=w, hence u=div v+¢ [ u.
Q
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Step 2. 1f £ and Q3 have property (P) and €4 N Q; is nonempty, then Q; U Q,
has property (P) too.

Hence we are given u,¢ € D(; U Qy), with [ ¢=1 and we look for v such

Q,u
that (1) holds. ’

Choose ¢ € D(R™) such that supp(¥) € Oy N Q, and fw = 1. Choose a partition
of unity ol €, U Q; subordinated to the covering 5,8, i.e. choose 6,,8; € D(R™)
such that

(i) 81 + 6; = 1 on supp(u) U supp(e)

(ii) supp(#;) € ;, i=1,2.

Hence
f;u € D(Q,), 0 € D(Q,‘), i=1,2.

Since §2; have property (P) and ¢ € D(R") with supp(¢)) C @1 N Q2, [ ¢=1, there

exist v;,w;€ D(;) such that

Biu:divvi+1j)/9iu (4)
bic = divwi+ 0 [ 0.0 (5)
Adding (4) and (5) for i=1,2 respectively, we find
u = div (v; +V2)+1/)/71. (6)
¢ = div (w1+w2)+¢/¢:dz’v (wi+wy)+ 4 (7)
Hence
w = div({v) + v) — (wy +w2)/u)+q§/u (8)

Step 3. Any open connected sct in R™ has property (P).

Lel &, u € P(§) be given with [$de = 1, then supp(¢) U supp(u) is a com-
pact subset of €. Thus there exist finitely many n-dimensional rectangles, say
R;,j=1,---,m such that

(1) supp(¢) U supp(u) C U, (R;),

{iiy UL (R;) is connected,

(i) UTy (B;) € Q.

Claim Uj_,(R;) has property (P).

Each f; has property (I} by stepl. R, U(U”.,(R;)) is connected, thus there exists
a jg, such that Ry N R, is non-empty. Thanks to step2, R;, U Rj, has property (P},
where j; = 1. Now that (R; UR;,)U(Ujz;, 5, ;) is connected, hence there exists a
Ja, ja # j1 or ja, such that R;, N(R;, UR;,) is non-empty. Hence R; UR;, UR;, has
property (P). We proceed in this way and within finitely many steps, we will exhaust
all R;. Therefore, the claim is proved.

Now there exists a ve (D(UTL, ;)" — (D())"



38 XIAOMING WANG

u:divv+¢/udz

Now it is clear that in each step v depends continuously on # by our construction.

Q.ED.
Corollary Let Q be an open connected set in R" and u € D(Q), then [u =0 if
O

and only if there exists a v € (D(N))", such that u=div v.
Proof Obvious.

Now we are ready for the proof of the theorem.
Proof of the Theorem Without loss of generality, we assume that Q is connected.
Otherwise we just discuss the result in each connected component.
Choose a ¢ € D(Q) with [¢dr = 1. According to the proposition, Yu € D(),
Q

there exists a ve€ (D(§2))™ such that

u:divv+q§/udm (9)

Dcfine a functional p on D(Q) in the following way
plu) = = <E v >@aps, (o) (10)
Claim 1. p is well-defined, i.e. it is independent of the choice of v such that {9)

holds.

Say u has two decompositions

u:divv1+q§/u

:divv2+q§/u
then
div(v; —vy)=0, ic. vi-v, €V
So
- < f v >= - <f,vi—vy+vy >
=—<fivi—-vy>—-<f,vy>
=—<fvy>

Claim 2. pis linear.
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Let

ulzdivV1+Q5/u1
uzzdivv2+¢/u2

auy + fuy = divfavy + fvy) + 45/(0“11 + puz),  o,feR!

plouy + Pug) = — < f,ovy + Bvy >
=—a<fivi>-fB<fv; >
= ap(u1) + Bp(us)

Claim 3. p(u) depends continuously on u for the topology of D(2) ie. pe D'(Q).

Say uj,u € D(Q),u; — w in D'(Q). Thus supp(u) U (Uss1supp(u;)) is included
in a compact subset of Q. The constructive procedure of our proposition tells us that
we can find v, v; € (D{Q))" such that

U :divv+¢/u

’LLJ' = dZ'UVj+Q5/Uj
vVi— Vv in (o)

Hence
Plu;) = —<f, v;>—— — <f, v >= plu)

Claim 4. grad(p) = f
Indeed, for every we (D(Q)),

< grad(p), w >¢pi)= pry= — < p,div w >0, 7)
= -pldivw)=<f, w> by (10)
Hence
grad(p) = f.

Q.E.D.

As an immediate application of our proposition on test functions, we present a
characterization of the curl of a distribution in R2.
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Proposition’ Let Q) be an open connected set in R* and let ¢ € D(Q) with [ ¢ =1,
)

then for any u € D(Q), there ezists a we (D(Q))?, such that
u =curl wto [u
!

Moreover, the w can be chosen in such a way that it depends continuously on u
and ¢ for the usual topology of D(Q).

dw Jw
Proof Recall that for w € (D(Q))?, curl w= 6—12 - E‘)xl' Tet v be the test

1 2
function provided by the previous proposition, set w=(—wvz, v1). It is easy to see that
this w does the job. Q.E.D.

Theorem' Let @ be an open set in R and £ = (f1, f2) € (D'(Q)):. A necessary
and sufficient condition that £ = curl (g) for some g in D'(§t ) is that

<f,w D)2, D(Q))= 0, Ywe W,

where
W={ w e (P(Q))?, curl w=0}

Proof The proof is exactly the same as the one for the previous theorem.
Assume that  is connected and ¢ € D{Q) with [¢ dz = 1. According to
Q

proposition’, Yu € D{Q), there exists a we (D(Q))? such that

u:curlw-}—q{)/udz (11)

Define a functional g on D() in the following way

glu) = — < £, W >(praye2, (D)) (12)

Repeat the same procedure as we did in the proof of the previous theorem, we see
that ¢ is well defined, linear, continous and satifies curl (g)=f. Q.E.D.
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