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Abstract 

The proper orthogonal decomposition (POD) is shown to be an efficient model 

reduction technique for simulating physical processes governed by partial differential 

equations. In this paper, we make an initial effort to investigate problems related to 

POD reduced modeling of a large-scale upper ocean circulation in the tropic Pacific 

domain. We construct different POD models with different choices of snapshots and 

different number of POD basis functions. The results from these different POD models 

are compared with that of the original model. The main findings are: (1) the large-scale 

seasonal variability of the tropic Pacific obtained by the original model is well  

captured by a low dimensional system of order of 22, which is constructed using 20 

snapshots and 7 leading POD basis functions. (2) the RMS errors for the upper ocean 

layer thickness of the POD model of order of 22 are less than 1m that is less than 1% of 

the average thickness and the correlations between the upper ocean layer thickness 

with that from the POD model is around 0.99. (3) Retaining modes that capture 99% 

energy is necessary in order to construct POD models yielding a high accuracy.  
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1. Introduction 

 

The proper orthogonal decomposition (POD) is an efficient way to carry out reduced 

order modeling by identifying the few most energetic modes in a sequence of 

snapshots from a time-dependent system, and providing a means of obtaining a 

low-dimensional description of the system’s dynamics. Since it was originally 

introduced by Karhunen in 1946 (see [1]) and Loeve in 1945 (see [2]), the method has 

been extensively used in research in recent years and successfully applied to a variety 

of fields. One of these important applications was the application to spatially organized 

motions in fluid flows, such as cylinder flows (see [3]). POD was also used for 

identification of coherent structures, signal analysis and pattern recognition (see [4, 5, 

6]). Many researchers have also applied the POD technique to optimal control 

problems. For instance, this method has been used for Burger’s equation (see [7, 8, 9]), 

the Ginzburg-Landau equation and the Bénard convection (see [10]), and in other fluid 

control problems [11, 12, 13, 14, 15, 16, 17]). More recently POD has also been used 

in inverse problems (see [18]). In addition, the method has also been used for industrial 

applications such as supersonic jet modeling (see [19]), thermal processing of foods 

(see [20, 21]), and study of the dynamic wind pressures acting on buildings ([22]), to 

name but a few. For a comprehensive description of POD theory and state of the art 

POD research, see [23, 24]. 

 

Compared with above efforts, little attention was paid to application of POD to 

large-scale geofluid dynamics such as atmospheric or oceanic systems. In general these 

dynamic systems are quite complex and their discrete models are hard to solve due to 

their large dimensions (typical 106-108). Uzunoglu et al (see [25]) applied POD to 

adaptively reduce an ensemble for numerical weather forecasting. Another obvious 

application of POD in weather forecasting and operational oceanography is the 

four-dimensional variational (4DVAR) data assimilation problem. 4D-VAR looks for 

an optimal solution of an atmospheric or oceanic general circulation model that fits 



observations over a certain period (analysis interval) best. 4D-VAR is an optimal 

control problem. However, a major hurdle in use of 4D-Var for realistic general 

circulation models is the dimension of the control space, generally equal to the size of 

the model state variable and typically of order 107 − 108. Current ways to obtain 

feasible implementations of 4D-VAR consist mainly of the incremental method (see 

[26]), check-pointing (see [27]) and parallelization. However, each of these three 

methods have their typical defects. The incremental method is characterized by the fact 

that the dimension of the control space remains very large in realistic applications (see 

[28,29,30]). Memory storage requirements impose a severe limitation on the size of 

assimilation studies, even on the largest computers. Checkpointing strategies (see [31]) 

have been developed to address the explosive growth in both on-line computer 

memory and remote storage requirements of computing the gradient by the 

forward/adjoint technique, which characterizes large-scale assimilation studies. POD 

provides a potential candidate technique that can dramatically reduce computation and 

memory burdens of 4D-VAR. Cao et al (see [32]) made an initial effort to explore the 

feasibility of application of POD to 4D-VAR. 

 

Prior to applying POD to various atmospheric and oceanic problems, it is essential to 

study problems related to construction of POD reduced models: how to choose the 

number of POD snapshots; how to decide the modes used in such system and how the 

different modes of basis functions used to reconstruct the solution is affecting the 

resulting simulation results. These problems have not been studied as of now for 

large-scale atmospheric or oceanic models. In this paper, we will study these problems 

with an upper ocean system in the tropical Pacific domain.    

 

The paper is arranged as follows. The upper tropical Pacific Ocean model is described 

in §2. The POD technique is briefly presented in §3. The issues on the implementation 

and numerical calculations with POD used in the context of simulating the upper layer 

thickness and the current in this ocean model are finally discussed in §4. 

 



2. Model of upper tropic Pacific 

 

2.1 Description of the physical model  

The numerical model used in this paper is Cane ’s reduced-gravity model with a 

constant-depth surface layer (Cane 1979; Seager et al. 1988), which is studying the 

ocean dynamics in tropical regions.                                                               

The model is a reduced-gravity, linear transport model, consisting of two layers above 

the thermocline with the same constant density (Figure 1). It is assumed that below the 

thermocline, the ocean is of a higher density, which is sufficiently deep so that its 

velocity vanishes and there is no density difference across the base of the surface layer, 

that is, we regard the surface layer as part of the upper layer. The equations for the 

depth-averaged currents are 
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where  are the horizontal velocity components of the depth-averaged currents; 

 the total layer thickness;  the Coriolis force; 

),( vu

h f H  the mean depth of the layer; 

0ρ  the density of water; and A  the horizontal eddy viscosity coefficient and α  is 

the friction coefficient. The wind stress is calculated by the aerodynamic bulk formula 
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yx cρττ =),( | U| , wind ),( eindwind VU

where aρ  is the density of the air;  the wind stress drag coefficient; U  the 

wind speed vector; and  the components of the wind velocity. 
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2.2 Numerical scheme 



The dynamical model equations (2.1a)-(2.1c) are governed by wave dynamics. In 

addition, the chosen model domain ranges from S �  N, E �  W. 

This chosen model domain allows all possible equatorially trapped waves, to be 

excited by the applied wind forcing (Moore and Philander 1978). We choose the spatial 

interval for the dynamical model to be  and the time step to be 

s. This temporal-spatial resolution will allow to resolve all possible waves 

and to render the model integration numerically stable. The model (2.1a)-(2.1c) is 

driven by the FSU (Florida State University) climatological monthly mean winds 

(Stricherz et al. 1992). By a linear interpolation, the data are projected onto each time 

step and into each grid point. In Table 1, the values of the numerical parameters used in 

the model integration are listed. It takes about 20 years for the model to reach a 

periodic constant seasonal cycle; at that time, it has successfully captured the main 

seasonal variability of dynamical fields. The currents and the upper layer thickness of 

the 21-st year are saved for the process.  

o29 o29 o120 o70

o5.0=∆=∆ yx

100=∆t

   The model is discretized on the Arakawa C-grid, and all the model boundaries are 

closed. At these solid boundaries, we apply the no-normal flow and no-slip conditions. 

The time integration uses a leapfrog scheme, with a forward scheme every 10th time 

step to eliminate the computational mode. Every integration day a mass-compensation 

is carried out. 

 

3. Proper Orthogonal Decomposition 

We denote by ),(xU i
r   the set of observations (also called snapshots) 

of some physical process taken at position

ni ,,2,1 K= n

xr . In this section, we consider the discrete 

Karhunen-Loève expansion to find an optimal representation of the ensemble of 

snapshots. 

In general, each sample of snapshots )(xU i
r  which is defined on a set of  node m xr  

stands for a  dimensional vector m iur  as follows: 
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where  represent  component of the vector ijur j iur . Define the mean vector:  
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We can form a new ensemble by subtracting from the mean as follows: 
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To find an optimal compressed description of the sequence of data (3.3), one 

description of the process is a series expansion in terms of a set of basis functions. 

Intuitively, the basis functions should represent the members of the ensemble in some 

sense. Such a coordinate system is provided by the Karhunen-Loève expansion. 

Actually here the basis functions Φ  are  admixtures of the snapshots given by: 
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Here, the coefficients  are to be determined so that ika Φ  given by (3.4) will most 

resemble the ensemble (3.3). More specifically, one looks for a function Φ  to 

maximize 
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Let matrix A  denote the new ensemble: 
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Here, the discrete covariance matrix of the ensemble ur  is 
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Thus, with the POD mode computed, one must solve an mm×  eigenvalue problem. 

For a discretization of an ocean problem, the dimension  often exceeds , so it is 

often not feasible to the direct solution of this eigenvalue problem. The  

eigenvalue problem can be transformed into an 

m 410
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nn×  eigenvalue problem [Sirovich, 

1987]. The  eigenvalue problem can be solved with the method of snapshots, nn×
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where D  is a symmetric and nonnegative matrix, kλ  are the eigenvalues. We can 

choose the eigenvectors  to be orthonormal, and give the POD modes by kw

kkk Aw λφ = . In matrix form, AW=Φ , where ],,[ 1 nφφ K=Φ , . 

It is shown that the cost functional 
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which is maximized when the coefficients ’s of (3.4) are the elements of the 

eigenvector corresponding to the largest eigenvalue of

ia

D . 

The  eigenvalue problem (3.7) is more efficient than the  eigenvalue 

problem (3.6) when the number of snapshots  is smaller than m.  
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n

                       

4. POD reduced model 

In this section, the POD method is applied to the above upper tropical Pacific Ocean 

model. This method can provide a systematic way of creating a reduced basis space 

with the state of the system at different time instances and different space 

locations. As in general reduced order basis methods, one can derive the states from 

full order numerical computations and  should be sufficiently large so that the 

snapshots  may contain all the salient features of the dynamics being considered. 

Therefore, through a nonlinear Galerkin procedure the POD basis functions with the 

original dynamics offer the possibility of achieving a high fidelity model (albeit) with a 

possible large dimension n. 
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To achieve model reduction, we first choose nk <<  then carry out a nonlinear 

Galerkin procedure with the set of elements },...,,{ 21 kΦΦΦ . How to choose the values 

of   and  constitutes a crucial question. Since the associated POD eigenvalues 

are ordered

n k

021 ≥≥≥≥ nλλλ L , one can define a relative information content to 

choose a low-dimensional basis of size M (<<n) by neglecting modes corresponding 

to the small eigenvalues. We define 
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and choose M such that 

})(:)(min{arg γ≥= kIkIM  

where 10 ≤≤ γ  is the percentage of total information captured by the reduced space 

.The tolerance },...,{ 1 M
M spanD ΦΦ= γ  must be chosen to be in the vicinity of the 

unity in order to capture most of the energy of the snapshot basis. Here for our case, if 

the POD is constructed for =5 and a reduced order model with =3 it yields a ratio 

of about 0.98; and if =20 or =30 with =7 it yields a ratio of above 0.99 for the 

percentage of kinetic energy retained. 
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n n k

We are now returning to the upper tropical Pacific Ocean model of §2 to apply the 

POD technique. Therefore, we solve equations (2.1a-2.1c) for the steady state 

solutions of upper layer thickness and velocity field after 20 years time integration. 

The 21st year results are depicted graphically in Figure 2 . 

 

4.1 Construction of POD Basis Vectors 

We compute the POD reduced order spaces  using the following 

algorithmic steps. 
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of  day for n/360 Ω∈xr  (here Ω  denotes the-two dimensional rectangular 

domain). These snapshots are discrete data overΩ . 

(ii) Compute the covariance matrix. . The matrix elements of 

are given as which is depicted in §3. Here the 

space-time transposed technique is used. 
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(iii) Solve the eigenvalue problem vvvvuuuuhhhh VVDVVDVVD λλλ === ;; . Since 

are all nonnegative, Hermitian matrix, they all have a complete set of 

orthogonal eigenvectors with the corresponding eigenvalues arranged in ascending 

order as 
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4.2 Reconstruction of Solutions through POD basis Vectors 

Since the scales in model variables  are not uniform, different modes can be 

chosen to reconstruct the solutions. 

vuh ,,

In this section, we will take into account the problem of approximation of the 



infinite-dimensional equations (2.1a)-(2.1c) by a sequence of finite-dimensional 

problems with combination of Galerkin approximations and POD basis elements. 

First, different modes of the basis functions will be used to reconstruct model variables, 

which assume the following forms 
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Once the coefficients have been 

obtained, then we substitute 
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multiply );,,1( nuiui L=Φ );,,1( nvivi L=Φ ),,1( nhihi L=Φ and finally integrate 

respectively in terms of xr . Since the basis functions are orthonormal, the system of 

ODE is as follows 
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along with the initial condition 
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By solving the above ODE problems using a difference scheme, one obtains the 

reconstructed solutions. 

 

4.3 Numerical results 



In this section, we report results of numerical computations related to the approaches 

presented in the previous paragraphs.  

Here, if n =5, the first four POD modes (Figure 3), capture nearly 100% of the 

characteristics of the five observations. While for =20 or =30, the first seven POD 

modes capture about 99% energy. It can be clearly seen that for the upper layer 

thickness , the same modes may capture the most energy, next is  and the least is v . 

Thus, different POD modes may be used to reconstruct  fields respectively. 
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To quantify the performance of the reduced basis method, we use two metrics namely 

the root mean square error (RMSE) and correlation of the difference between the full 

order and the reduced order simulation. This is obtained by first taking the 

twelve-month’s full order results and the corresponding twelve-month’s reduced order 

results and computing the error, for example, for variable  this yields  u
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where M  is the number of node, the index  denotes the month,  is the full 

order approximation and  denotes the reduced order approximation. The average 

RMS error is defined as: 

m mû
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where û  and u  are the average of full order approximation and reduced order 

approximation respectively. Similarly compute the RMSE and the correlation for other 

model variables  and . Table 2 presents the average RMSE in reduced order 

approximations using different modes as to =5, =20, and =30 snapshots. Note 

that from these simulations, on one hand, as the span of the reduced basis space 

increases, the RMSE decreases as long as the same number snapshots is used. On the 

v h

n n n



other hand, for different number of snapshots but for the same energy percentage 

captured, the RMSE decrease stops at 30 snapshots. The correlation for twelve months 

is displayed in Table 3. Clearly, when increasing the POD mode, the correlation 

increases also for the same snapshots. This increase stops at 30 snapshots (Table 3) and 

the reported best approximation obtained with 30 snapshots produced a correlation at 

the same as level as the approximation 20 snapshots.  

 

However, one must also note that a simple linear independence is not a sufficient 

criterion for choosing the POD mode. It only provides one with some reference. The 

comparison between the full order and the reduced order is displayed in Figure 4a and 

Figure 4b for a retained energy percentage of 95% and 99% respectively about upper 

layer thickness . From these figures, we can see there is a little improvement between 

either 20 snapshots or 30 snapshots compared to 5 snapshots, but there is almost no 

difference between 20 snapshots and 30 snapshots. The contrast between the full order 

approximation and numerical results obtained using energy captured at 95% for 20 

snapshots about currents is displayed in Figure 5a and 5b. It shows that the reduced 

order approximation may be sufficiently close to the full order approximation. Other 

experiments have also been carried out, with either more or less snapshots taken and 

for different percentages of energy captured. From the computational cost and memory 

storage aspects, 20 snapshots and the energy captured at 99% level yielded the best 

results.  

h

 

5. Conclusions 

We studied problems related to POD reduced modeling of a large-scale upper ocean 

circulation in the tropic Pacific domain. The large-scale seasonal variation of the upper 

tropic Pacific is first simulated using a reduced gravity model with spatial resolution of 

 and a time step of o5.0=∆=∆ yx 100=∆t s. Then we constructed different POD 

models with different choices of snapshots and different number of POD basis 

functions. The results from these different POD models are compared with that of the 



original model. The main conclusions are 

 The large-scale seasonal variability of the tropic Pacific obtained by the original 

model can be captured well by a low dimensional system of order of 22, that is 

constructed by 20 snapshots and 7 leading POD basis functions. 

 By analysis of RMS errors and correlations, we found that the modes that capture 

99% energy are necessary to construct POD models.  

 RMS errors for the upper ocean layer thickness of the POD model of order of 22 is 

less than 1m that is less than 1% of the average thickness. The correlations of the 

upper ocean layer thickness from the POD model is around 0.99. 

 Compared with the upper ocean layer thickness, the velocity fields from the POD 

model are less accurate, especially the meridional component. This remains a 

problem to be further explored in forthcoming research.  

Our preliminary investigations on the use of POD for the upper ocean circulation 

simulation yield encouraging results and show that POD can be a powerful tool for 

various applications such as four-dimensional variational data assimilation. These 

results will be described in a follow-up paper. 
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Figure 1 The vertical structure of the reduced-gravity model 
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Parameter Value Remarks 

'  g 2107.3 −×  Reduced gravity 

DC  3105.1 −×  Wind stress drag coefficient 

H  150 m Mean depth of upper layer 

aρ  1.2 kg m  3− Density of air 

0ρ  1025 kg m 3− Density of sea water 

A  750 m2 sec-1 Coefficient of horizontal viscosity 

α  5105.2 −×  Coefficient of bottom friction 

 

Table 1 The values of the model parameters used in the model integration .



 

 

 

 

 

Figure 2 Upper layer thickness of full order approximation (a) February, (b) May, (c) 

August, and (d) November. 

 



5 snapshot s

0. 55

0. 60

0. 65

0. 70

0. 75

0. 80

0. 85

0. 90

0. 95

1. 00

1 2 3 4 5

h
u
v

 Number of POD modes 
 

20 snapshot s

0. 55

0. 60

0. 65

0. 70

0. 75

0. 80

0. 85

0. 90

0. 95

1. 00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

h
u
v

 
 

Number of POD modes 

30 snapshot s

0. 55

0. 60

0. 65

0. 70

0. 75

0. 80

0. 85

0. 90

0. 95

1. 00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

h
u
v

 Number of POD modes 
 

Figure 3�  Captured energy vs. number of POD: (a) 5 snapshots, (b) 20 snapshots, (c) 

30 snapshots; rhombus line: upper layer thickness , triangle line: zonal current 

velocity , and star line: meridional current velocity . 
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RMSE of h 70% energy 95% energy 99% energy 

5 snapshots 3.17096138 1.31539011 0.88490134 

20 snapshots 2.99194503 1.29849041 0.88701826 

30 snapshots 2.97900558 1.27734923 1.07926083 

 

RMSE of u 58% energy 95% energy 99% energy 

5 snapshots 0.01243962 0.00761431 0.00669807 

20 snapshots 0.01354840 0.00680718 0.00542305 

30 snapshots 0.01358298 0.00711650 0.00504097 

 
RMSE of v 54% energy 95% energy 99% energy 

5 snapshots 0.01182489 0.00403928 0.00422783 

20 snapshots 0.01149406 0.00387623 0.00504759 

30 snapshots 0.01146040 0.00474720 0.00536092 

 

 

 

 

Table 2 RMSE as to 5 snapshots, 20 snapshots, and 30 snapshots respectively for 

different percentages of captured energy; (a) upper layer thickness h (unit: m), (b) the 

zonal current velocity u (unit: m/s), and (c) the meridional current velocity v (unit: 

m/s). 



Table 3 Correlation coefficients between POD model and the original model 

a. POD modes for a 95% captured energy. 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Correlation of h             
5 snapshots 0.95 0.97 0.99 0.96 0.93 0.93 0.94 0.97 0.97 0.99 0.98 0.98 

20 snapshots 0.96 0.97 0.99 0.95 0.91 0.94 0.95 0.97 0.97 0.99 0.98 0.97 

30 snapshots 0.96 0.97 0.99 0.95 0.92 0.95 0.95 0.97 0.97 0.99 0.98 0.96 

Correlation of   u             

5 snapshots 0.79 0.94 0.98 0.85 0.92 0.89 0.95 0.97 0.95 0.94 0.90 0.99 

20 snapshots 0.90 0.98 0.98 0.95 0.94 0.91 0.97 0.99 0.97 0.95 0.96 0.98 

30 snapshots 0.95 0.98 0.98 0.92 0.91 0.93 0.97 0.95 0.94 0.98 0.93 0.96 

Correlation of   v             

5 snapshots 0.93 0.94 0.95 0.95 0.95 0.88 0.87 0.98 0.90 0.97 0.92 0.96 

20 snapshots 0.94 0.99 0.89 0.66 0.91 0.90 0.91 0.99 0.94 0.98 0.99 0.91 

30 snapshots 0.81 0.92 0.89 0.61 0.83 0.91 0.84 0.94 0.93 0.97 0.84 0.88 

 

b. POD modes for a 99% captured energy 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Correlation of h             
5 snapshots 0.96 0.99 0.99 0.98 0.99 0.96 0.99 0.99 0.99 0.99 0.99 0.99 

20 snapshots 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

30 snapshots 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 

Correlation of    u             

5 snapshots 0.84 0.96 0.99 0.92 0.99 0.92 0.98 0.97 0.93 0.98 0.94 0.99 

20 snapshots 0.97 0.99 0.99 0.98 0.967 0.98 0.99 0.99 0.99 0.98 0.98 0.99 

30 snapshots 0.97 0.98 0.99 0.99 0.97 0.97 0.99 0.99 0.98 0.99 0.98 0.98 

Correlation of    v             
5 snapshots 0.86 0.95 0.98.7 0.93 0.98 0.91 0.93 0.97 0.92 0.96 0.92 0.97 

20 snapshots 0.85 0.88 0.91 0.82 0.86 0.79 0.88 0.95 0.98 0.95 0.91 0.93 

30 snapshots 0.81 0.87 0.91 0.95 0.91 0.85 0.88 0.97 0.97 0.95 0.96 0.97 

 



 

  

 

 

 

 

Figure 4. The case of 5 snapshots, 20 snapshots, 30 snapshots, for energy captured at 

95% level, comparing the full model approximation and the reduced order 

approximation for upper layer thickness: (a) February, (b) May, (c) August, and (d) 

November. The red isolines represent full order approximation, the green long 

discontinuous isoline: 5 snapshots, the dark red short discontinuous isoline: 20 

snapshots, the purple long and short discontinuous isoline: 30 snapshots, respectively. 



  

 

 

 

 

Figure 5. The case of 5 snapshots, 20 snapshots, 30 snapshots, for energy captured at 

99% level, comparing the full model approximation and the reduced order 

approximations for upper layer thickness: (a) February, (b) May, (c) August, and (d) 

November. The red isolines represent full order approximation, the green long 

discontinuous isoline: 5 snapshots, the dark red short discontinuous isoline: 20 

snapshots, the purple long and short discontinuous line: 30 snapshots, respectively. 

 



 


