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Introduction

e High-fidelity numerical simulations have been
performed to support ongoing projects at
FCAAP/FSU:

— Resonance-enhanced micro-actuators that
generate pulsed micro-jets for active flow and
noise control applications

— Supersonic iImpinging jets (STOVL aircraft)

e Both problems contain complex high-speed
flow phenomena at drastically different length
scales

e Physical experiments are useful but provide
limited amount of information

e Numerical simulations provide much more
detailed information that help towards a better
understanding of complex flow physics



Numerical Methods for High-Fidelity
Flow Solver

e Discretized compressible Navier-Stokes equations
In generalized curvilinear coordinates

e High-order compact finite difference schemes
for spatial derivatives

e High-order implicit spatial filtering for numerical
stability

e EXplicit and implicit time advancement schemes

e Multi-block and overset grid capability to
handle complex geometry

e Parallelization based on domain-decomposition

e Can be run Iin Direct Numerical Simulation
(DNS) and Large Eddy Simulation (LES) modes



Micro-Actuators for Active Flow Control

e This project is concerned with the development
of resonance-enhanced micro-actuators that
generate pulsed micro-jets for active flow and
noise control applications

e High-momentum micro-jets are injected into
the primary flow at critical points to achieve the
control objective

e Goalisto further increase control effectiveness
by manipulating the steady and unsteady
components of the micro-jet

e Resonance-enhanced actuators provide a capability
to adjust micro-jet pulse frequency and
amplitude for the control application of interest
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Micro-Actuator Resonance Freguency

e Simulations reveal the complex details of the
*aero-acoustic” resonance, which involves a
periodic filling and discharging of actuator
cavity volume

e Actuator resonance frequency is determined
by how quickly the actuator cavity fills and
discharges

e Resonance frequency is dependent on actuator
dimensions as well as incoming source |et
conditions

e Micro-jet pulse frequency is the same as the
actuator resonance frequency



Single-Orifice Micro-Actuator Chosen
for Simulation
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Experimental Spectra of Micro-Jet
Generated by Single-Oirifice
Micro-Actuator
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Single-Orifice Micro-Actuator Simulation

e Length scale = source jet nozzle inner diameter,
d = 1 millimeter

e Velocity scale = source jet exit speed ~
343 meters/second

e Reynolds number, Re; = U;d/v; ~ 37,000

e Source jet nozzle pressure ratio, NPR = 6.8

e Peak Mach number in actuator flowfield ~ 1.8

e Highly compressible and unsteady micro-scale
flow at relatively low Reynolds number

e Fully 3-D large eddy simulation (LES) using 92
million grid points total

e 720 processor cores running in parallel

e About 45 days of total run time



Single-Orifice Micro-Actuator Simulation

e The most relevant time scale of the problem
IS the period of the “aero-acoustic” resonance,
which involves a periodic filling and discharging
of actuator cavity volume

e For the given operating conditions at NPR =
6.8, the simulation shows that one cavity fill-
and-discharge cycle takes place over roughly
120.5 microseconds

e This corresponds to a resonance frequency of
about 8.3 kHz (= 1/120.5 microseconds), same
as the fundamental tone frequency observed in
the experimental spectrum for NPR = 6.8



Single-Orifice Micro-Actuator Simulation

e Period of the resonance cycle is about 120.5
microseconds

e Simulation time step corresponds to a physical
time step of 7.3 nanoseconds

e Simulation time step is very small because
the presence of strong shocks in the flowfield
makes the problem very “numerically stiff”

e Very small time steps are necessary to
maintain numerical stability

e Implicit time stepping allows maximum Courant-
Friedrichs-Lewy (CFL) number of 8to 9

e Length of simulation statistical sample size
corresponds to 3 milliseconds (about 25
resonance cycles)



Simulation Animations

e Actuator simulation animations and comparison
with experimental measurements are available
at the following link:

nttp://www.math.fsu.edu/ -~auzun/SingleOrificeActuator/


http://www.math.fsu.edu/~auzun/SingleOrificeActuator/

Qualitative Comparison with Experiment

e We make a qualitative comparison between
simulation predicted flowfield and experimental
micro-schlieren measurements over one cavity
fill-and-discharge cycle

e One periodic cycle (which covers 360 degrees)
Is divided into 12 equally spaced snhapshots

e The phase difference between two successive
snapshots is 30 degrees

e In the experiment, the cavity Is not transparent
and thus the cavity flow cannot be visualized

e \We omit the cavity region in the comparison
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Performance and Efficiency Metrics

e Some useful metrics can be defined as:
— Ratio of peak mass flow rate through orifice
to mass flow rate of source jet ( ~ 10 %)
— Ratio of peak momentum flux through orifice
to momentum flux of source jet ( =~ 11 %)
— Duty cycle of pulsed microjet ( ~ 40 %)
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Multiple-Orifice Micro-Actuator Design

e To utilize a greater portion of the source jet
flow, multiple orifices can be placed at cavity
bottom




Supersonic Impinging Jets

e An important problem for short take-off and
vertical landing (STOVL) aircratft
e High-speed jet impingement on landing surface
leads to many adverse effects such as:
— High levels of unsteady pressure loads on
landing surface and nearby structures
— Significantly higher noise levels than conventional
take-off aircraft
— Aircraft lift loss during hover
— Erosion of landing surface due to high jet
exhaust temperature
e Resonance dominated flowfield that is governed
by a well-known feedback loop



Schematic of Feedback Loop
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Schematic of Experimental Setup
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Near-ldeally Expanded Mach 1.5
Uncontrolled Impinging Jet Simulations

e Near-ideally expanded isothermal and heated
jet simulations matching experimental cases

e Reynolds number range ~ 0.9 x 10°to 1.3 x 10°

e Ratio of jet impingement distance to nozzle
throat diameter, h/d =5

e EXxperimental setup is duplicated in the simulations

e Laminar nozzle inflow conditions

e Fully 3-D LES using 200 million grid points

e Several months of total run time using about
1200 processor cores in parallel



Isothermal Mach 1.5 Jet Mean Flow
Streamlines
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Isothermal Mach 1.5 Jet Normalized
Mean Axial Velocity ( U/U,) Contours
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Heated Mach 1.5 Jet Normalized Mean
Axial Velocity ( U/U,) Contours
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Comparison of Normalized Mean Axial
Velocity Profiles for Heated Mach 1.5 Jet
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Comparison of Microphone Noise
Spectra for Heated Mach 1.5 Jet
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|dentification of Coherent Structures

e Dynamic mode decomposition (DMD) has been
utilized to identify the coherent structures that
are responsible for intense tonal generation in
supersonic impinging jets

e DMD (Schmid, JFM 2010) is a technique that
allows the extraction of dynamically relevant
flow features from a uniformly sampled data
sequence, available from the simulations

e We utilize a total of nearly 800 flowfield
snapshots with a uniform At = 0.25d/U; for
DMD analysis



Dynamic Mode Decomposition

e The unsteady flowfield is represented as a
superposition of a number of dynamic modes:

N-1
xy,ztzzq)kazy, T (t)
k=1

where
— N is the total number of flowfield snapshots

— V(x,y, z,t) is the real-valued unsteady flowfield
— & (x, vy, 2) is the complex-valued k" mode
— Ty (t) is the temporal amplitude of &,

e Dynamic modes occur in complex-conjugate

pairs



mode norm

DMD Mode Norm versus Temporal
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Coherent Structures ldentified by DMD
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Pressure Disturbance Iso-Surfaces
Associated with Vortex Rings
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Summary and Outlook

e Good overall agreement between experiments
and corresponding simulations

e Simulations provide a better understanding of
pulsed micro-actuator operation and provide
Important details not observable from experiments

e Simulations and DMD analysis identify coherent
structures responsible for intense tonal noise
generation in supersonic impinging jets

e Upcoming work will focus on new micro-
actuator simulations as well as numerical flow
control experiments with micro-jet injection



