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Abstract

We present an estimate approach to compute the viscoplastic behavior of a poly-
meric composite under different thermomechanical approaches. This investagation
incorporates computational neural network as the tool for determining the creep
behaviour of the composite. We propose a new second-order learning algorithm for
training the multilayer networks. Training in the neural network is generally speci-
fied as the minimization of an appropriate error function with respect to parameters
of the network (weights and learning rates) corresponding to excitory and inhibitory
connections. We propose here a technique for error minimization based on the use of
the Truncated Newton (TN) large-scale unconstrained minimization technique. This
technique offers a more sophisticated use the of the TN minimization for gradient
information compared to simple steepest descent methods. The technique is used in
the context of application to neural networks In this work we specify the necessary
details for implementing the Truncated Newton methods for training of the neural
networks, and provide comparative experimental results from use of these methods
to depict the viscoplastic behavior of a polymeric composite. These results verify
superiority of the present approach.
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1 Introduction

Structural polymer matrix composites (PMCS) possessing superior strength-
to-weight and modulus-to-weight ratios are being considered as alternative
materials for structural applications (1). As polymer matrix composites con-
tinue to find applications in critical structural components, accurate constitu-
tive modeling becomes increasingly important. Constitutive modeling of poly-
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meric composite materials presents a di¢cult and distinct challenge. While
significant progress has been made in constructing models applicable for small
strain and limited strain-rate and temperature regimes, much less progress
has been made for more general conditions. Polymers behave very di¤erently
depending on the loading conditions to which they are subjected, from brittle
to viscoelastic, to viscous (fluid-like). Another impediment to modeling poly-
meric behavior is that the mechanisms of deformation in polymers are distinct
from those in metals, for which extensive modeling work has been done. Con-
sequently, well-established constitutive models and concepts for metals are not
directly transferable to modeling polymeric composites.

Polymeric materials behavior has been repeatedly demonstrated to be very
temperature and rate dependent (2). The creep response of carbon fiber-
polymeric matrix composite, compounds the inherent time-dependent behav-
ior of the polymeric phase and the temporal behavior of carbon fibers due
to fiber-matrix debonds, interlayer delamination and diffuse microcracking.
Since all the later damage mechanisms are also time-dependent and occur
cojointly with polymeric creep, it is extremely difficult to separate out the
individual contributions of the composite constituents.

The creep and response of polymers within the linear range of behavior was
modeled with a high degree of success by linear viscoelasticity theory (3), (4).
In spite of steady but slow progress over the last 30 years, the understanding
and modelling of nonlinear behavior of polymers is still the subject of ongoing
research (5), (6). Beyond the linear range of behavior, progress in the under-
standing and modeling of creep in polymeric composites seems to be hindered
as much by the absence of a comprehensive data base as by inadequacies and
controversies in the mathematical and basic mechanics formulation.

While there is enormous literature related to the modeling of the creep behav-
ior of polymers, there are few reviews on the modeling of creep in polymeric
composites. Among the earlier investigations are the articles by Haplin (7)
Schapery (8), and Dillard (9). Most of this literature utilizes linear viscoelastic
models to describe the creep behavior of the composite.

Another approach to the modeling of creep derives form plasticity theory,
which was applied initially to metal matrix composites (10), (11). For uni-
axially reinforced polymeric composites Sun, (12), (13) developed a simpli…ed
single parameter plasticity model for creep in unidirectionally reinforced com-
posites. Another unidirectionalmodel was proposed by Robertson (14). These
models were subsequently extended to laminated plates and thermal e¤ects
by Gates (15), (16). Rate dependence was included by means of viscoplastic
model by Gates and Sun (17), (18).

Viscoplastic constitutive equations presented earlier by the authors (19), (20),
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were written explicitly and they involve many parameters, which signi…cantly
in‡uence the behavior of the constitutive equations. Appropriate parame-
ters must be determined accordingly, such that the accurate behaviors of the
material can be expressed.

Some of the problems involved with the explicit constitutive models, from our
earlier investigation (19), include:

(1) The models are simply based on the phenomenological investigation of
material properties while real behaviors of material is very complex.
Therefore, the model contains errors inevitably.

(2) All the models are limited in their mathematical capabilities when they
are tackled as parameter identification problem, since they are written
explicitly.

(3) Most of the models were veri…ed by experimental results of mechanical
testing of metals, except Sun-Gates model which simulated the results of
mechanical testing of polymer matrix composites. Composite materials
which usually encounter extra parameters like fiber orientation, volume
fraction,fiber-matrix interface,...etc. These parameters will raise the
degree of complexity of the earlier constitutive models.

Bearing in mind the shortcoming of the phenomenological model, an alterna-
tive modeling technique, is to use a computation and knowledge representation
paradigm, Neural Networks. Recently, the computational mechanics, which
is quantitatively reliable in itself, has widened its feasibility to the practical
engineering problems by merging the Artificial Neural Network’s (ANN) flexi-
bility. Neural networks architecture is a promising implicit-modeling scheme
to replace the traditional explicit constitutive equations used to describe the
material behavior. The rest of this investigation is dedicated to the design of
implicit creep model by means of ANN to predict the creep behavior of the
polymer matrix composites under different thermomechanical environments.

At this point we emphasize that the approach we followed, does not produce
an ”explicit formula” supplying the creep properties for each viscoplastic -
tempreature-stress-strain law, but to the construction of an appropriate neural
network, which, at a given time period ”produces” a set of data corresponding
to a viscoplastic conditions. This neural networks ”learns”, and if applied
to another set of experimental data, may fulfill its task more accurately and
shorter time. The present method may replace to some extent the experiments
after a period of ”learning”. Moreover, the method developed here may replace
the classical numerical methods for elastoplastic calcinations, since it takes
better into account the experimental data and automatically improves itself
through ”learning”.

The proposed neural-creep model strongly contradicts the reference to neural
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Fig. 1. Typical feedforward neural network composed of three layers

network as ”a black box model”, as referred to in the majority of material
neural-models. The concept of black box arises in several investigations that
use a ”crude” training algorithm such as steepest descent where the learning
rate is determined by a random walk approach. The current study elimi-
nates this randomness by implementing recent but well-established numerical
optimization techniques such as the conjugate gradient and the Truncated
Newton methods. These techniques had several applications in numerical
optimization, system theory, control systems, economy, metrology, and many
more.

Surprisingly, not many applications in material science have adopted these
powerful techniques. One explanation of the lack of interest is that: conjugate
gradient algorithm is basically a nonconstrained optimization techniques that
is usually used to ffind an optimal solution for a large-scale multi-dimensional
problem, while most of the materials neural-models fall in the small-scale one-
dimensional spectrum. (21), (22), (23), (24), (25), (26).

For the first time in neural network-based materials models, the powerful un-
constrained multidimensional optimization algorithm i.e., truncated Newton
method was introduced as training algorithm for neural networks. This novel
application of the Truncated Newton was not cited before.

2 Neural Networks

Neural networks consist of processing elements and weighted connections,
Figure-1 illustrates a typical neural network. Each layer in a neural network
consists of a collection of processing elements (neurons); each processing ele-
ment in a neural network collects the values from all of its input connections,
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performs a prede…ned mathematical operation and produces a single output
value. The neural network in Figure-1 has three layers: FX , which consists
of the neurons fx1; x2;x3g; FY which consists of the neurons fy1; yg; and FZ
which consists of the neurons fz1; z2;z3g. The neurons are connected with
weighted connections represented by the arrows in the figure. In Figure-1,
there is a weighted connection from every FX to every FY neuron and there
is a weighted connection from every FY to every FZ neuron. Each weighted
connection acts as both label and a value. For example, in Figure-1 the con-
nection from FX neuron x1 to the FY neuron y1 is the connection weight
w12 . The value of the connection weights is often determined by a neural
network learning procedure, (27). It is through the adjustment of the con-
nection weights that the neural network is able to learn. By performing the
update operations for each of the neurons, the neural network is able to recall
information.

The input to a neuron from another neuron is obtained by multiplying the
output of the connected neuron by the weight of the connections between
them. The artificial neuron then sums up all the weighted inputs coming to
it. For example, the jth Fy PE in Figure-1 is yj and the value of the PE is
also yj. The output value of the PE yj in Figure-1 is a function of the outputs
preceding layer Fx and the weights from Fx to yj; Wj. Mathematically, the
output of this PE is a function of its inputs and weights.

yj = F (X;Wj) (1)

The most common computation performed by a PE is a linear combination of
the input value X with the abutting connection weights Wj in a dot product
format, for example the output yj in Figure-1 is computed as

yj = f
Ã nX

i=1
xiwij

!
= f (X ¢Wj) (2)

where wij is the weight of the connection between the ith and jth processing
elements. A processing element can have excitatory or inhibitory in‡uences
on its neighboring elements. That is, it can either facilitate or hamper the
activation of a connected element. Incoming excitation or inhibitation from
other neurons is combined (to the net input of the element) by summation.
The newactivation level is determined by evaluating a …xed activation function
f for this net input. The activation function is used to compare the weighted
sum of inputs and the threshold value of that neuron.

The hyperbolic tangent is the most common activation function

f(x) = tanh(®x) =
e®x¡ e¡®x
e®x+ e¡®x

(3)
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where ® > 0. The hyperbolic tangent functions are useful in neural networks
trained by backpropagation, which will be discussed in the next section, because
the relationship between the value of the function at a point and the value of
the derivative at that point reduces the computational burden during training.

2.1 Neural Networks Training: Backpropagation Algorithm

As opposed to a classical algorithm a neural network is not programmed, but
is trained. In other words, if the problem at hand is a function y = f (x) where
y and x are, in general, vectors in a classical algorithm where x is the data
and f is the form, while in a neural network x and y are the data and the
function f is the unknown. In a neural network, f consists of the modes in
which data is transmitted from one neuron to another and of the set of rules
upon which the transformation of data within each neuron is based.

The main advantage of neural networks is the fact they are able to use some a
priori unknown information hidden in data (but they are not able to extract
it). The process of capturing the unknown information is called learning or
training of neural networks. A training cycle consists of the following steps:
An input vector is presented at the inputs together with a set of desired
responses, one for each node, at the output layer. A forward pass is done and
the errors or discrepancies, between the desired and actual response for each
node in the output layer, are found. These are then used to determine weight
changes in the net according to the prevailing learning rule. The best-known
learning algorithm is the Backpropagation algorithm, (28), (29).

A popular measure of the error E for a single pattern, is the sum of the square
di¤erences

E =
1
2

X
(
i
ti ¡ yi)2 (4)

where ti is the desired or target response on the ith unit and yi is that actually
produced on the same unit.

Figure-2 shows the three-layer feedforward backpropagation topology. The
units in the input layer Fx serve only as distribution points; the input signal is
simply passed through the weights on their outputs. Each unit in the hidden
layer Fy and the output layer Fz produces the summation outputs.

Learning of backpropagation network assumes that each input pattern ak is
paired with a target pattern bk representing the desired output. These are
called training pairs. Before training is started, all the weights are assigned
to a small random values usually in the range (-1,+1). This initialization pre-
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Fig. 2. Topology of the three layer feed-forward backpropagation

vents the network from getting saturated by large values of the gain. Learning
is done by iteratively adjusting the weights of the connections in the network
W and V , in order to minimize the cost function E. During the process, an
input pattern is presented to the network and propagated forward to deter-
mine the actual output at the units in the output layer. An error signal for
each output PE’s is calculated and is backpropagated through the network in
order to adjust the weights. The learning process continues until the networks
responds with the sum of the squared error of the output signals is less than
a predetermined value.

3 Neurocomputing and Optimization

3.1 The Steepest Descent with Momentum Algorithm

The standard backpropagation implements the steepest descent method ( also
called the gradient descent method). At each step of the steepest descent
method the weights are adjusted in the direction in which the error function
decrease most rapidly. This direction is determined by the gradient of the
error surface at the current point in the weight space. In order to minimize the
error function, the gradient vector is multiplied by (-1) because the gradient
vector points to the maximum increasing error. The error function or the cost
function that is used is the sum squared error; the sum of square di¤erences
between the actual output and the desired output value for each unit in the
output layer. The output error across all the Fz PEs is found using the cost
function
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E =
1
2

qX

j=1
(bkj ¡ zj)2 (5)

where bkj is the desired output while zj is the actual output. The output of
an Fz PE, z, is computed as

zj =
pX
yiwij
i=1

(6)

and each Fy (hidden-layer) PE, is computed using

yi = f
Ã nX

akhvhi
h=1

!
= f (ri); ri =

nX
akhvhi
h=1

(7)

The hidden-layer activation function is a hyperbolic tangent function.

Implementing the steepest descent method, the weight adjustment is per-
formed by moving along the cost function in the opposite direction of the
gradient to a minimum of the input/output mapping producing the smallest
amount of error. For example, in Figure-2 the connection weights between the
Fy and the Fz PEs are adjusted by using the gradient

@E
@wij

=
@
@wij

2
41
2

qX

j=1
(bkj ¡ zj)2

3
5 (8)

=(bkj ¡ zj)yi
=±jyi ; ±j = (bkj ¡ zj)

where ±j is the error for each Fz PE. Next, the adjustment to the connection
weights between the Fx and Fy PEs are found by utilizing the chain rule of
partial di¤erentiation, hence, we can calculate weigh changes for an arbitrary
number of layers.

@E
@vhi

= @E
@yi
@yi
@ri
@ri
@xh
@xh
@vhi

=
pX

l=1
(bkl ¡ yl)ylwhl ¶f (ri)akh (9)

Having the gradient of the error ( also referred to as error sensitivity ), then
the weight adjustments for the connections are updates in a negative direction
to the gradient with a certain rate,as given by

wnewij = woldij ¡ ® @E
@wij

(10)

and
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Steepest descent with Momentum

wnewij = woldij ¡ ® @E
@wij

+ ¸¢woldij (12)

and
vnewhi = voldhi ¡ ¯ @E

@vhi
+ ¸¢voldhi (13)

where ¸ is the momentum factor (¸ 2 h0; 1i):

vnewhi = voldhi ¡ ¯ @E
@vhi

(11)

where ® and ¯ are positive-valued constants that regulate the amount of ad-
justments made with each gradient move, they are called learning rates. The
learning rates determine what amount of the calculated error sensitivity to
weight change will be used for the weight correction. The momentum was
introduced to allow for more prompt learning while minimizing unstable be-
havior. Here, the error function is modi…ed so that a portion of the previous
weight is fed through to the current weight. This acts, in engineering ter-
minology, as a low-pass …lter on the weight terms since general trends are
reinforced whereas oscillatory behavior is canceled out. This allows a low,
normally slower, learning coe¢cient to be used, but creates faster learning.
Momentum as a low pass …lter allows the network to ignore small features in
the error surface. Without momentum, a network may get stuck in a shallow
local minimum (30). On the other hand, when using momentum term, the
network can escape from such a minimum.

3.2 The Conjugate Gradient Algorithm

Since learning in realistic neural networks application often involves adjust-
ment of several hundred weights, only optimization methods applicable to
large-scale problems are relevant as alternative learning algorithms.

The general opinion in the numerical analysis community is that conjugate
gradient methods are well suited to handle large scale problems in an e¤ective
way, (31), (32). Several conjugate gradient algorithms have recently been in-
troduced as learning algorithms in neural networks. Some earlier applications
of conjugate gradient as training algorithm were carried out by Battiti, (33),
and Johansson (34).

The conjugate gradient algorithm combines the advantages of simplicity of
the steepest descent method and better convergence without the evaluation,
inversion, and storage of the Hessian matrix. Among unconstrained optimiza-
tion methods, it is widely acknowledged that the conjugate gradient method
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Newton Method
FOR k=0, UNTIL convergence DO
² Solve iteratively for the search vector p:

H(wk)pk = ¡g(wk) (16)

² Set
wk+1 =wk + pk

is perhaps the easiest method applicable to large scale problems, (32). The
algorithm provides a tool to update the learning rate to minimize the mean
squared error, hence, the learning rate is updated at each epoch. The Polak-
Ribiere version of the conjugate gradient algorithm is provided the Appendix

3.3 The Truncated Newton Algorithm

Consider the unconstrained optimization problem

min imize f(w) : w 2 Rn (14)

where f : Rn ¡! R is a nonlinear, twice continuously di¤erentiable function.
We wish to …nd the local minimizer w¤, that is, a point w¤ for which there
exist ± > 0 so that

f(w¤) · f (w) for all w : kw¡w¤k < ±

A …rst-order necessary condition for a local minimum of f (w) is that

g(w) = 0 (15)

where g : Rn ¡! R, is the gradient vector of f. A well known method for
solving this system of nonlinear equations is Newton’s method, which starting
with an initial guess w0, computes the sequence of steps pk and iterates wk
according to the Newton algoritm :

:

where H(wk) is the Hessian of the function f(wk). While this algorithm
converges with a quadratic convergence rate , it is not de…ned at a point
where H(wk) is singular. Moreover, for nonconvex problems it does not nec-
essarily generate a sequence of descent directions (that is directions satisfying
g(wk)Tpk < 0): One approach to solve the system of equations-(16) is by us-
ing Cholesky factorization i.e. H = LDLT , where L is a unit lower triangular
matrix, while D is a diagonal matrix. The Cholesky factorization can often be
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computed e¢ciently using sparse matrix techniques. However, it may be im-
practical to compute H itself due to storage and computational considerations.
This problem arises in large-scale nonlinearly constrained minimization (35).
A well known technique for the solution of large system of linear equations
is the linear conjugate-gradient method of Hestenes and Stiefel (36). If the
conjugate gradient iteration is stopped or truncated before the exact solution
to the Newton equations has been found, a method by same name was pro-
posed; Truncated Newton (TN). Truncated Newton methods were introduced
in the early 1980s and have since been gaining popularity, see (37), (38), (39),
(40), (41), (42), (43), (44), (45), (46), (47). They are based on the idea that
an exact solution of the Newton equation at every step is unnecessary and can
be computationally wasteful in the framework of a basic descent method. Any
descent direction will su¢ce when the objective function is not well approx-
imated by a convex quadratic. However, as a solution to the minimization
problem is approached, more e¤ort in solution of the Newton equation may
be warranted. The appeal of TN methods to scienti…c applications is their
ability to exploit function structure to accelerate the convergence. Thus, the
approximation for a nonzero residual norm; rk = krkk = kH(wk)pk + g(wk)k ;
is allowed at each step, and its size is monitored systematically according to
the progress being made. This formulation leads to double- nested iteration
structure: for every outer Newton iteration k (associated with wk) there corre-
sponds an inner loop for fpkp0

k;p1
k; :::::::g : As a computationally economical

method for solving large positive de…nite linear system, the preconditioned
conjugate gradient is the most suitable method for the inner loop in this con-
text, (48). Function structure is introduced by using a preconditioner M that
is a sparse approximation to the Hessian. If the Hessian matrix is available,
a good generic choice of a preconditioner is based on an incomplete Cholesky
factorization. The preconditioner is found by factoring the Hessian and ignor-
ing some or all of the …ll-in that occurs during Gaussian elimination. It may
be necessary to modify the factorization so that the preconditioner is positive
de…nite, this idea is discussed in (49). Preconditioners can also be developed
based on the partial separability in the objective function ( A function f (x)
is partially separable if it can be written as the sum of functions fi(x) , each
of which has a large invariant subspace,(48). If neither of the preconditioners
described above is possible (for example when Hessian information are not
available), then the preconditioner is computed based on the quasi-Newton
approximation, i.e. limited memory BFGS formula to update the Hessian ap-
proximation. This approach is described precisely in (41). The current study
utilizes the Cholesky factorization to construct the preconditioner as proposed
by Nash (39). The truncated Newton nested loops can be summarized as shown
in the Appendixs, (50).There are three di¤erent ways in which the truncated
Newton conjugate gradient inner iteration can terminate

² Case-1: The gradient vector g; points in a direction of negative curvature
gHg < 0: In this case the inner iteration returns with p = ¡g, the steepest
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descent directions.
² Case-2: A direction of negative curvature is encountered in the CG iteration

(dHd < 0) prior to satisfying the Truncated Newton termination criterion
(step 5) in this case the CG iteration is terminated and pk is taken as
direction of descent.

² Case-3: The algorithm terminates by satisfying the Truncated Newton cri-
terion.

3.3.1 Theoritical Basics of the Truncated -Newton Algorithm

The Truncated Newton algorithm has the following form

r2f (wk)pNk =¡rf(wk) or pNk = ¡
h
r2f (wk)

i¡1 rf(wk) (17)
wk+1=wk + ®kpk

where ®k is the step size,and pk is the descent direction. The problem can
be viewed as the solution of a system of linear equations Aw = b, where
A =r2f (wk) i.e. the Hessian of f(wk); and b =¡rf(wk): A preconditioned
conjugate -gradient is (C-G) used to iteratively solve the systems where the
C-G iteration is truncated aftera prescribed number of iterations. This can
be done by monitoring the residual of the inner iteration rk;

krkk =
°°°r2f (wk)pk + rf(wk)

°°° · ´k krf(wk)k (18)
where ´k is a prescribed accuracy criterion, and we conduct a truncated it-
eration, i.e., we stop prior to the exact solution to Newton equations being
found. Another way to monitor truncation is via the decrease of the quadratic
model

Qk(p) ´ f(wk+p) ¼ f(w) + rf(w)p+ 1
2
pTr2f(w)p (19)

where at every Newton iteration we assume the TN algorithm approximates
f(w) by the …rst three terms in a Taylor expansion of f(w) about the pointwk:
To avoid storing the Hessian matrix, one can consider the following discrete
Hessian-vector product based on the following truncated Taylor expansion

rf(wk + hv) = rf (wk) + hr2f(wk)v+ O(h2) (20)
Hence, the Hessian-vector product r2f(wk)v is approximated by

r2f(wk)v = lim
h¡!0

rf(wk + hv) ¡ rf(wk)
h

(21)

12



where h is chosen as

h =
2p²m(1 + kwkk

kvk
where ²m is the machine accuracy constant and v is a direction descent.

4 Neurocomputational Creep Model

Fig. 3. Stress-strain-time space with schematic creep curves.

The creep test is usually performed by loading a specimen using a Universal
testing Machine to a speci…c load and the load is then maintained at a constant
value and the strain is recorded. During creep experiment the load remains
constant

_P = 0 (22)
since the total strain can be decomposed into elastic and inelastic compo-
nents;

" = "e+ "i (23)
the strain rate _" is found by di¤erentiating Eq-23 and noting that "e is a
constant

_" = _"i (24)

Figure-3 depicts the behavior of the creep strain at di¤erent stress levels,
where ¾0; ¾1; and ¾2 are normalized stress levels at which the creep testes
were performed. The normalization of the stress level was done with respect
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to the strength at the working temperature T0. Hence, the input of the neural
network was an array of 3£1 cells where the elements of each cell represents
the [temperature; stress; time] respectively. The targets were chosen to be
the corresponding values of the creep strain for each input cell.

The data sets were produced from a combination of eight temperatures ( 25o,
35o, 45o, 50o, 55o, 60o, 65o, and 75o C) that were selected according to the
measured glass transition temperature, six normalized stress levels ( 30, 40,
50, 60, 70, and 80 %), and 36 time steps with 100 second increment ; i.e.100,
200, ...., 3600 s. The total number of data points produced was calculated as:
8(T o)£ 6(¾)£ 36(t) = 1728 [T o; ¾; t] input-target cells.

The neural network topology does not favor the”raw” data to be used for
training. For example, in the standard backpropagation algorithm, if a sig-
moidal function is used as the activation function, then the saturation limits
are -1 and 1. Hence, if the training inputs have large values compared to these
limits, the activation function will certainly be operating in a saturated mode
and not allow the network to learn.

The input data [T o; ¾; t] and the targets [²] were normalized to values between
-1 and 1 using the following formula

xn = 2
x ¡ xmin

xmax ¡ xmin
¡ 1 (25)

Where xn is the normalized value of the vector x = [T o; ¾; t; ²], xmin and xmax
are the minimum and maximum values in the database for the vector x. After
scaling the 1728 cells of inputs-targets, the scaled results will be split into three
subsets; one set will be used for training, another set for validation, and the
last set for testing the network performance. The training and validation sets
consist of 1200 ( roughly 2=3 of the entire data sets) pairs of scaled data that
covers the temperature ranges of 25o, 45o , 55o, 60o, and 75o C: These 1200
data points will be split into 800 pairs for training and 400 pairs for validation.
The remaining 528 cells left; that covers the creep tests at temperatures: 35o,
50o, and 65 Co will be kept aside to test the neural network creep model after
the network has been trained and validated . The scaled data sets should be
randomized so that the training process of the network won’t be a table look
up problem, and to eliminate any bias that might exist in the training data
set.

Based on the Universal Approximation Theorem, Hornik (51), proposed that:
”A two hidden layer network is capable of approximating any useful function”.
Also, Hornik stated that the mapping power of feedforward neural network (
FF NN), is not inherent in the choice of a speci…c activation function, rather
it is the multilayer feed forward structure that leads to the general function
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approximation capability.

Following the universal approximation theorem and the reasoning given by
Hornik (52), the current investigation adopts a two-hidden layer neural net-
work topology.The number of neurons at each hidden layer was obtained
through training the network using a standard backpropagation algorithm
with two design parameters: learning rate and momentum. The performance
of several structures of neural networks is shown in Figure- 4. From this simu-
lation it is obvious that, the [6-20-1] structure ( six neurons at the …rst hidden
layer, twenty neurons at the second hidden layer and a single neuron at the
output layer, Figure-5) achieved an optimal number of neurons. This optimal
structure produced MSE= 0.12105, which is still higher than the preassigned
error goal i.e.; MSEgoal = 1 ¤ 10¡5: The results of this crude network were
used to monitor the performance index; i.e. the mean squared error, given by
equation-(5). The structure of this optimal-size network is shown in Figure-5.
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Fig. 4. Structure analysis for the two-hidden layers neural network based on the
mean squared error for the 798 pairs of training data.

Both hidden layers have tansigmoidal activation functions '
2
and '

2
respectively

as given by Eq-3, while the activation function of the output layer is a linear
function '3. Thus, the objective function built through the proposed neural
networks structure can be written in a compact notation as :

fk(x;w) =
6X

j=1
wjk'3

0
@'2

0
@

20X

m=1;
wlm'1 (X)

1
A

1
A

where X=
6X

i=1;
(wpixi)

p=1; :::3; m = 1; :::6, k = 1 (26)
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Fig. 5. The structure of the proposed neural model to predict the creep behavior of
PMC.

and the corresponding objective function to be minimized is then given as
the mean square error between the approximation function f and the actual
target t for each training pair k = 1; 2; :::798 :

E(w; n) = 1
2

798X

k=1
(tk ¡ fk)T (tk(n) ¡ fk) (27)

This function should be minimized with respect to the weight values wjk; wlm;
and wpi; that can be stacked into one vector w consisting of :3£ 6 values at
…rst hidden layer, 6£20 values at second hidden layer, and …nally 20£1 values
at the output layer, hence w is a variable-vector of 158 variables. Training the
neural network consists of finding the optimal values of w that will minimize
the error function E(w) using any of the optimization techniques described
before.

5 Results and Conclusion

Using the steepest descent algorithm with momentum, the network perfor-
mance can be improved by finding optimal values for learning rate (®) and
the momentum coefficient ¸. First the number of iterations (epochs) was ex-
tended to 1000 and the learning rates were set to di¤erent values (0.05, 0.1,
0.3, 0.5, and 0.8), similarly the momentum values varied from 0.05 to 0.8. The
corresponding MSE surface can be visualized as shown in Figure-6. The vi-
sualized MSE surface at Figure-6 is highly nonsmooth. However, the learning
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rate ® = 0:10 and momentum ¸ = 0:3 generated the least MSE=0.119678,
which is much higher than the preassigned MSE goal of 1 ¤ 10¡5:

Fig. 6. The behavior of the MSE error as calculated using di¤erent values of learning
rate and momentum for the steepest descent method.

Bearing in mind the problem associated with choosing an optimal combination
of the training parameters, the implementation of the standard backpropaga-
tion algorithm to minimize the MSE is not the perfect learning algorithm for
the implicit creep model. Validating a model in ANN requires to use some
data points which were not utilized in the training phase, although, these data
points still fall in the range of the training set. The validation phase makes
use of the 400 data points that were left out of the 1200 data points initially
generated. These validation data have to be preprocessed in the same scaling
and randomizing fashion of the training data.

For testing the network we introduce a completely new data set that does
not belong to the training and validation data. For example, one can test the
network at T= 35 Co with stress levels 30%, 50%, and 80 % over one hour
simulation time span. The performances for training, validation, and test sets
is simulated as shown in Figure-7. The network was trained for 1000 epoch
to check if the performance (MSE) for either validating or testing sets might
diverge, which didn’t happen as shown in Figure-7.

The results of MSE appear reasonable in terms of generalizing the ANN for
new test sets, but in order to con…rm these results we need to compare the
actual values for creep strain with those produced by the ANN. After scaling
back the ANN results for creep strain, they were plotted together with the
experimental values as shown in Figure-8.

Figure-8 shows clearly that the standard backpropagation algorithm failed to
capture the creep behavior at 35oC. Similar unsuccessful results were reported
for the ANN creep model at T=50 Co and T=65 Co :
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Fig. 7. MSE error for training, validation, and testing sets, for the [6-20-1] ANN
based on the steepest descent with momentum backpropagation training algorithm.

0

0.001

0.002

0.003

0.004

0.005

0.006

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

C
re

ep
 S

tra
in

Stress= 30%, EXP

Stress= 30%, NNET

Stress= 50%, EXP

Stress= 50%, NNET

Stress= 80%, EXP

Stress= 80%, NNET

Fig. 8. Testing the [6-20-1] ANN, based on the steepest descent with momentum
backpropagation, for T= 35Co; at 30%, 50%, and 80% stress levels respectively. The
experimental creep strain is plotted together with the simulated results of the ANN.

By applying it to the implicit creep model, the conjugate gradient algorithm
will be used to determine the weights updates. The [6-20-1] structure with
tansgimoidal activation functions in a batch mode will be used; the gradient
of the error function is computed after the entire training has been presented
to the entire network.

Similarly, the training, validation, and testing sets as in the standard back-
propagation were used. Compared to the standard backpropagation, the con-
jugate gradient minimization algorithm produced a smaller MSE for all the
three phases of training, validation, and testing. Figure-9 shows that, the re-
sulting MSE error for the conjugate gradient training algorithm is 50% less
than that for the standard backpropagation. Another, important conclusion
that can be drawn from Figure-9 is that, the conjugate gradient with line
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search backpropagation is an order of magnitude faster than the steepest
descent backpropagation. The conjugate gradient with line search required
exactly 113 epochs for the MSE (for the training set) to drop to a value of
0.06997, compared to 1000 epochs required to reach a value of 0.12707 MSE
for the standard backpropagation method.
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Fig. 9. MSE error for training, validation, and testing sets for the [6-20-1] ANN
with backpropagation training algorithm that utilizes the conjugate gradient (Polak-
Ribiere) algorithm.

We tested the backpropagation with conjugate gradient training algorithm
for the implicit creep model at T=35 Co for levels of stress of: 30%, 50%,
and 80% respectively. The conjugate gradient based simulation produced far
more acceptable results than those obtained via standard method, as shown
in Figure-10. While the simulations for the cases of 30% and 50% stress levels
look satisfactory, the ANN model results have a considerable error for the case
of 80% stress level.

We conclude that the standard conjugate gradient algorithm discussed in the
previous section was by far more superior than the standard backpropagation
in both reducing the mean squared error in less number of epochs, and in better
generalization for the network for the test data set. However, these attractive
results were achieved at the expense of additional computational e¤ort, namely
the line search technique in order to achieve the optimal learning rate which
will be modi…ed at each successive step to reach the goal of minimizing the
mean square error function.

Keeping the same architecture of the implicit creep model network; [6-
20-1], and using the Truncated Newton minimization ( see Appendix) as
training algorithm, the gradient of the error function as a stopping criteria,
the algorithm converged to a satisfactory error of 0.01323 after 160 epochs as
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Fig. 10. Testing the [6-20-1] ANN, with nonlinear conjugate gradient (Po-
lak-Ribere) backpropagation, for T= 35oC; at 30%, 50%, and 80% stress levels
respectively. The experimental creep strain is plotted together with the simulated
results of the ANN.

shown in Figure-11. The results of the simulation of the Truncated Newton
minimization algorithm were very close to the actual experimental results as
shown in Figure-12.
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Fig. 11. MSE error for training, validation, and testing sets, for [6-20-1] ANN with
backpropagation training algorithm that utilizes the Truncated Newton method

The performance of the Truncated Newton algorithm were compared to both
the steepest descent and the nonlinear conjugate gradient as shown in Figures-
13-14. The Truncated Newton algorithm attained the lowest MSE requiring
only a relatively moderate number of epochs.

Considering the mean square error function described in equation-(27), we
compared the performance of the steepest descent, Truncated Newton (TN),
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Fig. 12. Testing the [6-20-1] ANN, with Truncated Newton-based backpropa-
gation, for T= 35oC;at 30%, 50%, and 80% stress levels. The experimental creep
strain is plotted together with the simulated results of the ANN.

and the nonlinear conjugate gradient minimization method based on Polak
Ribiere formula (CG-PR), all methods being allowed up to 350 iterations
(the outer loop for the case of TN). The results show that TN algorithm
converges by one order of magnitude faster than both steepest descent and
CG-PR, and it attained a lower gradient norm as shown in Figure-13. Also,
the TN algorithm signifiantly outperforms both the steepest descent and the
CG-PR methods on two counts; the final accuracy achieved and the total
number of function and gradient evaluations required to achieve a prescribed
accuracy. The comparison is shown in Figures-13-and 14.

The numerical results reported here highlight the fact that the Truncated
Newton algorithm using, in its inner-loop iteration, a conjugate gradient based
preconditioner signi…cantly outperforms the standard nonlinear conjugate gra-
dient in solving large-scale unconstrained minimization problems associated
with neural networks models.

The neural-creep model is more cost efficient compared to the explicit vis-
coplastic model ( Al-Haik and Garmestani, (19)); only one type of data is
required, i.e., creep data at di¤erent thermomechanical histories, while the
explicit viscoplastic model required both tensile tests data along with load
relaxation data, and of course creep data is still required to verify the perfor-
mance of the model. While the duration of tensile and load relaxation tests
are short compared to the creep tests, the outcome of using tensile-load relax-
ation based viscoplastic model produced considerable errors when predicting
the creep strain (53), (19). On the other hand, the results of the neural model,
justi…es the cost of the longer duration creep tests.
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6

Algorithm 3 Inner Loop of the Truncated Newton Method
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Algorithm 1 Polak- Ribiere Version of the Conjugate Gradient Algorithm
for Training ANN :
(1) Choose the initial weight value w(0).
(2) For w(0), use backpropagation to compute the gradient vector g(0):
(3) Set s(0) = r(0) = ¡g(0):
(4) At epoch n use line search to …nd ®(n) that minimize J(®) su¢ciently.

Here J is expressed as a function of ® for …xed values of w and s:
(5) Update the weight vector

w(n + 1) =w(n) +®(n)s(n) (1)

(6) For w(n+1) use backpropagation to compute the update gradient vector
g(n +1):

(7) Set r(n +1) = ¡g(n +1):
(8) Use Polak-Ribiere method to calculate ¯(n +1)

¯(n + 1) = ¡rT (n)(r(n) ¡ r(n¡ 1))
rT (n¡ 1)r(n¡ 1)

(2)

(9) Update the search direction vector

s(n + 1) = r(n +1) + ¯(n + 1)s(n) (3)

(10) Terminate the algorithm when the following condition is satis…ed

kr(n)k · ° kr(0)k (4)

where ° is a prescribed accuracy .
(11) If the stopping criterion in step 10 is not satis…ed, set n ¡! n + 1, and

go back to step 3.

Algorithm 2 Outer Loop the Truncated Newton Method
(1) Initialization

² Set k = 0 and evaluate f(wo) and g(wo) for a given initial guess wo:
² If kg(wo)k < 10¡8max(1,kwok ; exit algorithm. Where k:k is the stan-

dard Euclidean norm divided by
p
n:

(2) Preparation
² Evaluate the preconditioner M at wo:
² For computational e¢ciency the matrix/vector product H(wk)pk can

be computed satisfactorily by the following …nite deference design of
the gradient at expense of only one additional gradient evaluation per
inner iteration

H(w)p =
g(wk + hv)¡ g(wk)

h
(5)

where h is suitably chosen small number.
(3) Compute a search vector p by solving the Newton equation Hp = ¡g

approximately using preconditioned conjugate gradient with precondi-
tioner M.

(4) Line Search:
² Compute step length ¸ by cubic interpolation, or Wolf Armijo search
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The sequencefpjg below represents the vectors used to construct pk in step 3
of the outer loop.
(1) Initialization

² Set j=1, p1 = 0; and r1 = ¡g
² Set the parameter ´k = minfcr=k; kgkg and set It No: number of

iterations for the truncation test in step 5.( cr=0.5, It=40 were used)
(2) The estimate for preconditioner to assure it is positive de…nite.

² Solve for zj in Mzj = rj by using the triangular systemLw = rj and
LTzj =D¡1w

² set dj = zj
(3) Singularity test:

² Compute the matrix vector product qj = Hdj
² If either

¯̄
¯rTj zj

¯̄
¯ · ± or

¯̄
¯dTj qj

¯̄
¯ < ± (± = 10¡10) : exit inner loop with

pk = pj( for j=1, set pk = ¡gk)
(4) Implement the following Descent Direction Test :

² Update the quantities

®j =rTj zj=dTj qj
pj+1=pj +®jdj (9)

² If gTpj+1 ¸ gTpj + ± exit inner loop with pk = pj( for j=1, set pk =
¡gk))

else
update ®j and pj+1

(5) Truncation test:
² Compute rj+1 = rj ¡ ®jqj
² If krj+1k · ´k kgk orj + 1 > Max Iteration Number.

exit inner loop with search direction pk = pj+1
(6) Continuation

² Solve for zj+1 as in step 2
² Update ¯j = rTj+1zj+1=rTj zj and dj+1 = zj+1 + ¯jdj:
² Set j = j + 1 and go to step 3
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