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Riemannian Optimization

Problem: Given f(x) :M→ R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|XTX = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Université catholique de Louvain
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Four applications are used to demonstrate the importances of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van12]

Geometric mean of symmetric positive definite matrices
[ALM04, JVV12]

Dictionary learning of symmetric positive definite matrices [CS15]

Wen Huang Université catholique de Louvain
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t+ τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x+ τ)T } = AE{s(t)s(t+ τ)T }AT
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Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n)→ R : V 7→
N∑
i=1

‖V TCiV − diag(V TCiV )‖2F .

C1, . . . , CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|XTX = Ip}.

Wen Huang Université catholique de Louvain
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Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M

Wen Huang Université catholique de Louvain
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Application: Matrix Completion Problem

movies meta-user meta-movie
a11 a14

a24

a33

a41

a52 a53

 =


b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


(
c11 c12 c13 c14

c21 c22 c23 c24

)

Minimize the cost function

f : Rm×nr → R : X 7→ f(X) = ‖PΩM − PΩX‖2F .

Rm×nr is the set of m-by-n matrices with rank r. It is known to be a
Riemannian manifold.
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Application: Geometric Mean of Symmetric Positive
Definite (SPD) Matrices

Computing the mean of a population of SPD matrices is important in
medical imaging, image processing, radar signal processing, and elasticity.
The desired properties are given in the ALM1 list, some of which are

if A1, . . . , Ak commute, then G(A1, . . . , Ak) = (A1 . . . Ak)
1
k ;

G(Aπ(1), . . . , Aπ(k)) = G(A1, . . . , Ak), with π a permutation of
(1, . . . , k);

G(A1, . . . , Ak) = G
(
A−1

1 , . . . A−1
k

)−1
;

detG(A1, . . . , Ak) = (detA1 . . . detAk)
1
k ;

where A1, . . . , Ak are SPD matrices, and G(·, . . . , ·) denotes the
geometric mean of arguments.

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Application: Geometric Mean of Symmetric Positive
Definite Matrices

One geometric mean is the Karcher mean of the manifold of SPD
matrices with the affine invariant metric, i.e.,

G(A1, . . . , Ak) = arg min
X∈Sn

+

1

2k

k∑
i=1

dist2(X,Ai),

where dist(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F is the distance under the
Riemannian metric

g(ηX , ξX) = trace(ηXX
−1ξXX

−1).
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Application: Dictionary learning of symmetric positive
definite (SPD) matrices

Dictionary learning can be applied for classification and denoising.

Euclidean dictionary learning problem (one formulation):

min
‖di‖2≤1,ri∈Rn

N∑
i=1

‖xi −
[
d1, d2, . . . , dn

]
ri‖22 + λ‖ri‖1, (1)

where xi ∈ Rs, i = 1, . . . k are given data points,
di ∈ Rs, i = 1, . . . , n and ri ∈ Rn, i = 1, . . . , N are dictionary and
sparse codes respectively.

Problem (1) is usually solved by alternatively optimizing over
D :=

[
d1, . . . , dn

]
and R :=

[
r1, . . . , rN

]
.

Wen Huang Université catholique de Louvain
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Application: Dictionary learning of symmetric positive
definite (SPD) matrices

Dictionary learning problem of SPD matrices (one formulation):

min
B∈Md

n,R∈R
n×N
+

1

2

N∑
i=1

(
dist2(Xi,Bri) + ‖ri‖1

)
+ trace (B) ,

where Md
n denotes the product of n manifolds of SPD matrices Sd+,

i.e., Md
n :=

(
Sd+
)n

.

Problem (1) also can be solved by alternatively optimizing over B
and R.

Optimizing over B is a Riemannian optimization problem.

Wen Huang Université catholique de Louvain
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More Applications

Large-scale Generalized Symmetric Eigenvalue Problem and SVD

Blind source separation on both Orthogonal group and Oblique
manifold

Low-rank approximate solution symmetric positive definite Lyapanov
AXM +MXA = C

Best low-rank approximation to a tensor

Rotation synchronization

Graph similarity and community detection

Low rank approximation to role model problem

Shape analysis

Wen Huang Université catholique de Louvain
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M

Wen Huang Université catholique de Louvain
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f(xk)

Newton’s method: xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk)

Trust region method: ∆xk is set by optimizing a local model.

Objects

Direction/movement: sk/∆xk

Gradient: ∇f(xk)

Hessian: ∇2f(xk)

Addition: +

xk xk + dk

Wen Huang Université catholique de Louvain
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Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM , the directional derivative

D f(x)[η] = 〈grad f(x), η〉

and grad f(x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f(x) : TxM → TxM : η → ∇ηgrad f,

where ∇ is the affine connection.

Wen Huang Université catholique de Louvain
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Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk

(αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M

Wen Huang Université catholique de Louvain
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Generic Riemannian Optimization Algorithm

1. At iterate x ∈M
2. Find η ∈ TxM which satisfies certain condition.

3. Choose new iterate x+ = Rx(η).

4. Goto step 1.

A suitable setting

This paradigm is sufficient for describing many optimization methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3
η1

x1 = Rx0(η0)

η0 x2
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Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Wen Huang Université catholique de Louvain
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Categories of Riemannian optimization methods

Elements required for optimizing a cost function (M, g):

an representation for points x on M , for tangent spaces TxM , and
for the inner products gx(·, ·) on TxM ;

choice of a retraction Rx : TxM →M ;

formulas for f(x), grad f(x) and Hess f(x) (or its action);

Computational and storage efficiency;

Wen Huang Université catholique de Louvain
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Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang Université catholique de Louvain
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηxξx, denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T
Isometric vector transport TS preserve
the length of tangent vector

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Retraction/Transport-based Riemannian Optimization

Benefits

Increased generality does not compromise the important theory

Less expensive than or similar to previous approaches

May provide theory to explain behavior of algorithms specifically
developed for a particular application – or closely related ones

Possible Problems

May be inefficient compared to algorithms that exploit application
details

Wen Huang Université catholique de Louvain
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Steepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential mapping; parallel
translation.

Wen Huang Université catholique de Louvain
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x+ η), the projection of the point x+ η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Absil, Mahony, Sepulchre (2007) Nonlinear conjugate gradient using
retractions.

Wen Huang Université catholique de Louvain
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository

http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Absil, Gallivan, Qi (2007-10), Basic theory and implementations of
Riemannian BFGS and Riemannian Adaptive Cubic Overestimation.
Parallel translation and Exponential map theory, Retraction and vector
transport empirical evidence.

Wen Huang Université catholique de Louvain
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Some History of Optimization On Manifolds (IV)

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2015), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, A C++
library: http://www.math.fsu.edu/~whuang2/ROPTLIB

Sato, Iwai (2013-2015), Global convergence analysis using the
differentiated retraction for Riemannian conjugate gradient methods

Many people Application interests start to increase noticeably

Wen Huang Université catholique de Louvain
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Current UCL/FSU Methods

Riemannian Steepest Descent

Riemannian Trust Region Newton: global, quadratic convergence

Riemannian Broyden Family : global (convex), superlinear
convergence

Riemannian Trust Region SR1: global, (d+ 1)−superlinear
convergence

For large problems

Limited memory RTRSR1
Limited memory RBFGS

Riemannian conjugate gradient (much more work to do on local
analysis)

A library is available at www.math.fsu.edu/~whuang2/ROPTLIB

Wen Huang Université catholique de Louvain
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Current/Future Work on Riemannian methods

Manifold and inequality constraints

Discretization of infinite dimensional manifolds and the
convergence/accuracy of the approximate minimizers – specific to a
problem and extracting general conclusions

Partly smooth cost functions on Riemannian manifold

Wen Huang Université catholique de Louvain
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Geometric Mean and Dictionary Learning

Computations of SPD matrices are used to show the performance of
Riemannian methods.

Geometric mean of SPD matrices [ALM04]

min
X∈Sn

+

1

2k

k∑
i=1

dist2(X,Ai) =
1

2k

k∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2F .

Dictionary learning for SPD matrices [CS15]

min
B∈Md

n,R∈R
n×N
+

1

2

N∑
i=1

(
dist2(Xi,Bri) + ‖ri‖1

)
+ trace (B) .

Wen Huang Université catholique de Louvain
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Geometric Mean of SPD matrices

Hemstitching phenomenon

Condition Number at the minimizer [YHAG15]

For the cost function F (X) = 1
2k

∑k
i=1 dist2(Ai, X), we have

1 ≤ HessFA(X)[∆X,∆X]

‖∆X‖2
≤ 1 +

log(maxκi)

2
.

If maxκi = 1010, then 1 + log(maxκi)
2 ≈ 12.51.

Wen Huang Université catholique de Louvain
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Algorithms

gradF (X) = −1

k

k∑
i=1

Log(AiX
−1)X.

First order approaches

Riemannian steepest descent [RA11]

Riemannian conjugate gradient [JVV12]

Richardson-like iteration [BI13]

Limited-memory Riemannian BFGS method [YHAG15]

Wen Huang Université catholique de Louvain
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Implementations

Function: 1
2k

∑k
i=1 ‖ log(A

−1/2
i XA

−1/2
i )‖2F ;

Gradient:

−1

k

k∑
i=1

Log(AiX
−1)X =

1

k

k∑
i=1

A
1/2
i Log(A

−1/2
i XA

−1/2
i )A

−1/2
i X1/2

A
−1/2
i can be computed in advance.

The dominated computational time is on the function evaluation.

Wen Huang Université catholique de Louvain
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Implementations

Retraction [JVV12]

Exponential mapping: RX(ξX) = X1/2 exp(X−1/2ξXX
−1/2)X1/2

Second order retraction: RX(ξX) = X + ξX + ξXX
−1ξx/2

Vector transports:

Parallel translation:
TηX ξX = Q(X, ηX)ξXQ(X, ηX)T ,

Q(X, ηX) = X1/2 exp
(
X−1/2ηXX

−1/2

2

)
X−1/2

Vector transport by parallelization: essentially an identity

The dominated computational time is on the function evaluation.

Wen Huang Université catholique de Louvain
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Numerical Results

iterations
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations with k = 100 (the number of
matrices) and n = 3 (the size of matrices); Left: 1 ≤ κ(Ai) ≤ 200; Right:
103 ≤ κ(Ai) ≤ 2 · 106
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Numerical Results

iterations
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations with k = 30 (the number of
matrices) and n = 100 (the size of matrices); Left: 1 ≤ κ(Ai) ≤ 20; Right:
104 ≤ κ(Ai) ≤ 2 · 106
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Dictionary Learning for SPD matrices

The subproblem: given R, find B.

min
B∈Md

n

1

2

N∑
i=1

dist2(Xi,Bri) + trace (B) .

Similar techniques, i.e., implementations for vector transport,
retraction, function and gradient evaluation, can be applied;

The dominated cost is on the function evaluations;

The cost function is nonconvex;

We set the initial iterate by X0 = X
(
R†
)

+
, where X is a tensor

whose i-th slice is Xi, † denotes the psudo-inverse and M+ denotes
a matrix forming by positive entries of M .

Wen Huang Université catholique de Louvain
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Numerical Results

Artificial tests:
N : number of training points in X
n: number of atoms in dictionary B
d: size of SPD matrices
R: the representation matrix
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Figure: An average of 50 random runs for various parameter settings.

Wen Huang Université catholique de Louvain



42/46

Introduction Motivations Optimization History Geometric Mean and Dictionary Learning Summary

Dictionary Learning for SPD matrices

The subproblem: given B, find R.

min
R=[r1,...,rN ]∈Rn×N

+

1

2

N∑
i=1

(
dist2(Xi,Bri) + ‖ri‖1

)
.

The domain Rn×N+ is NOT a manifold. A Riemannian optimization-like
idea can be applied.

0 10 20 30 40 50 60 70 80 90 100

iteration
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Projected gradient LBFGS
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Figure: An representative result. N = 100, d = 5, n = 20
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Summary

Introduced the framework of Riemannian optimization and the
state-of-the-art Riemannian algorithms

Used applications to show the importance of Riemannian
optimization

Showed the performance of Riemannian optimization by geometric
mean and dictionary learning of SPD matrices
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Thanks!
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Wen Huang Université catholique de Louvain


	Introduction
	Motivations
	Optimization
	History
	Geometric Mean and Dictionary Learning
	Summary

