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Abstract

In this note, we characterize the convex hull of the Stiefel manifold and
we find its strong convexity parameter. We also introduce the notion of
roundness of a set and show that the Stiefel manifold is round.
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1 Definitions and notation

Let p and n be positive integers with p ≤ n. The (compact) Stiefel manifold is the set

St(p, n) = {X ∈ R
n×p : XTX = Ip},

where Ip denotes the identity matrix of size p. We view St(p, n) as a subset of Rn×p endowed with
the Frobenius norm. The fact that St(p, n) has a natural manifold structure is not relevant here.

The convex hull of a subset V of a vector space E , denoted conv(V), is the smallest convex set
containing V. The closed convex hull of a subset of Rn is the closure of its convex hull. The support
function of a nonempty subset S of Rn is the function SS : Rn → R ∪ {+∞} defined by

R
n ∋ x 7→ SS(x) := sup{〈s, x〉 : s ∈ S}.

The spectral norm ‖X‖2 of a matrix X ∈ R
n×p is its induced 2-norm, which is equal to the

largest singular value of X and to the square root of the largest eigenvalue of XTX. We let

Bsp(p, n) := {X ∈ R
n×p : ‖X‖2 ≤ 1} = {X ∈ R

n×p : XTX � Ip}

denote the unit spectral ball.
If E is a normed vector space, the convex set S ⊆ E is strongly convex if there exists a constant

σ > 0 such that, for all x, y ∈ S and all α ∈ [0, 1], the following inclusion holds:

αx+ (1− α)y +
σ

2
α(1− α)‖x− y‖2B ⊂ S,

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Opti-
mization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its authors.

†Department of Mathematics, Florida State University, Tallahassee, Florida, 32306-4510, USA
http://www.math.fsu.edu/~gallivan/
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where B denotes the unit sphere in E ; see [JNRS10]. Since S is convex by assumption, “x, y ∈ S”
can be equivalently replaced by “x, y ∈ ∂S” where ∂S denotes the boundary of the set. Strong
convexity thus guarantees that a straight line cannot be embedded in any portion of the boundary
of the convex set.

2 Convex hull of the Stiefel manifold

The next result shows that the convex hull of the Stiefel manifold is the (closed) unit ball in the
spectral norm. The principle of the proof can be found in [JNRS10, §3.4].

Theorem 2.1 (Journée et al.) The convex hull of the Stiefel manifold is the (closed) unit spec-
tral ball:

conv(St(p, n)) = Bsp(p, n)

Proof. This proof is a detailed version of the argument given in [JNRS10, §3.4]. In view of
proposition 2.1.1 and theorem 2.2.2 in [HUL01], two subsets of Rn have the same closed convex
hull if and only if they have the same support function. The support function of the unit spectral
ball Bsp(p, n) is the trace norm:

SBsp(p,n)(C) =

p
∑

i=1

σi(C).

Equivalently stated, the dual norm of the spectral norm is the trace norm; see, e.g., [RFP07,
prop. 2.1]. The support function of St(p, n) is also the trace norm:

SSt(p,n)(C) =

p
∑

i=1

σi(C);

see [JNRS10, prop. 7]. Hence the Bsp(p, n) and St(p, n) have the same closed convex hull. Since
the spectral norm is a norm, Bsp(p, n) is convex, and thus equal to its closed convex hull. Since
St(p, n) is compact, its convex hull is compact, hence its closed convex hull is its convex hull. Thus
the convex hull of St(p, n) is Bsp(p, n). �

3 Convex hull of the Stiefel manifold – without support functions

In this section, we give an alternate proof of Theorem 2.1. It only applies to p ≤ n/2. On the other
hand, it does not need results pertaining to support functions, and it also yields the property

conv(St(p, n)) = conv2(St(p, n)),

where
conv2(S) := {αs1 + (1− α)s2 : s1 ∈ S, s2 ∈ S, α ∈ [0, 1]}

is the union of all line segments with extremities in S.
We will use the following results to show that conv(St(p, n)) = Bsp(p, n).
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Lemma 3.1

St(p, n) ⊆ conv2(St(p, n)) ⊆ conv(St(p, n)) (1)

St(p, n) ⊆ Bsp(p, n) (2)

Bsp(p, n) is convex (3)

Proof. The inclusions (1) and (2) follow immediately from the definitions. The convexity of Bsp(p, n)
follows from the fact that Bsp(p, n) is a ball for a norm (specifically, the spectral norm).

�

We can now characterize conv(St(p, n)).

Theorem 3.2 If p ≤ n/2 then

conv(St(p, n)) = conv2(St(p, n)) = Bsp(p, n).

Proof. Let Q1 ∈ St(p, n) and Q2 ∈ St(p, n). For α ∈ [0, 1], Qα = αQ1+(1−α)Q2 ∈ conv2(St(p, n)).
By Lemma 3.1, St(p, n) ⊆ Bsp(p, n) and Bsp(p, n) is convex. Therefore, conv2(St(p, n)) ⊆ Bsp(p, n).

Now let Z ∈ Bsp(p, n) and Z = UΣV T be a thin SVD with σi ∈ [0, 1], i = 1, . . . , p, U ∈ R
n×p,

and V ∈ R
p×p. Let W ∈ R

n×p be such that
[

U W
]

is orthonormal. Such a W exists since

p ≤ n/2. Let Q1 = (UΣ + W
√

Ip − Σ2)V T and Q2 = (UΣ − W
√

Ip − Σ2)V T . Then QT
1 Q1 =

V (Σ2 +(Ip −Σ2))V T = V V T = Ip. Likewise for Q2. It is easily verified that Z = (Q1 +Q2)/2 and
so Bsp(p, n) ⊆ conv2(St(p, n)). Therefore, Bsp(p, n) = conv2(St(p, n)).

We have
St(p, n) ⊆ Bsp(p, n) = conv2(St(p, n)) ⊆ conv(St(p, n)).

By Lemma 3.1, Bsp(p, n) is convex and therefore so is conv2(St(p, n)). conv2(St(p, n)) is then a
convex subset of conv(St(p, n)) that contains St(p, n). Since conv(St(p, n)) is the smallest convex
set that contains St(p, n) it follows that conv(St(p, n)) = conv2(St(p, n)) = Bsp(p, n). �

So conv(St(p, n)) is characterized by the singular values of matrices in R
n×p and only requires

all convex combinations of pairs of matrices from St(p, n).

4 conv(St(p, n)) is not strongly convex for p > 1

When p = 1, St(1, n) is the unit sphere in R
n which is clearly strongly convex.

This is not the case for p > 1, as pointed out in [JNRS10, §3.4]. A detailed proof of this result
follows.

Theorem 4.1 Let n ≥ 2. If p ≥ 2 then conv(St(p, n)) is not strongly convex, in the sense given
in Section 1.

Proof. Define X ∈ R
n×p and Y ∈ R

n×p as

X = UInV
T , Y = U

[

Ik 0
0 0n−k

]

V T
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with k ≥ 1. Note that X ∈ ∂conv(St(p, n)) and Y ∈ ∂conv(St(p, n)). Let 0 ≤ α ≤ 1. We have

Zα = αX + (1− α)Y = U

[

Ik 0
0 αIn−k

]

V T

∴ Zα ∈ ∂conv(St(p, n)).

So the line is completely contained in ∂conv(St(p, n)) hence there is no room to fit a ball around
the points on the line. It follows that conv(St(p, n)) is not strongly convex. �

5 St(p, n) is “round”

We introduce the notion of roundness, which is weaker than strong convexity. The roundness of a
set measures how far away the boundary of the set is from containing aligned points.

Definition 5.1 Let E be a normed vector space and let S be a subset of E, not necessarily convex.
The value ρ > 0 is a roundness lower bound of S if, for all x, y ∈ ∂S and all α ∈ [0, 1], the following
holds:

αx+ (1− α)y +
ρ

2
α(1− α)‖x− y‖2B ∩ ∂S = ∅,

where B is the unit ball in E. The supremum of the roundness lower bounds is termed the roundness
of S and denoted by ρS. A round set is a set whose roundness is nonzero.

It is clear, in view of the previous section, that conv(St(p, n)) is not round. For the general case
p ≤ n, we can obtain a bound on ρSt(p,n) using the following result that follows directly from the
definition of roundness.

Lemma 5.2 Let E be a normed vector space. If V ⊆ S ⊆ E, then

ρS ≤ ρV .

We then have the following result.

Theorem 5.3 The roundness of the Stiefel manifold, ρSt(p,n), satisfies

1√
p
≤ ρSt(p,n) ≤ 1

Proof. The Stiefel manifold St(p, n) is a subset of B√
p, the sphere of radius

√
p in R

n×p. So ρSt(p,n)
cannot be smaller than ρB√

p
. It is shown in [JNRS10] that the convexity parameter of the sphere

of radius r is 1
r
, from which one can deduce the lower bound.

For the upper bound, consider X ∈ St(p, n) and Y ∈ St(p, n) such that only their first column
differ. This yields a problem on the unit sphere in R

n and therefore

ρSt(p,n) ≤ 1.

�

If we require p ≤ n/2 as in Theorem 3.2, then ρSt(p,n) can be determined.
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Theorem 5.4 If p ≤ n/2 then the roundness of St(p, n) is

ρSt(p,n) =
1√
p
.

Proof.
It is easily shown that St(p, n) = ∂St(p, n). It follows that the set of pairwise convex com-

binations in Definition 5.1 is conv2(St(p, n)) = Bsp(p, n) given in Section 1. By Lemma 3.1 we
know conv2(St(p, n)) = Bsp(p, n) = conv(St(p, n)) and therefore our weaker definition checks the
intersection of balls around lines in conv(St(p, n)) with ∂St(p, n) rather than ∂conv(St(p, n)).

Let Z = UΣV T , Q1 = (UΣ +W
√

Ip − Σ2)V T , and Q2 = (UΣ −W
√

Ip − Σ2)V T be as in the
proof of Theorem 3.2. Recall that Q1 and Q2 belong to St(p, n) and that Z = αQ1 + (1 − α)Q2

with α = 1/2. Observe that UV T belongs to St(p, n). Hence, from the definition of ρSt(p,n), we
must have

‖Z − UV T ‖ ≥ ρSt(p,n)

2

1

4
‖Q1 −Q2‖2.

This yields

ρSt(p,n) ≤
2
√

∑p
i=1(1− σi)2

∑p
i=1(1 − σ2

i )
,

where the σi’s are arbitrary in [0, 1]. The right-hand side, for σ1 = . . . = σp =: s, is equal to

1
√
p(1− s)

p(1− s2)
=

2√
p(1 + s)

.

As s goes to 1, this goes to 1√
p
. Hence ρSt(p,n) ≤ 1√

p
. Since we also know that ρSt(p,n) ≥ 1√

p
, the

result follows. �
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