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Abstract. Neuronal activity in a two-dimensional net is 
analyzed in the neighborhood of an instability. 
Bifurcation theory and group theory are used to 
demonstrate the existence of a variety of doubly- 
periodic patterns, hexagons, rolls, etc., as solutions to 
the field equations for the net activity. It is suggested 
that these simple geometric patterns are the cortical 
concomitants of the "form constants" seen during 
visual hallucinosis. 

w 1. Introduction 

Hallucinations have fascinated mankind for centuries, 
but only recently have scientists begun to investigate 
their forms and mechanisms. They occur ubiquitously 
in a variety of different situations; auras preceding 
petit man epilepsy (Horwitz et al., 1967), hypnagogic 
hallucinations (Dybowski, 1939), fortification patterns 
of migraine headaches (Richards, 1971), drug-induced 
hallucinations (Brawley and Duffield, 1972; Siegel, 
1978) as well as many other conditions (Kltiver, 1967; 
Lance, 1976). We shall be primarily concerned with the 
phenomena accompanying the early stages of drug- 
induced visual hallucinations. These stages are charac- 
terized by the appearance of many simple geometric 
structures which are apparently context-free and inde- 
pendent of previous experiences (Siegel, 1977). It is 
these simple forms which we wish to analyze. 

Until Kliiver (1967) began a series of extensive 
experiments on mescaline-induced hallucinations, no 
attempt had ever been made to classify the forms of 
simple visual hallucinations. He observed that regard- 
less of the cause of the sensory irregularity, almost all 
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simple hallucinations could be classified into one of the 
following four categories of "form constants" (Kliiver, 
1967): 

a) grating, lattice, fretwork, filigree, honeycomb, or 
chessboard ; 

b) cobweb ; 
c) funnel, tunnel, cone, or vessel; 
d) spiral. 
"The tendency toward geometrization as expressed 

in these form constants is also apparent in the follow- 
ing two ways: a) the forms are frequently repeated, 
combined, or elaborated into ornamental designs and 
mosaics of various kinds; b) the elements constituting 
the forms have boundaries consisting of geometric 
forms" (Kliiver, 1967, p. 66). 

The patterns are of two main types ; small repetitive 
"mosaics" [forms a) and b)] and more "global" pat- 
terns [forms c) and d)]. In Fig. 1 we show examples of 
the various patterns observed by hallucinating sub- 
jects. In Fig. la  we see lattice or fretwork halluci- 
nations characterized by small repeating geometric 
tesselations of visual space. Figure lb depicts a typical 
cobweb or spiderweb illusion; in some sense it is 
similar to Fig. la except that it is distorted. Figure ld 
shows two types of "tunnel" or "funnel" hallucinations, 
both taken from Siegel (1977). Finally a typical spiral 
form constant is pictured in Fig. lc. 

The next obvious question, now that the simple 
patterns have been classified, is "where do they orig- 
inate?". Some experimentalists believe visual halluci- 
nations occur as a result of light hitting various 
structures in the eyeball: network and lattice forms 
could be due to the web of intraoccular blood vessels, 
etc. Experiments performed in total darkness in which 
subjects consistently hallucinate would seem to dis- 
prove this theory (Siegel, 1977). Krill (1963) found that 
1 gg/kg doses of LSD produced visual hallucinations 
in 13 of 16 blind subjects who normally had spon- 
taneous visual experiences (SVE). Since some of the 
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Fig. 1. a Typical lattice form constants, b Cobweb form constant, c 
Spiral form constant, d Tunnel and funnel constants 

subjects were completely enucleated, any visual ex- 
perience must have arisen from higher processes. 
Penfield and Perot (1963) evoked auditory, somatosen- 
sory, and visual hallucinations by stimulating the 
temporal cortex of human subjects. Similarly Horowitz 
and others found that multiple electrodes in subcorti- 
cal regions of the temporal lobe elicited visual ex- 
periences (Horwitz et al., 1967). These experiments, 
coupled with the complex imagery which occurs in the 
later stages of hallucinosis, suggest that the origin of 
the simple pattern is cortical, not peripheral. 

Assuming that hallucinations are cortical in origin, 
we discuss the possible causes of the irregularities 
generating the patterns. We assert that an increase in 
cortical excitability is necessary for the onset of hallu- 
cinosis. Indeed the EEG is similar to the pattern 
associated with arousal; intermittent hypersynchrony 
superimposed over the usual low voltage fast activity 
pattern (Winters and Wallach, 1970). After injection of 
LSD, similar EEG patterns are seen in cats concom- 
itant with bizarre postures and inappropriate be- 
haviors (Adey et al., 1962). A large amount of evidence 
has accumulated indicating that this cortical excita- 
bility is mediated through disinhibition in the brain- 
stem (Demetrescu, 1967). LSD has been found to exert 

an inhibitory effect on the neurons of the Raphe 
nucleus (Aghajanian et al., 1970) which project in- 
hibitory serotonergic fibers to the cortex (Fuxe, 1965). 
Thus it is a tempting proposal to assert that this 
disinhibition is responsible for the enhanced cortical 
excitability. Unfortunately, the story does not end 
here. Some experiments (Pieri et al., 1978) have demon- 
strated that disinhibition by blocking the Raphe nuclei 
is not sufficient to induce hallucinations in humans. 
Consequently there must be other influences modulat- 
ing cortical excitability. As to the nature of these 
influences, very little is known, so we shall assume their 
existence, leaving verification or refutation for later 
experiments. 

The above experimental evidence leads us to our 
main contention: simple formed hallucinations arise 
from an instability of the resting state leading to 
concomitant spatial patterns of activity in the cortex. 
This instability arises from a combination of enhanced 
excitatory modulation and decreased inhibition (disin- 
hibition). We shall demonstrate that such spatial pat- 
terns are a property of neural nets with strong lateral 
interactions acting to provide a dominant negative 
feedback. In the following sections we formalize these 
postulates into a simple mathematical model and than 
use bifurcation theory to demonstrate the existence of 
the relevant spatial patterns. 

w Form Constants and their "Appearance" 
at the Cortical Level 

A variety of experimental observations, anatomical, 
physiological, and psychophysical, have established in 
primates, and presumably also in humans, that there is 
a conformal projection of the visual field, onto the 
visual cortex (Cowan, 1978). Since the retina has 
approximate radial symmetry, and the cortex trans- 
lational symmetry (Fischer, 1973), it follows that there 
must be a nonlinear coordinate transformation from 
retinal polar coordinates (Q, 0) to cortical rectangular 
coordinates (x, y). This transformation has been shown 
to take the detailed form (Cowan, 1978) 

x = ~ . l n [ - ( ~  + (w~ + ~Q2)l/2)/2Wo], 

4~ Q0 
Y = " V(Wo +  Q2)' 

where ~ denotes the radial distance (in degrees of visual 
angle) from the center of the visual field, the fovea, 0 
the corresponding angular coordinate; and the con- 
stants w o, 5, and k, respectively, the mean diameter of 
foveal ganglion cells, the rate of increase of the mean 
diameter of such cells with Q, the number of receptive 
field centers within the center of a given ganglion cell. 



It will be seen that close to the fovea, ~ small, 

x= ~ W o  1, y= ~[@~k~Owo' 

i.e., polar coordinates in disguise, whereas sufficiently 
far away from the fovea, ~o> 1 ~ 

x = ~ e  .4k  i ~ ] = l / ~ k  0 In Wo ~ Y 

This is the complex logarithm (Cowan, 1977; 
Schwartz, 1977). Thus, a point on the retina may be 

represented by z=l/eQe i~ and the corresponding 
Wo 

point on the visual cortex by the complex logarithm 

w= ~ / ~ l n z  

~o .0 ,  
V ~ V n~ 

for sufficiently large 0. Schwartz (1977) has discussed 
such a map in terms of the retino-cortical magnifi- 
cation factor, a notion also discussed by Cowan (1977, 
1978). Our purpose here is to show the effect of this 
map on the form constants "seen" during halluci- 
nations and consequently classify the corresponding 
patterns of activity on the cortex. We note that one of 
the differences between cobwebs and lattice constants 
is that the latter occur at the periphery, while the 
former are nearer to the fovea. In fact, the figures in 
Siegel (1977) demonstrate a marked tendency of the 
patterns to curve toward the center of vision. This may 
be viewed as further evidence for the cortical origin of 
visual hallucinations. Except for distortions of shape, 
the local patterns (a) and (b) remain virtually un- 
changed under the retino-cortical map, as we except 
from the above discussion. In Figs. 2a and b we show 
the cortical patterns corresponding to the honeycomb 
and cobweb form constants. 

In contrast to the local patterns above, the other 
form constants (tunnels, funnels, and spirals) cover the 
entire visual field with relatively large components. 
Consider, first, a typical tunnel pattern consisting of 
concentric circles of "activity". This transforms to a 
pattern of periodic lines constant along the y-axis 
(Fig. 2c). The "white-light" funnel pattern transforms 
to periodic lines constant along the x-axis (Fig. 2d). 
Finally, the spiral pattern transform to a series of 
periodic patterns constant along lines of some finite 
slope (see Fig. 2e). Both the tunnel (Fig. 2c) and funnel 
(Fig. 2d) are degenerate cases of the spiral; (Fig. 2c) 
consists of lines with infinite slope while (Fig. 2d) 
consists of lines with zero slope. 
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Fig. 2. a Pattern of atypicaI lattice at the cortical level, b Pattern of 
cobweb on the cortex, e Transformation of tunnel form constant via 
retino-cortical map to cortex, d Same, for funnel constant, e Same, 
for spiral constant 

In conclusion, we can now classify the form con- 
stants of visual hallucinations in terms of cortical 
coordinates. They are of two main classes : (i) cellular 
patterns consisting of hexagons, squares, and rectang- 
les, and (ii) "rolls", consisting of patterns constant 
along some direction vector. Both classes are within 
the class of doubly-periodic patterns in the plane; that 
is, if we denote the "amplitude" of activity recorded at 
a point (x,y) in cortical coordinates, we see that 
A(x + o~1, y + o~2) = A(x, y) where (col, o)z) is some point 
in a lattice (see Part 5). 
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w 3. Objectives and Model 

Our objective is to demonstrate that a simple isotropi- 
cally connected two-layer neural net admits stable 
doubly-periodic stationary states as solutions, when 
the rest state is unstable to certain perturbations. We 
assume the cortex consists of two types of neurons, 
excitatory and inhibitory, with the following 
properties : 

1. With each neuron there is an associated mem- 
brane potential, V~. 

2. The output current, I j, of the neuron is a 
nonlinear function of the potential, I j= S(Vj). 

3. The influence of neuron j on neuron k depends 
on some absolute synaptic "weight" w multiplied by a 
probability depending only on the distance ~-k]"  ~k 
= ~W(~-- kl)Ij. 

4. The response of the dendrite ~jk, is a function of 
the temporal properties of the stimulus and of the 
dendritic membrane' 

~jk = i h(t-r)~ak(~)&. 
- c o  

Here h(t) is a temporal response function incorporating 
delays, rise times, and decay rates. To simplify analysis, 
we assume h(t)= exp(-t/#)/#, thus the dendrite is a 
simple R-C-network with # = RC, the time constant. 

5. The total membrane potential V k is the sum of 
the postsynaptic potentials. 

Thus we obtain: 

I k ( t ) : S ( ~ c b @ : S I ~ h ( t - z ) c ~ w ( ~ - k [ ) I , ( z ) d z  ] �9 

(3.1) 

Let E(x, y, t) and I(x, y, t) denote the currents or firing 
rates of the excitatory and inhibitory neurons at a 
point (x, y) at time t. Then in the continuum limit of 
(3.1), we obtain: 

E(x, y, t)= S~ [ i  dzh~(t-z)  S dx' dy' 
L oo - c o  co 

�9 {~eeWee((X __ X,)2 _~. (y  __ j ) 2 )  E(X' ,  y' ,  "C) 

- ~.i~wi~((x - x') 2 + ( y -  y')2)I(x', y', z)} ], 
/ 

I(x, y, t) - S i dr h i ( t -  z) dx' dy' 
0o co 

t 2  r 2  i 
�9 {O~eiWei((X--X ) + ( y - - y ) ) E ( x , y ' , z )  

- c~uwli((x - x')2 + ( y -  y')Z)I(x', y', z)} 1 �9 

(3.2) 

S(V) 

f 
J 

Fig. 3. Nonl inear  threshold  funct ion for a neural  net  

Here ~m, denote the absolute synaptic strength be- 
tween cells of type m and cells of type n, wm,((x-x ' )  2 
+ (y_  y,)2) are the probability weights dependent only 
on ( x - x ' ) 2 +  (y-y')2. Se and S i are the characteristic 
output functions of the excitatory and inhibitory cells�9 
There is adequate physiological evidence (Schwindt, 
1973) that these function satisfy" 

(i) Sm(v ) is monotone nondecreasing; 
(ii) Sm(V ) is bounded as v ~  _+ o0 ; (3.3) 

(iii) Sm(V ) has a unique inflection point called the 
threshold (see Fig. 3). 

Finally without loss in generality, we may assume 
Sm(0 ) = 0. It is clear from (3.2) that all solutions to the 
equation are bounded by the bounds of S e and S i. For 
notational convenience let w**z denote the double 
convolution : 

dx' 
- c o  - c o  

When he(t ) = hi(t ) = exp(- t ) ,  then (3.2) takes the form: 

a~ 
--  E -]- Se(O~eeW~e*E --  O~ieW~eef ) & 

ai  (3.4) 

--  I4-Si(O~eiWei E - o : i i w * * I ) ,  & 

where 

We shall drop the ..... notation, keeping in mind that the 
variables are now time course grained. The connection 
functions, Wmn(X 2 +y2) are assumed to be of the form: 

2 2 2 2 2 2 Wm,(X + y )= W((X + y )/am,)/am, where am, are space 
constants determining the rate of decay of connectivity 
with radial distance, r = ] /x2+ y2. w satisfies 

(i) w(r) > o. 

(ii) ~ dx' S dy 'w(x ' ;+y '2 )=l .  (3.5) 
- c o  - c o  

(iii) ~(k 2 +#2)= ~ dx' ~ dy'w(x '2 + y'2)eitX'e ik'' 
- c o  - c o  

is decreasing as a function of co 2 = k 2 + #2. 
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Many functions satisfy (3.5), in particular the expo- 
nential and Gaussian functions: 

w(x 2 +y2)=exp  ( -  ]/(x 2 + y2)/2rc, (3.6a) 

w(x 2 + y2) = exp ( -  (x 2 + yZ))/n (3.6b) 

with corresponding transforms: 

l~(d 2 q-d 2) = 1/(1 + b p2 ~-;(2)3/2, (3.7a) 

~(,(2 + (2) = exp ( -  (~2 + d2)/4). (3.7b) 

Choosing connection functions which depend only on 
radial distance is equivalent to assuming cortical con- 
nectivity is isotropic. This is not an unreasonable 
approximation, as the cortex appears almost crystal- 
line and homogeneous in the large. We remark, that 
if Wmn(X2 q- y 2 ) =  W((X 2 2 2 2 + y )/am,,)/am~, then ~m,(d 2 + d 2) 

W((d2 ~2 0-2 = + ) m . ) .  
In all experimental observations, the form con- 

stants remained approximately stationary. Thus we 
seek time independent solutions to (3.4) which satisfy: 

[ E -  Se(O~eeWee E - c%wie I)] = G~(E, I) = 0 
(3.8) [ I -  ** ** A_ Si(O~eiWei E - chiw u I)] = Gi(E , I) = O. 

w 4. Stability and Degeneracy 

An important property of (3.6) is that it is rotationally 
and translationally invariant. Let (9(2) denote the 
group of 2 • 2 matrices, A, satisfying A A  t = I, where I is 
the 2 • 2 identity matrix. This is the group of rotations 
and reflections in the plane. Let E denote the group of 
rigid motions in the plane. Each element, 9ed ~, may be 
written as #={r,a} where re(9(2) is a rotation- 
reflection and aelR 2 is a translation. Suppose that S e 
and S~ are both (gk functions. Let J denote the Banach 
space of continuously k-times differentiable functions 
from R 2 into R 2, with the norm: 

k 
In(x, Y)lk = ~ lain( x, y)lo 

IJl =o 
Here 

lulo = sup lug(x, y)l + sup lu2(x, y)l 
X,y x,y 

(Ge) J into itself. For each The operator G -  Gi maps 

element 9 sg ,  let 9 x = r x + a  for x = ( x , y ) e R  2. We 
define a linear operator on J as follows. Let ue.J ,  then 

(T0u)(x) = u(9- ix). (4.1) 

Clearly To To=To,o~ where 9192=(rlr2, r laz+a1) 
and T~=I where ~=(1,0) is the identity in g. Because 
of the isotropicity condition on the connection func- 
tion w,,,(x2 + y2), the nonlinear operator, G(E, I) com- 
mutes with T~ for each 9ed~ 

r c= cT.. 

The proof of this is in Appendix A. Thus the sys- 
tem (3.8) has a very important symmetry property and 
it is this symmetry which enables us to readily calculate 
the form constants. 

The solution, E = I = 0, referred to as the rest state, 
will be the physically observed state as long as it is 
stable to small perturbations. Because of our dis- 
cussion in w 1, it will be assumed that there is some 
parameter, 2, modulating the excitability of the net, 
say %e=~ee "~ and O~ei=O~ei/~. Thus as 2 increases, the 
strength of the excitation increases and the system 
becomes more excited. We wish to show that with 
strong lateral interactions of "negative feedback" type, 
a continuous increase in 2 beyond some critical value, 
2o, leads to instability of the rest state and concomitant 
stationary spatial patterns of activity. Let us examine 
the linearized stability of the rest state for (3.7): 

OIl  [-E+S~e(O)Ec~ee'~We**E-C~ieWi*eeI]]=L(~)IEi] 
aI = k - I + S'i(O)E%~2We**E- c~,~w~**I] J 

(4.2) 

This has solutions: 

E(x, t ) / =  q~(2, k, d) exp Iv(2, k, d)t + ikx + idy], (4.3) Y, 
I(x, y, t)/ 

where v(2,k,#) and ~b(2,k,#) are the eigenvalues and 
corresponding eigenfunctions of the 2 • 2 matrix : 

[ 2  1 -}- S;(O)o~ee.~;ee(k 2 -}-b ~2) - S~e(O)O~ie~ie(k 2 q_~2) ] 
H(2, k 2 q- b ~2 ) ~ [SI(O) ~ei)~'Wei(k 2 -{- ~2) - 1 - S ' i (O)  o~iiwii(k 2 ~- ~2)]" 

(4.4) 

and if 

J=(Jl,J2), ~[ =Jl q-J2, 

and 
01JI 

0J= 
•x j10yj2 " 

Clearly ~vnm(k2+/2) depends only on the amplitude of 
the wave vector, 032= k2+ #2, thus we can parameter- 
ize �9 and v by (.0 2 and 2 alone, i.e., (b = ~(2, co 2) and 
v = v(2, co2). Let v'(2, co 2) be the eigenvalue of H(2, co 2) 
with maximal real part (since H is 2 x 2, there are only 
two eigenvalues for each 2 and co2). For a fixed value of 
2, we say the rest state, E = I = 0, is stable if and only if 
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Fig. 4. Illustration of "dispersion" assumption (see text) 

X(~)2) ~ l  H(X~:O 
ko . . . . . . . . .  det H( ) , ,~ -O 

w! OJ 2 " 

Fig. 5. Curve of critical values of 2 for zero eigenvalue 

Re v'(2, CO2)__< 0 for all CO. Otherwise the solutions (4.3) 
for the perturbations will grow exponentially in time. 
We assume that as 2 increases there is some critical 
value, 2 o, at which Re v' vanishes for co = coo 4= 0 and 
remains negative for all other co ~= coo. This motivates 
the following assumption: 

(i) There is a 2=)~0, say 2 o = 1, and an CO2 >0, such 
that for all [CO2 _co2[ <61, [2 -2ol <62, H(2, w 2) has 
a unique eigenvalue with maximal real part, 
v'(2, co2) and it is real and simple. 

(4.5) 
(ii) Let Iz = {co21v'(2, CO 2) ~ 0 } .  Then we assume 

l 
0 for 2 o - 6 1 < 2 < 2 0  

I z=  CO2 for 2=20 ,co2>0 

bounded interval of positive length for 

)~o<2<2o+6~. 

We have illustrated this assumption in Fig. 4. An 
alternative viewpoint is to notice that v'(2, coo2)=0 if 
and only if det H(2, co2)= 0. We thus obtain a relation 
between 2 and co2. The CO2 corresponding to minimal 
2 o is precisely the COo of (4.5) (see Fig. 5). Essentially 
these assumptions embody the fact that as 2 increases 
beyond 20, the rest state becomes unstable to per- 
turbations of a wave number near COo 2. In order that the 
solutions which "branch" from the rest state as 2 
increases are not spatially constant, it is required that 
co2 + 0. The following lemma shows that strong lateral 
interactions of negative feedback type are necessary for 
O)o24=0. 

Lemma 4.1. A necessary condition for 0) 2 4= 0 is 

2 2 2 2 
O~ eiO;ie[ G ei -}- G ie ] > ~ eeC(ii[ ff  ii "+" Gee ] 

2 
G eeO~ ee G2 0~ii 

-~ S',(0) 2oS;(0 ) (4.6) 

This was proved in [8]. 
Finally, in order that Fig. 4 obtain, we require the 

eigenvalue v'(2, co 2) to actually increase as 2 crosses 2 o, 

v'(2,co2)[Z=Zo >0. An elementary computation thus 

shows that as long as 2 0 > 0, this inequality holds. We 
shall use group theoretic methods developed by 
Sattinger to study the bifurcation of doubly-periodic 
solutions to (3.8) near E = I = 0, 2 = 2 o, and co = coo- 

Because of the covariance of G with Tg, ToG =GTo, 
the kernel of L(2o) consists of a continuous family of 
critical wave vectors (k o, Eo) satisfying 2 2 ko + ~o = C~ 2" 

Ker L(2o) - t /= {~(2o, co2)e i< ...... >}re 0(2) (4.7) 

with mo= (COo, 0), x = (x, y), and (x  1, y2) = xlx2 + YlY2. 
This kernel is infinite dimensional so to reduce the 
problem to one of finite degeneracy we restrict the 
solution space to the subclass of doubly-periodic 
functions. 

w 5. Doubly-periodic Functions 

In Sect. 4, we showed that the kernel L(2o) had infinite 
degeneracy. By restricting the solution space to the 
class of doubly-periodic functions, we can reduce this 
to finite degeneracy. Let r 1 and ~2 be two linearly 
independent vectors in the plane. A lattice A is a set of 
vectors, {~} generated by integer combinations of e h 
and ~02; i.e., there are integers P1 and P2 such that 
~=P1~01 +P20~2 . Let K(A) be the subgroup of trans- 
lations in the plane which belongs to the lattice: 

K(A)= {To: o~  A } . 

The class of doubly-periodic functions (or more pre- 
cisely A-periodic) are those which are invariant under 
K(A), i.e. : 

(T,,~p)(x)=~p(x +o~)=tp(x); m ~ A .  

This is an obvious generalization of periodicity on the 
real line. Let J (A)={~eJ]~p  is A-periodic}. Clearly 
because G is translation invariant, it maps J(A) into 
itself. Let ~(A) denote the largest subgroup of 0(2) 
leaving A invariant. These groups are finite so that the 
kernel, (4.7), when so restricted has only finite 
degeneracy : 

t/(A) -- ker L(2o)lJ(A ) = {#(X o, co2)e i<r~'~ x> }re ~(A). 

if(A) is the subgroup o f / l e av ing  J(A) invariant and is 
generated by translations K(A) and rotation- 
reflections, @(A). 
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Fig.6a--c.  The  basic  symmet ry  groups,  a Hexagona l .  b Square. c 
R h o m b i c  

We are interested in lattices generated by r ta 2 
satisfying I~[=1o~1=c%, the critical wave number. 
The symmetry of the lattice depends solely on the 
angle, 0, between the two basic vectors. There are three 
possibilities: 

(1) Hexagonal ,  A 6. Here the angle between the two 
basis vectors is 60 ~ and the hoIohedry ~(A6)=D6, is 
the symmetry group of the hexagon. It has 12 elements 
generated by ~, a 60 ~ clockwise rotation and /3, a 
reflection about the x-axis (see Table la and Fig. 6a). 
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T a b l e  la.  E lements  of each of the three symmet ry  g roups  

R o t a t i o n  Reflect ion 
abou t  

a) H e x a g o n a l  e lements  

c~ - (123456) 60 ~ /~ = (53) (26) ]3 
~2 = (135) (246) 120 ~ c~/~= (54) (36) (12) o 

c~ 3 (14) (25)(36) 180 ~ cdfi = (13)(46) o 
~4 (153) (642) _ 120 ~ 73fl =(14)(56)  (23) q 
~ (165432) -- 60 ~ cd/5 = (51) (24) r 
~6 ident i ty  ~- e 0 ~ v.s/~ = (16) (34) (25) r 

b) Square  e lements  

c~ = (1234) 90 ~ /3= (24) fl 
:d =(13)  (24) 180 ~ c~/~ = (21) (34) 
73 =(1432)  - 90 ~ ~2fl=(13) 
c~4 =ident i ty_--  e 0 ~ ~3/~-(14) (23) q 

c) R h o m b i c  e lements  

c~ =(13)(24)  180 ~ fl =(24)  1 
~2 = ident i ty  = e 0 ~ cq8 = (13) l' 

In l is t ing e lements  we have  made  use of cycle no ta t ion  to show 
where  the vert ices go under  each s y m m e t r y  e lement  

The kernel is six-dimensional and consists 

~l(x ) = ~ oei~Oo~, 96(x ) = T ~ I  = Ci)oeiO~o(~/2 +yV3/2), 

9 5 ( X  ) = Tct291 = q~oei,Oo(-x/2 +yV3/2), 
9~(x)=~?l(x), 92(x)=t?~(x), 

93 =~6(x),  where 4, o =~(2o, COg). 

(2) Square, A 4. Here 0 is 90 ~ ~ ( A 4 )  = Dr, the symmetry 
group of the square, and is generated by e, a 90 ~ 
clockwise rotation, and ~, a reflection about the x-axis 
(see Table lb and Fig. 6b). There are four basis ele- 
ments in the kernel: 

~vl(x ) = q~e~,ox, 94(x) = T&p 1 = 4~oe,~Ooy, 

93 =~1 ,  92 =~4 .  

(3) Rhombic,  A 2. Here 0 is any acute angle other than 
90 ~ or 60 ~ @(Aa)=D2,  the symmetry group of the 
rectangle, and is generated by c~, a 180 ~ rotation, and/3, 
a reflection along some line, • (see Table lc and 
Fig. 6c). The kernel is also four-dimensional and is 
generated by : 

91(x) = qO og~ x ' 

9 4 ( x ) = r.~ 91 = C~ o ei~176176 Ox + sin 0y), 

93 = ~ 1 ,  

1])2 = @ 4 "  

Because each element of the group can be represented 
by a permutation, it is clear that for some element 
9 E ~ ( A ) ,  Togj=9 k where 9~ and 9k are the wave 
functions above. For  any vector a e R  2, we see that 
T,9j=ei<'~ where tgj is the wave vector corre- 
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Table 2. Effects of the representations on the elements of the kernel 

a) Hexagonal 

~p = ~ ziw~ 
i - 1  

T~(z 1 , z 2 , z 3 , z 4, z 5 , z 6) = (Z6, Z 1 , Z 2 , Z 3 , Z 4, Z 5 ) 

T#(z  1 , z 2 , z 3 , z 4 , z 5 , z 6) = (Zl,  z 6 , z 5 , z 4, z 3 , z 2 ) 
Ta(z 1 . . . . .  z 6 ) = ( e i <  . . . .  >Zl . . . . .  el< . . . .  >z6 ) 

b)  S q u a r e  
d~  

~p : ~ z ~  
i = l  

r a ( z  1 , z 2 , z 3 , z 4) = (z4,z 1 ,z2,23) 

r#(Zl ,  22, Z 3, Z 4) = (Zl,  Z4, Z 3, 22) 
T~(z~, z> za, z,) = (e ~< .... > z, ..... e ~< .... > z,,) 

c) Rhombic 
T~(z, ..... z,,) = (z3, zr za, z2) 
T~(~, z~, ~, ~) = (~, ~,, ~, z~) 
T.(z~ . . . . .  z4) = (e ~< . . . .  > Z 1 . . . . .  e ~< . . . . .  > ~d~) 

Table 3. Effect of representations on reduced bifurcation variables 

a) Hexagonal 
Ta(X1, X2, X 3 ; 01, 02, 03) = (X 3. X1, X 2 ; - -  03, 0 p  02) 

Tfl(x1, x2 ,  x 3 ; 01, 02, 03) = (x1,  x3 ,  x z ; - -  0 p  - -  03, - -  02) 

Ta(xl, X2' X3 ; 01 '  02 '  03) = (XI '  X2'  X3 ; 01 + <(Z)l' a >  . . . . .  03 + (o~3,a)) 

b) Square 
T~(xl, x2 ; 01, 02) = (X2, X 1 ; - -  02, 01) 

Tfl(X1, x 2 ; 02, 02) = (Xj,  x 2 ; - -  01, - -  02) 
T.(xl, x 2 ; 01,  02) = (X1, X 2 ; 01 "4- <e ) l ,  a> ,  02 -Jr- <(112, a > )  

c) Rhombic 
T~(xl, xz; 0,, 02)= (xl, x 2 ; - -  0 1  - -  0 2 )  

Yfl(X 1 , X 2 ; 01 , 02) = (X2, X 1 ; 02, 01 ) 
T . ( x l ,  x 2 ; 01, 02) = ( x l ,  x 2 ; 01 + <o) l ,  a> ,  02 + <o~2, a> )  

sponding to the j th v e r t e x .  For  example in the rhom-  
bic case, o1=((Oo,0), o2=(COo cos 0, - e J  0 sin 0), etc. 
To see the action of ~(A) on the kernel, we notice that  

for any ~er/(A), q~ = ~ zi~ i where n = 4  for the square 
i - 1  

and rhombic cases, and n = 6 for hexagonal. Here zz are 
complex numbers and since ~0 is real we must  have 
zj = 2g if ~Pi = V~g. In Table 2a-c  we give the action of the 
representations on the kernel for each lattice. Since 
z 4 = 2  > z5=22,  z6=23 for hexagonal  lattices, and 
z 3 = 2 1 ,  Z 4 = 2 2  for rhombic  and square, we may  write 
z j  = x y ~ zj+ ~ = x .e - ioj, j = 1, 2, 3, x j  > O, Oje [0, 2~) for 

J iOj - -  -- iOj �9 the hexagonal  case or z ~ = x j e  , z j + 2 = x j e  , j = 1 , 2 ,  
x~>0,  0jr [0, 27c) for the rhombic  and square cases. In 
Table 3a-c  we show the group action in these new 
coordinates. This group structure is readily utilized 
to determine the new solutions branching from the 
unstable rest state of  the nonlinear problem, 
G(E, I ;  2) = 0. 

w 6. Bifurcation and the New Solutions 

We are interested in solving the problem:  

G ( 2 ; u ) = 0 ,  u ~ J ,  (6.1) 

where 2 e R  and J is as above. G:  R • J ~ J ,  and there 
is always a solution to (6.1), u = 0 ,  i.e., 

G(2; 0) = 0. (6.2) 

As long as DG(,~;0) is nonsingular  [here DG(2;0)  
means the Frechet derivative of G with respect to u 
evaluated at u = 0  and 2=7.]  the implicit function 
theorem states there are no other small amplitude 
solutions to (6.1) near 2=,T and u = 0 .  On the other 
hand, if DG(,T;0) has a nonzero kernel, then we no 
longer obtain uniqueness and the possibility arises that  
there will be other small amplitudes solutions. The 
Lyapunov-Schmidt  technique allows us to calculate 
these new solutions. As we can see, this is precisely the 
situation discussed in w 3 : the linearized equat ion has a 
nonzero kernel at 2 = 2 o. 

Assume that  at 2=20 ,  DG(2 o;0) has an 
n-dimensional kernel and cokernel. Let tp 1 . . . . .  ~Pn 
generate the kernel and 9 "  . . . . .  ~p* generate the 
cokernel. Let  E : J ~ r a n g e  DG(2o;0), so that  
(I - E) : J ~ c o k e r  DG(2 o ; 0). The mapping  ( I -  E) con- 
sists of the direct sum of the projections, P j, 
Pju-<u,~oj>~0j for all u e J .  Let Q : J ~ k e r n e l  
DG(2 o ; 0). ( I -  (2) maps J into that  part  of J not  in the 
kernel of  DG(2o;0). Thus DG(2 o ;0) is one to one as a 
map from ( I - Q ) J  onto  E J ,  so there is a map  
M = E J ~ ( I -  Q ) 3  z such that  MDG(2 0 ;0) = identity on 
( I -  Q)J .  Write the elements of ~r as 

u = ~ + w, where ~v = Qu, w = ( 1 -  Q)u. 

Rewrite (6.1) as 

DG(2 o ; 0)u = - G(2; u) + DG(2 0 ; 0)u. (6.3) 

Apply M E  and ( I - E )  to both  sides of (6.3) to obta in :  

w = M E [  - G(2; w + ~p) + DG(2 o ; 0) (w + ~) ] ,  (6.4a) 

(I - E)G(2 ; w + ~p) = 0. (6.4b) 

(6.4a) can be uniquely solved for w = w*(2; ~p) for 2 near 
2 o and ~ near zero, and this is substituted into (6.4b) 
obtaining : 

F(2; ~p) = ( I -  E)G(2; ~ + w*(2 ; ~o)) = 0. (6.5) 

For  2 fixed, F : Q J - + ( I - E ) J .  Each of  these is an n 
t /  

dimensional space, so ~p= ~ zwi and F =  ~ F * i~ i  , 
i - - 1  i = 1  

thus (6.5) is equivalent to solving the equat ions:  

F l ( 2 ; z  1 . . . . .  z , ) = 0  

F 2 ( 2 ; z t , . . . , z n ) = 0  

: (6.6) 

F,(2 ; zl, ..., z,) = 0.  



We call (6.6) the bifurcation equations and solving (6.6) 
generates a solution to (6.1). Thus the solution set of 
(6.1) for 12-2o1 and Ilull near zero is equivalent to the 
solution set of (6.6) for 12-2ol, Izzl small. 

In general, the form of (6.6) is very difficult to 
compute, but the covariance of (6.1) is preserved for 
(6.6) and consequently we can simplify calculations 
immensely. We shall give an example of some of the 
calculations and then state a theorem due to Sattinger. 
Each F~ may be written as a sum of linear, quadratic, 
cubic, etc. terms in the six variables, zl, z2, ..., z 6 (or 
z~, z2, z3, z 4 in the case of rhombic and square lattices) 
consider n = 6, the hexagonal lattice. By the covariance 
of (6.6) 

T ~ F = F T ~ .  (6.7) 

That is, F 2 ( 2 ; z  1 . . . . .  z6)=F1(2;z2,  z3, z4, z5, z6, zl) , etc. 
Thus if we find F1, we can obtain Fz,  F 3 . . . . .  F 6 by 
appropriate permutations of the variables. Since (6.1) is 
real, F1(2; z~, ..., z6) = F1(2; g~, ..., g6). Finally 

el( . . . .  >F1(2 ; Z1 ' . .  ', Z6 ) = F1(2 ; el< . . . .  )Z1 ' . .  ", ei(e~6, a)z6). 

(6.8) 

Let us look at the separate linear, quadratic, etc. terms 
of F 1. Consider as an example the cubic terms, z~zjz k. 
From (6.8), 

ei(o ~, a) 2 kijkZiZjZk 
l <_i<_j<_k<_6 

2 ei<f~ + o',j + a~k, a)z iz jz  k . 
l <_i<_j<_k<_6 

Since this is true for all a we must have 

(l)i ~- (~j -~ O-)k = r l 

or o i = o  I and Ok= --tOj. Thus there are terms of the 
form : 

ZIZIZ4~ ZIZ2Z5~ Z1Z3Z 6 �9 

Since T~F =FT~, ZlZ2Z 5 and ZlZ3Z 6 must have the same 
coefficient. Finally the complex conjugacy requirement 
implies that the coefficients of these terms are real. 
Hence the cubic terms are 

b z l ( z 3 z  6 -t- z 2 z s )  -}- a z l z l z  4 ; a, b~  R .  

The coefficients a and b depend on the lattice, 2, and 
the physical parameters of the system. We can similar- 
ly compute the linear, quadratic, and higher order 
terms of Fa. These are still complex valued functions 
and they have a certain degeneracy which is avoided 
by using the variables, (X l ,X2 ,  N 3 ; O l , 0 2 , 0 3 )  o r  

(x~, x2;0~, 02) for square and rhombic lattices. To this 
end we have the following theorem. 
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Theorem 6.1 (Sattinger, 1978a). The reduced bifurcation 
equations for the bifurcation of  A-periodic disturbances 
of  a Euclidean covariant system, (6.1) have the forms 
below : 

(1) A = rectangular or square lattice 

X l ( 2  -}- ax  2 -.}- b x  2) = O(.~xix  j, Xix  jXkXl) 

x2(2 + ax 2 + bx 2) = O(2xixj, XiXjXkXl) . 

(2) A=hexagona l  lattice wizh nonvanishing qua- 
dratic terms 

2X 1 -- ceiTx2x3 = O(2xixj, xixjxk) 

2X 2 -- ceiTxzX3 = O ( 2 x i x j ,  XiXjXk) 

2x  3 - ceZ~ x 1 X2 = O (  2 x i x  j '  XiX jXk) " 

(3) A=hexagona l  lattice with vanishin 9 quadratic 
[erms 

x1(2 + b(x 2 + x~) + axe) = O(2xix J, XiXaXkXl) 

x2(2 + b( x 2 + x 2) + ax 2) = O( 2xix j, xix jxkx,) 

x3(2 + b(x 2 + x~) + ax 2) = O( 2xzx j, x~x ~xkx~) . 

Remarks. When the thresholds are zero and the non- 
linearities of our neural net are symmetric, the second 
case does not occur since c = 0. The parameters a and b 
are not the same numerically and depend on the lattice 
type as well as the actual physical parameters of the 
system. We shall not consider case (2) since in all 
previous work we have assumed no quadratic terms 
exist. We are interested in small amplitude solutions to 
(1) and (3), so we put 2=~2v and x i =eyi, where e--+0 is 
a small number. With this scaling we obtain for 
example : 

e3yl(v + ay 2 + by 2) = 0(e4). 

Dividing by e 3 and letting e--.0 leads to the bifurcation 
equations for small amplitude solutions: 

(1) Ya(v+ay2 +by2)=O 

Y2(v+ay2 +by~)=O. 

(3) y l ( v+b(y  2 + y2 )+ay2)=0  

y2( v + b(y2 + y2) + ay2) = 0 

y3( v + b(y2 + y2) + aye) = O. 

Consequently to lowest order the solution to (6.1) or, 
for that matter, (3.7), is: 

E(x, = e@()~o ' 02 ) Re [ylei~176 x> Y)] 
I(x,y)] 

+ y2eiO2ei<,~2, x>] + O(e2), 
(6.10) 

2 = ~2v + 0(~3),  x = (x, y) 



f46 

Table 4. Solutions to bifurcation equations for rhombic or square 
and hexagonal lattices 

C a s e  S o l u t i o n  E i g e n v a l u e s  

(1) 

(3) 

V - v - v ( b -  a) 
y 2 = 0 ,  y l  = - -  - 2 v , - -  

a a 

V - v - 2 v -  2v (a-b) 
Ya = Y 2 =  a~b ' (a+b) 

- ~ a  V - Y  - v  
y2=y3=O,y~=++ -2v, b - (a -b ) ,~ (a -b  ) 

- v  b -a  -2v , -2v (b -a )  
y3=O'yl=Y2= a~-b Va+b' (a+b~ 

- v  -2v(b a) -2v(b-a) 
Y1 =Yz=Y3= - 2 v ,  - -  2a+b 2a+b ' 2a+b 

for rhombic and square lattices and 

IE(x, = g~(20, co~)Re[yleiO,ei< .. . .  > Y)] 
s(x, y) j 

+ Y2ei~ i<~ + Y3ei~ i<'~3'~ + 0(~2), (6.1) 

2 = ~2v + O(e3), x =(x,  y) 

for hexagonal lattices. 
For v >0,  we have supercritical bifurcation, while 

for v <0  subcritical, and Yi are solutions to (1) or (3). In 
both cases there are two or three arbitrary phase 
factors due to the translation invariance of (6.1). In 
Table 4 we give the solutions to (6.9), (1), (3) as well as 
the eigenvalues of the Jacobian evaluated at the so- 
lutions, y~. By Theorem 7.2 in Sattinger, the solutions 
(6.10) and (6.11) are stable or unstable if the eigenval- 
ues of the Jacobian have negative real parts or not. We 
note that Table 4 does not give a complete list of 

~f__v is also solutions, for example y l = 0 ,  y2 = a a 

solution, but it is qualitatively the same as Y2 =0, 

~f v with the In the next section, same stability. Yl= a 

we explore the stability of the various solutions and the 
concomitant form constants arising from each so- 
lution. We shall show how the physical parameters of 
the neural net act to "select" the stable spatial patterns 
of activity. 

w 7. Stability and Selection of Forms 

Before discussing stability and the dependence of a and 
b on the lattice, we wish to show the meaning of the 
various solutions in terms of the form constants of 
Kliiver. From (6.10) and (6.11) we know the electrical 
pattern of activity to lowest order. In the following 
figures and paragraphs, we shall examine these so- 
lutions and their symmetry properties. 

a) Rhombic and square lattices 

Case(i) y 1 = 0 ,  y2~=0; or y 2 = 0 ,  y l@0.  

In the case of a square lattice we have 

l ( ) ) ~  2 ~ - - l :  \I(x,IE-X-Y-ly)j = e~(~~ c~176 ~ -  cos [0 t + O9oX ] ; 

Y2 = 0 ,  (7.1a) 

(E(x,y)l = ~(;~o, % )  cos [02 + co0y3 �9 
\I(x, y)J 

Yl =0 ;  (7.1b) 

While for the rhombic we have 

2 - - Y  \{E(x'I(x, y)Y)/J = e~(2o, COo) ~ cos [02 + CCOoX + SCOoy], 

Yl = 0 ;  c = c o s 0 ,  s=s in 0 .  (7.1c) 

All three cases are shown in Fig. 7 where we have 
plotted only E(x, y). These are all constant along some 
line and thus lead to spiral, tunnel, of funnel form 
constants. We call these patterns "rolls" after the term 
used for such forms in fluid mechanics, and see that 
they give rise to the "global" type of form constant. 

7 

bX 

T' ~~ 
, X  

/ ~ . - j j j j / / / / / / /  

b 

I y .x 

:-0 

Fig. 7a--e. Plots of E(x, y) for rhombic or square lattice roll patterns 
(shaded regions are positive), a Pattern leading to tunnel constant, b 
Pattern leading to funnel constant, c Pattern leading to spiral 
constant (occurs in rhombic lattice only) 
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(ii) Yl = Y 2  = -I/aq-b" Case 

For a square lattice we have 

I(x, y) ] a + b 

{cos [01 + COoX ] + cos [02 + COoy ] } (7.2a) 

while for a rhombic lattice we have 

g --V \(E(x' Y)) y) / a~b ~(2~ c~ 
�9 {COS [01 -]- (DoX ] @COS [02  @CO0(CX-~Sy)'] } . 

(7.2b) 

For various values of 0, we have graphed these func- 
tions for cases (a) and (b), in Fig. 8. In particular we 
have plotted a detailed picture of contours of 
E -= constant, for various 01, 02 for (7.2a). 

Clearly these patterns all have true double period- 
icity and give rise to cobweb and lattice form con- 
stants. Depending on the stability of the two cases, we 

k ,-: 
~ ' ~  b 
N, ~ 

- ! 

e 
Fig.8a-L Lattice patterns (shaded areas positive and contours 
represent E(x,y)=constant). a Square pattern, 0 1 = 0 2 = 0 .  h 
Contours of (a) for single square, e Square pattern, 01 = - 90, 02 = 90. 
d Contours of (c) for single square, e Rhombic pattern 01 = 02 = 180 ~ 
f Contours of (e) for single rhombus 
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should expect to observe either local tesselation pat- 
terns (repeating mosaics, cobwebs) or global spirals, 
tunnels, and funnels. 

b) Hexagonal lattices 

Case (i) Y2 = 0 ,  Y3 =0 ,  Yl +0 .  

We obtain : 

I(x,y)J =e ~(2~ c~176 c~ [01 + c~176 (a) 

or if yl =y3 =0 ;  y2=#0 

(~(x' Y)/ e(x0, %) cos 02 + y ~ + 
\ I(x, y) J 

(b) 

and a similar expression for Yl =Y2 = 0 ;  Y3 ~ 0 .  

Case (ii) Yl =Y2 = , Y3 =0. 

This and the remaining always have a pair of 
a - b  

eigenvalues with opposite signs, v ~  and 
( a - b )  

- 2 v  ~ a a  ' thus they are always unstable and shall 

not be considered. 
Case(iii) y l + 0 ,  y2+0, y3~0  

E(x, y) - • 2 
[ i(x, y) ]=~ ~ 2 ~ +  a q~(2o' c~ 

+cos[o o(  x +03]} 
For case (i) we illustrate two possibilities in Fig. 9a and 
b, both of which lead to roll patterns and consequent 
targets and spirals. In no case do the form constants of 
the type in Fig. 2d arise. The most interesting situation 
occurs with case (iii). In Fig. 10 we plot various possibi- 
lities for 01, 02, 03 taking of different values. When 
01 =02 =03 =0, the local pattern is completely hexa- 
gonally symmetric as can be seen in Fig. 10a. There are 
infinitely many such patterns parameterized by 01, 02, 
and 03, but globally the entire mosaic will always be 
hexagonal. 

Thus far we have considered the various possible 
solutions to (3.7) but have not yet determined which 
patterns will actually be '"observed". As expected, this 
depends on certain physiological and physical parame- 
ters as well as the initial disturbance. We shall discover 
that there are certain rules of selection of the form 
constants but that there is considerable overlap. Our 
main assumption is that only stable patterns are observ- 
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Fig.9a and b. Roll patterns for hexagonal lattice (shaded areas 
positive), a Pattern leading to funnel, b Pattern leading to spiral 

C 
Fig. 10a--d. Hexagonal lattice patterns [shaded areas positive and 
contours represent E(x,y)=const]. Hexagonal pattern, 01=02 
=03 =0. b Contours if (a) for single hexagon, e Hexagonal pattern, 
01 =90, 02 =03 =0. d Contours of (c) for single hexagon 

ed. This is reasonable and has been the basis of various 
models of  pattern formation in biological systems. To 
this end we have the following lamina based on 
Table 4. 

Lemma 7.1 (Sattinger, 1978a). Assume the bifurcation 
equations are generated by (6.09, (1)). Then the following 
conditions are necessary for the stability of rolls or 
squares~rectangles : 

Stable rolls : b < a < 0. 
(7.5a) 

Stable squares~rectangles : a + b <0 ,  a -  b < 0. 

For hexagonal lattices where the bifurcation equations 
are generated ny (6.04, (2)) the necessary conditions for 
stability are 

Stable rolls: b < a < 0 .  
(7.4b) 

Stable hexagons: a<b, 2 b + a < 0 .  

Unfor tunate ly  these criteria are still inadequate since a 
and b both  depend on the lattice. To obtain  any results 
on pat tern selection we must  determine the dependence 
of  a and b on the lattice. Sattinger has proved the 
following result: 

Theorem 7.2 (Sattinger, 1978b). There exists a function 
q(O), called the lattice function, such that: 

(1) q(O)=A o + A  2 cos20 + A  4 cos40, 

(2) a =  3q(0), b=6q(0) ,  

where 0 is the angle between the basis vectors of the lattice 
and the coefficients Ao, A2, depend only on the basis 
physical parameters of the problem. 

In many  cases q(O) is constant  while in others it 
may  be written as q(O)=A o + A 2 cos20. In  this particu- 
lar situation, the stability criteria are readily 
illustrated. 

Theorem 7.3 (Sattinger, 1978b). Suppose q(O) may be 
written as q(O)=A cos20 + B. Then the following pat- 
tern selection diagram holds" 

B:A(I-2cos20y 
B:AI3 

Fig. ll. Stability diagram for pattern selection (see text for 
explanation) 

A.B:O 
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A 
Thus between B = ~- and B = 2A stable hexagons, 

squares and sometimes "0-rectangles" (rectangular lat- 
tices with basic angle, 0) can coexist. Between B = 2A 
and B=3A only stable squares and certain "0- 
rectangles" can coexist. Between B = 3A and A + B = 0, 
rolls and thus "global" form constants appear, while 

between  1+2 os20   and 0 
\ 3 J 3 '  

rectangles" alone exist. We can imagine that in regions 
of coexistence, external stimuli and initial conditions 
will play an important role in pattern selection. As 
certain physiological parameters change, e.g., excita- 
bility or thresholds, we can expect slow transitions 
between a variety of "cellular" patterns such as cob- 
webs and honeycombs to spirals and targets. Although 
the forms seen are "relatively" stationary (i.e., they 
change at a much slower rate than the time constant of 
the individual neurons, 10ms they do indeed slowly 
change, forming a kaleidoscope of shapes and mosaics 
as various internal parameters are slowly altered. 

w 8. Discussion 

We have shown that a neuronal net comprising a 
spatially homogeneous two-dimensional sheet of both 
excitatory and inhibitory neurons, in which the in- 
terconnections are all radially isotropic, and in which 
lateral interactions of negative feedback type, rather 
than recurrent positive interactions dominate, can 
spontaneously generate a variety of doubly-periodic 
spatial patterns of neural activity. If we suppose that 
these patterns correspond to perceived retinal objects, 
then the doubly-periodic patterns will be identically 
the four "form constants" of perceived visual halluci- 
nations. We have demonstrated that physiological 
parameters play a major role in the selection of form 
constants, but that such parameters are not in them- 
selves a sufficient explanation for the appearance of 
unique form constants. The selection mechanism is in 
fact dynamical, and we have therefore utilized bifur- 
cation theory and groups representation theory exten- 
sively, to show how stability properties underlie the 
selection of form constants. 

The assumed radial isotropy of intercortical con- 
nectivity was exploited to discern the dominant non- 
linear effects in the neighborhood of an instability of 
the net activity. In reality cortical connectivity is far 
from isotropic (Cowan, 1977) and our analysis must be 
thought of as heuristic. Rather than G(E,I) commut- 
ing with the entire rotation-reflection group, it is 
covariant only with a finite subgroup. In such a case 
KerL(20) is finite-dimensional, and anatomical and 
physiological constraints determine the symmetry, 
rather than the ad hoc assumptions of doubly periodic 

solutions. It is even possible that the only element in 
0(2) which commutes with G is the identity. In such a 
case it can be shown that only small amplitude rolls 
obtain, and there are no cellular form constants. 

We consider this approach to have provided a 
reasonable description and explanation for the onset of 
simple visual hallucinations. Clearly as the stages of 
hallucinatory activity become increasingly advanced, 
more cortical machinery will be involved, and more 
complex context-dependent forms may be expected to 
appear. Our results indicate that it is probably un- 
necessary to invoke any such complicated processing 
to account for the ubiquity of simple mosaics and 
geometric patterns. 

Appendix 

A. Covariance of G 

We must show that G is covariant with respect to the 
representation, TO, defined by 

T o u(x, y) = u(9- l(x, Y)). (A 1) 

Without loss in generality we suppose u" RZ-+R, that 
is, we restrict the argument to a single neuronal 
population. We may write G(u)(x, y) as 

-u(x ,y)+S(a-~ dx' -co~ dy'w((x-x') 2 

+(y-/)2)u(x',y')). 

Clearly T o commutes with the identity, thus we 
examine 

S(c~w(x,y)** u(x, y))- S(u). 
Let (2, p)=9- ~(x, y) ; (2', p')=g- *(x', y'). 

Tgs= s(~ -co~ d/ ~ d/ w((x- x')2 +(Y- /)2)u(x" 

(A2) 

On the other hand 

STOu=S(~-~S dx '~  

To evaluate this we make the substitution 
dx'dy'-~dY~'dy'. This multiplies by _+ 1 so the change of 
variables has no effect on the integration. The con- 
volution becomes 

- - c O  CO 

(13) 
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which is identical to (A2). We remark that if w 
depended on x and y in an anisotropic fashion, e.g., 
w(x, y) = w(x2/a 2 + y2/a2); al =t = a2, then we could not 
obtain (A3). Thus for covariance isotropy is very 
important. 

B. Some Remarks on the Banach Spaces Involved in 
(3.8) 

We may write G = I + k, where I is the identity and k is 
the remaining nonlinear, spatial operator. Let ~(A) be 
the Banach space of A-periodic functions on the plane, 
where A is fixed. Then k, restricted to J(A), is compact 
so that G is a Fredholm operator, a perturbation of the 
identity. 

We define an inner product structure: 

{u(x, y), v(x, y)) = ~ u(x, y). v(x, y)dx dy. (B 1) 
c 

Here C is a unit "cell" in the lattice and u. v is the 
Euclidean vector product. The linearized operator, 
DG(2 o, 0) is a Fredholm map with zero index and a 
finite dimensional kernel. The projection onto the 
kernel and cokernel can easily be defined in terms of 
the inner product, (B 1): 

P,u = {~,(x, y), u(x, y)) ~,(x, y), (B 2) 

where qJ,(x,y) is a normalized basis element of the 
kernel, ~/(A). Similar definitions of projections E, Q, 
etc., hold and the analysis of Sect. 6 can be applied to 
(3.8) where so restricted. 
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