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Recent Motivating Work

» Volume preserving Moment-of-Fluid reconstruction for
multiple materials. Moment of Fluid method for deforming
boundary problems (Ahn and Shashkov, JCP 2007; Ahn and
Shashkov, JCP 2009).

» variable density cell centered pressure projection (Kwatra, Su,
Gretarsson, Fedkiw 2009)



Laminar jet - density ratio 819:1
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Turbulent jet spray - density ratio 819:1
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Impinging jets - density ratio 819:1
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Flow through diesel nozzle with moving valve

Generic mini-sac type single- hole
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Flow through diesel nozzle with moving valve

Two separate rigid bodies that can translate rigidly
needle tip ‘_\"l ‘_1 ’_q

att=10us t =910

att=1410ps



Simulation of Flow through diesel nozzle with moving valve
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1; = 0.37 ms: liquid surface colored by velocity from 0 to 240 m/s



AMR grid

Solid level set for fully closed passage




Six hole diesel nozzle

Pressure (bar)
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Figure: Snapshot of a simulation of liquid injection in a Bosch six-hole

vertical diesel nozzle. Effective fine grid resolution 640x640x256.
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Microfluidics

Sussman (FSU), Jemison (FSU), Duffy (FSU), Roper (FSU)




Vortex Rings
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Vortex Rings

Sussman (FSU), Ohta (Tokushima)
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Background

vV vV vV V. vV vV VvV VY

Shock capturing (ENO) - Shu, Osher, JCP 1989

Front capturing (LS) - Sussman, Smereka, Osher, JCP 1994
Conservative LS - Olsson, Kreiss, Zahedi, JCP 2007

Front tracking - Unverdi, Tryggvason, JCP 1992

VOF - Kothe, Brackbill, Zemach, JCP 1992

CLSVOF - Sussman, Puckett; Sussman, Smith, Hussaini, et al.
CLSVOF - Stern

Particle LS - Enright, Fedkiw

Refined LS - Herrmann, Pitsch
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We propose Semi-Lagrangian technique for multimaterial problems,
in contrast to a finite volume technique which is (in 1D, u is
constant):

_ 1 /Xi+1/2 ( )d
pi = 7= p(x)dx
Ax Xj—1/2

dpi(t) f(pi:rl/z’pitrl/z) - f(Pf—1/2vPi+—1/2)

dt Ax

where d/dt discretized using high order TVD preserving RK and
pit1/2 derived from a high order ENO or WENO reconstruction.



Results motivating SL instead of Finite volume
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Results motivating MOF /VOF instead of ENO/WENO
reconstruction
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Results motivating MOF /VOF instead of ENO/WENO
reconstruction
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Governing Equations
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Splitting of advection terms from the pressure terms

Kwatra, Su, Gretarsson (JCP, 2009)

pt+V-(pu) =0
(pu): + V - (puu) = —=Vp
(pE)e +V - (puE) = =V - (up)



Splitting of advection terms from the pressure terms

Kwatra, Su, Gretarsson (JCP, 2009)

solve the following equations to get p"*!, u*, and E*. These
equations are solved using a directionally split method in which p
at material boundaries is derived from the multimaterial MOF

reconstruction.

pt +V - (pu)
(pu)e + V - (puu)
(PE)e +V - (puE)

0
0
0



Splitting of advection terms from the pressure terms
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Splitting of advection terms from the pressure terms

n+1

n+1 = - Atpl+1 B pl
U1 = Yit1)2 7P,+1/2AX
n+l _ _n+l
U g Atpi+1/2 Pi—1/2
P pilAx

(PEY™ = (pE)' — BV - (u"1p" )



CLSMOF (illustration of Piecewise linear reconstruction)

%0 H =
70
85
f
i
80 H-1
f Y
1 | 65
> 75 > \
Y /
70 1
S -
60
65
60 ATTTTT NEN
35 40 45 50 55




Multimaterial MOF reconstruction

1—1 1

» For cell i — 1, slope of Red (solid) cut determined first, then
slope of green (fluid 1) cut determined second. Blue material
occupies remaining unfilled region.

» For cell i, slope of blue (fluid 2) cut determined first. Green
material occupies remaining unfilled region.



Multimaterial MOF reconstruction

(1) (2)

Slope of Red (solid) cut determined first, then slope of green (fluid
1) cut determined second. Blue material occupies remaining
unfilled region.



MOF optimization problem

N points into the material being reconstructed. The starting guess
‘e A Xref —Xunfilled

IS n re unrtilie )

[[Xref —Xunfited||

{x e R%|A- (x —xix) + b=0}
| Fret (A, b) — Fa(h, b)| =0
Emor = |%ret — xa(f, b)||2
Emor(®*,0%) = [|f(¢*,0%)]2 = (g‘,icf)') 1£(®,0)])2,

f: R2 — R3, f((D’ 6) = (Xref - XA(¢7 @))

Constrained optimization problem solved using the Gauss-Newton
method.



Gauss-Newton minimization algorithm

0.

wh
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initial angles: (®g,©p). Tolerance: tol = 107 8Ax.

ile not converged

find bk(d)k,@k).

find the centroid xy(by, Pk, Ok)

find the Jacobian matrix Jx of f evaluated in (®4, ©f) and
fx = f(Pk, Ok)

. stop if one of the following three conditions is fulfilled:
> ||J] - £l < tol- 1072Ax
> |||l < tol
> k=11

else continue
solve the linear least squares problem: find s, € R? such that

HJksk + ka2 = min HJkS + ka2
s€R2
by means of the normal equations. (JZJksk = J,Z—fk)

update the angles: (®411,0k11) = (P, Ok) + sk
. ki=k+1



Property of MOF reconstruction

N

. ref

Figure: The reference centroid, X,er, does not coincide with the exact
centroid, x4, for a parabolic interface cutting the cell. The difference
between the two centroids is proportional to the curvature.



Backwards Tracing

Backwards Tracing
Celli-1 Celli

A B C

A= Xi_1/2 — Ui_1At

B=x_1)
C = X112 — Uir10AL



Backwards Tracing (before and after)
Celli-1 Celli

o I-I

AFTER

D E F

A=Xi_12 —Ui1pAt B=x_10 C=X11/2 — Ujy1AL
D=xi_10 E=Ji(xi_12) F=x12



Backwards Tracing - conserved variables

AKA “Eulerian Implicit”

_ 1 Xit+1/2 Yj+1/2 Zk41/2 ( )d v
piJ,k:/ / / p\X,y,z)dzayax
AXAyAZ Xi—1/2 YVYj-1/2 Y Zk—1/2
WLOG, drop j and k subscripts.

—n+1 ZI’II 1 fQDmQ p,/(X)
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Backwards Tracing - volume fraction

AKA “Eulerian Implicit” (Scardovelli and Zaleski, Le Chenedac and
Pitsch)

£ 1 /Xi+1/2 /YJ+1/2 /Zk+1/2 Ho( ))dzdyd
I’,j,k:7 XJyJZ Z-yX
AxAyAz Xi_1j2 Jyi1jp Jacap

H(¢) =1if ¢ >0 (i.e. (x,y,z) inside the material being
advected).

ot = 65 (I (%), v, 2)

Zﬁ:liq fJ,-(QPﬂQI.,) H(M/H(Xa y,z))dxdydz

Frtl —
! AxAyAz




Backwards Tracing - centroid

AKA “Eulerian Implicit”

X?,jtk _ N /XN/2 /yjﬂ/2 /Zkﬂ/2 xH(p(x, y, z))dzdydx
7 Fi7kaAXAyAz Xi—1/2 Y Yj-1/2 Y Zk-1/2

H(¢) =1if ¢ > 0 (i.e. (x,y,z) inside the material being

advected).

ot = op(J(x).y. 2)
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Backwards Tracing - mapping function

Q; = [Xi—1/2aXi+1/2]
QP = [Xi—1/2 = Ui—1/28t, X172 = Uiy1/2808]

Qf = [xi_1/2, Xi11/2]



Backwards Tracing - mapping function

Let Ji(x) = Ax + B be a function which maps from cell i
departure region to cell i target region. For backwards tracing,

Ji(Xi—1j2 = Ui—12t) = A(Xi_1/2 — Uj—12At) + B = X;_12
Ji(Xiy12 = Uir128t) = A(Xiy172 — Ujp128t) + B = Xj11)2
1

A= B = Xj_1/2 — A(Xi—1/2 — Uj_1)2At)
1— (Uir1/2 — Uj—1/2) RS / / /

As long as uAt < Ax/2, the mapping has an inverse.



Backwards Tracing - inverse mapping function

Let J;!(x) be the inverse map which is a function which maps
from cell i target region to cell i departure region. If
Ji(x) = Ax + B, then

Let Q7% = J71(Q) be the inverse map which finds the region Q*
which maps to € under the definition of J;. In otherwords,

Q = [a, b
Q= J7HQ) = [U7H(a), JH(b)]

1



Backwards Tracing - mapping function to find target region

Likewise, J;(Q2) is defined as the target region that the region Q
maps to:
Q = [a, b]
Ji(2) = [i(a), Ji(b)]



Backwards Tracing - interface advection defined by
mapping

Given a local level set function,

on(x,y,z) =n-(x—xi) + «a,
After advection, we have
N (x,y,2) = ¢ (J7H(x), v, 2) =
x B
nl(Z — Z — X,'/) =+ nz(y — yJ’) + n3(z — Zk/) =
n
T = JiGa)) + maly = ) + ma(z — zi0) +a



Forwards Tracing

Forwards Tracing
Celli-1 Celli

A=J(x10) B=xi_10 C=J""(xi11)2)

Ji_1 and J; define the mappings of cells i — 1 and i contents
forward, respectively.



Forwards Tracing (before and after)

Celli—-1 Cell i

- I.II

After

D E F

A=J 5 (xic12) B=xi_12 C=J7 (Xit1))
D=xi_10 E=Ji(xi—12) F=x12



Forwards Tracing - conserved variables

AKA “Lagrangian Explicit”
_ 1 /Xi+1/2 ( )d
Pi = 7 plx)ax
: Ax Xi—1/2

i+1 n
>i=io J7H Q] NQ;) pir(x)dx
! Ax




Forwards Tracing - volume fraction

AKA *“Lagrangian Explicit” (Scardovelli and Zaleski, Le Chenedac
and Pitsch)

£ 1 /Xi+1/2 /)’j+1/2 /Zk+1/2 H(¢( ))d dvd
ik = N A Al X, ¥,z Zayax
Y AXAyAZ Xi—1/2 YVYj-1/2 Y Zk-1/2

H(¢) =1if ¢ >0 (i.e. (x,y,Zz) inside the material being
advected).

ot (x,y,2) = #3(Ji M (%), v, 2)

S fQ,-mQII H(¢i ™ (x,y, 2))dxdydz

Frtl —
! AxAyAz




Forwards Tracing - centroid

AKA “Lagrangian Explicit”

= e | xH((x.y. 2))dzdyes
' FijkAxAyAz sicip yiie zap

H(¢) =1if ¢ >0 (i.e. (x,y,z) inside the material being

advected).

o (x, v, 2) = ¢ (Ji N (x), ¥, 2)

nil Z::’Jr:li—l fQ,ﬂQ?’,— XH(¢Z+1(X7 Y, Z))dXdde
X. = !

' FMiAxAyAz




Forwards Tracing - mapping function

Q; = [Xi—1/2aXi+1/2]
Qf = [Xi—1/2 + Ui—1/28t, X172 + Uiy1 28]

QP = [xi_1/2, Xi11/2]



Forwards Tracing - mapping function

Let Ji(x) = Ax + B be a function which maps from cell i
departure region to cell i target region. For forwards tracing,

Ji(Xi—1/2) = AXi_1j2 + B = Xj_1)2 + uj_12At
Ji(Xiq1/2) = AXig1/2 + B = Xjp1/0 + Uip1pAt

At
A=14 (U172 — Ui—l/Z)E B =xXi_1)2+ uji_10At — AX;_1)2

As long as uAAt < Ax/2, A is positive.



Forwards Tracing - inverse mapping function

Let J;!(x) be the inverse map which is a function which maps
from cell i target region to cell i departure region. If
Ji(x) = Ax + B, then

Let Q7% = J71(Q) be the inverse map which finds the region Q*
which maps to € under the definition of J;. In otherwords,

Q = [a, b
Q= J7HQ) = [U7H(a), JH(b)]

1



Forwards Tracing - mapping function to find target region

Likewise, J;(Q2) is defined as the target region that the region Q
maps to:
Q = [a, b]
Ji(2) = [i(a), Ji(b)]



Forwards Tracing - advection of interface reconstruction
defined mapping

Given a local level set function,

on(x,y,z) =n-(x—xi) + «a,

After forward advection, we have

o x,y,2) = P (Ui N (%), v, 2) =

G =2 ) 4 maly )+ male — 20) =
n A A X mly yj n3\z Zyr) =
nm

A (x = Ji(xir)) + m2(y — ypr) +m(z — zwr) + @



DS Semi-Lagrangian discretization - Strang Splitting

x direction; backwards projection. (Eulerian Implicit)
y direction; forwards projection. (Lagrangian Explicit)
z direction; backwards projection. (Eulerian Implicit)
z direction; forwards projection. (Lagrangian Explicit)

y direction; backwards projection. (Eulerian Implicit)

ok W=

x direction; forwards projection. (Lagrangian Explicit)



2D volume conserved exactly

Backwards then forwards tracing
“4)
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reversible single vortex




2D Unsplit MOF, reversible vortex T=1/2

RK2, backwards tracing:
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Figure: single vortex problem (T = 1/2) 64 x 64 midway through the
simulation and at the end. Shape deforms back to a circle. Two
materials. At t = T = 1/2, symmetric difference error is 7.4E — 5
(operator split symmetric difference error: 14.3E — 5)



2D Unsplit multimaterial MOF, reversible vortex T=1/2
RK2, backwards tracing:
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Figure: single vortex problem (T = 1/2) 64 x 64 midway through the
simulation and at the end. Shape deforms back to a circle. Three
materials. Initially, Material 1 (red) is the left half of the circle, Material
2 (green) is the right half, and Material 3 (blue) is the space outside the
circle. At t = T = 1/2, symmetric difference error is 9.6E — 5 for
material 1, 10.1E — 5 for material 2, and 14.8E — 5 for material 3.



3D Unsplit MOF, reversible vortex T=3

RK2, backwards tracing:

Figure: 3D single vortex problem (T = 3) 64 x 64 x 64 midway through
the simulation and at the end. Shape deforms back to a sphere. Two
materials. At t = T = 3, symmetric difference error is 0.00189 (operator
split symmetric difference error: 0.00202)



3D Unsplit multimaterial MOF, reversible vortex T=3
RK2, backwards tracing:

Figure: single vortex problem (T = 3) 64 x 64 x 64 midway through the
simulation and at the end. Shape deforms back to a sphere. Three
materials. Initially, Material 1 (red) is the left half of the sphere, and
Material 2 (green) is the right half. At t = T = 3, symmetric difference
error is 0.00158 for material 1, 0.00104 for material 2, and 0.00188 for
material 3.



Rotating Notched disk (Zalesak's problem)
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Rotating Letter “A”
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Rising gas bubble in liquid

Figure: Left: condition 1 Right: condition 3

Figure: Left: condition 4 Right: condition 6



Surface tension driven vibrations of a drop




Oscillating Cylinder
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Cylinder falling into a pool of liquid
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Impinging jets - same material
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Impinging jets - different materials




Future work

The multimaterial MOF representation enables more accurate
simulation of:

» multimaterial flows with minimal volume fluctuation -
capturing corners and filaments.

» surface tension and contact line effects.

» simulating transport on deforming surfaces.

» predicting mass transfer on deforming surfaces.

» predicting boundary layer effects on underresolved grids.

Improvements are still being made to the multimaterial MOF
scheme in accelerating the multimaterial MOF reconstruction and
unsplit multimaterial MOF advection algorithm. Adding the
capability to robustly simulate compressible
multiphase/multimaterial flows is one priority now.



