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SUMMARY

We used the the Lin-Rood finite volume shallow water model in the framework of 4-D Var data assimilation
addressing first the hierarchical implementation of high resolution (van Leer and PPM) advection schemes in
both forward and adjoint models. The results obtained show that using the various advection schemes consistently
improves variational data assimilation (VDA) in the strong constraint form, which does not include model error,
but the cost functional included efficient and physically meaningful construction of the background term,Jb

using balance and diffusion equation based correlation operators. This was then followed by an in-depth study
of various approaches to model the systematic component of model error in the framework of a weak constraint
VDA. Three simple forms, decreasing, invariant, and exponentially increasing in time forms of evolution of model
error were tested. The inclusion of model error provides a substantial reduction in forecasting errors, in particular
the exponentially increasing form in conjunction with the piecewise parabolic high resolution advection scheme
provided the best results. Results presented in this article can be used to formulate sophisticated model error
forms.

KEYWORDS: 4D-VAR Inverse Problems Model Error Strong Constraint Data Assimilation Weak
Constraint Data Assimilation

1. INTRODUCTION

Variational data assimilation (VDA) aims to find a model trajectory that best fits
(in a least squared sense) the observational data over an assimilation time interval by
adjustment of the initial conditions supplied for forward model integration (Le Dimet
and Talagrand 1986; Navon et al. 1992). In the so-calledstrong constraintor classical
version of VDA, it is assumed that the forecast model perfectly represents evolution
of the actual atmosphere. The best fit model trajectory is obtained by adjusting only the
initial conditions via minimization of a cost functional, subject to the model equations as
strong constraint. However numerical weather prediction (NWP) models are imperfect,
since they are discretized, dissipative and dispersion errors arise, and, moreover subgrid
processes are not included. In addition, most of the physical processes and their
interactions in the atmosphere are parametrized, also a complete mathematical modeling
of the boundary conditions and forcing terms can never be achieved. Usually all of
these modeling drawbacks are collectively addressed by the term,model error(ME).
Following Dee (1995), we would like to distinguish between forecasting and model
errors. ME is one of the causes of forecasting errors, another cause being erroneous
specification of initial conditions used to produce the forecast.

Studies indicate that ME can severely impact forecast errors, see Boer (1984);
Dalcher and Kalnay (1987); Bloom and Shubert (1990); Zupanski and Zupanski (2002).
For early methods on estimating modeling errors in operational NWP models see
Thiébaux and Morone (1990); Saha (1992). Thus giving up the assumption that the
model is perfect, in the context of strong constraint VDA leads us toweak constraint
formulation of VDA, which is the main theme of this paper; since we include time
evolution of the variables, we could say weak constraint 4D-Var (time plus three space
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dimensions). Instead we prefer to use the general term VDA, because have we used a
two dimensional global shallow water model for presenting our results.

In sequential data assimilation using Kalman filtering theory, the inclusion of ME
forms an integral part of the filter formulation, various filtering approaches which
include ME have been considered by Chepurin et al. (2005); Dee and Todling (2000);
Dee and Da Silva (1999); Dee et al. (1999); Dee and Da Silva (1998); Dee (1995);
Zupanski (2005). When the number of observations is considerably smaller, the method
of representers(Bennett 1992) provides a computationally efficient (in storage/ space
requirements) formulation of VDA. The incorporation of ME in such a framework has
been shown by Bennett et al. (1993, 1996, 1997); Uboldi and Kamachi (2000).

Model error is formally introduced as acorrectionto the time derivatives of model
variables in the weak constraint formulation of VDA. Let the vectorx(t) be used to
represent the state of the atmosphere, then its evolution accounting for ME in the NWP
model is written as,

dx(t)
dt

=M[x(t)] + T[η(t)], (1)

whereM[.] denotes all the mathematical operations involved in the NWP model,η
represents ME andT[.] is an operator that accounts for the fact that only certain
components of the state vector have modeling errors (none-the-less, oftenT[.] is set
to be equal to the unit matrix). ME usually varies both spatially and temporally, and has
both systematic and stochastic components. Comparing the strong and weak constraint
VDA, in the formulation of former, it is assumed thatη has mean,E[η(t)] = 0, ∀ t
and model error covariance matrix,Q = E[η(t) ηT (t′)] = 0, ∀ t & t′, whereE[.] is the
mathematical expectation operator. It should be noted that if the mean and (co)variance
of a random vector are prescribed to be equal to zero, then all realizations of that random
vector are identically equal to zero, thus,η ≡ 0. Whereas in the weak constraint version
of VDA, the mean and covariance of ME are to be specified. However exact statistical
details of ME are difficult to obtain (Daley 1992a,b; Dee and Da Silva 1998; Zhu and
Kamachi 2000) a fact which led researchers to suggest a variety of assumptions to
approximate ME.

Early efforts to model the systematic component of ME were pioneered by Derber
(1989). He suggested a simplified approach to modelη to be equal toλ(t) φ. The
temporal part,λ(t) is a specified function of time alone, andφ is a spatially dependent,
control variable. Three different forms ofλ were considered, namely, parabolic, delta
function and constant in time. It was observed that the parabolic variation ofλ provided
results comparable to a constant in timeλ. Using a similar approach (Wergen 1992;
Zupanski 1993) it was shown that inclusion of ME allows significant reduction in
forecast RMSE (see table (1) for a list of acronyms and their definitions).

For dynamically evolving systems such as discrete NWP models, ME is expected
to depend on the model state and should be evolving in time (Griffith and Nichols 1996,
2000). Various simple forms of evolution of ME in time were considered by Griffith and
Nichols (2000), henceforth referred to as GN00. At any time step,tk, the evolution of
ME is assumed to be given by the following equation,

ηk = Tk(ek) + qk, (2)

where ek represents time-varying systematic components of ME,Tk describes the
distribution of systematic errors in the NWP model equations, andqk (stochastic
component) is an unbiased, serially correlated, normally distributed random vector, with
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known covariance. The evolution ofek, is in-turn modeled by assuming that it depends
on the state vector,xk,

ek+1 = gk(xk, ek).

GN00 suggested three forms for the evolution of the above systematic component of
ME,

1. constant in time:ek+1 = ek, Tk ≡ I. It is inferred that this form is suitable for
modeling errors in source terms and boundary conditions.

2. Evolving in time: ek+1 = Fk ek, Tk ≡ I, whereFk is a linear model, which is
appropriate for representing discretization errors.

3. Spectral form:ek+1 = ek, Tk is a block diagonal matrix, with diagonal entries
given byI, I · sin( κ

Nτ ), I · cos( κ
Nτ ), whereτ is a constant time scale.

It is to be noted that the control of ME as well as the model initial conditions
in weak constraint VDA doubles the size of the optimization problem (compared to
strong constraint VDA), in addition if the stochastic component is included in the ME
formulation, then one would have to save every random realization at each model time
step, which amounts to tripling the size of the optimization problem. The computational
results in GN00 were provided by neglectingqk, the stochastic component of ME and
using the constant and evolving forms of the systematic component, see GN00 for
additional details. Similar approaches for modeling the systematic component of ME
was considered by Martin et al. (2002) and reduction of ME control vector size by
projecting it on to the subspace of eigenvectors corresponding to the leading eigenvalues
of the adjoint-tangent linear operators was illustrated by Vidard et al. (2000).

The above described approach (of GN00) provides the systematic component of
ME at any discrete time step,tk, in other words, the evolution of ME has been
considered as adiscrete process. Vidard et al. (2004) (from now onwards referred to as
VPLD04) considered a continuous in time form for the evolution of ME. This approach
is consistent with the fact that model equations are first written as differential equations
and then descretized in space and time. If the initial ME,η(t0) = η0, then VPLD04
modeled the evolution of ME as,

dη

dt
= Φ[η(t), x(t)] + q(t), (3)

whereq(t) is the stochastic component of ME. Once again, neglecting the stochastic
component reduces the size of the control vector, as in the case considered by VPLD04;
they also assumed thatΦ[η(t), x(t)] = η(t). This implies that the evolution of ME term
is modeled by the following simple exponential growth equation,

dη

dt
= η(t).

Such adeterministicapproach to model the evolution of ME significantly simplifies the
weak constraint VDA, since only the initial ME (η0) is to be obtained via solution of the
optimization problem (see VPLD04 for additional details).

Daley (1992a) suggested that model error is correlated in time and used a Markov
process to model its evolution in a simple Kalman filtering (KF) framework. The
Markovian assumption is based on the observation that as the numerical model is
integrated in time, errors show a trend of serial correlation in both time and space.The
most important property of a Markov process is that the state at any time in future is
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dependent only on its present value, but not on its value in the past. Considering the
model error as a Markov process, at any two successive time steps,tk andtk+1,

ηk+1 = µGk[ηk] + (1− µ)qk, (4)

whereµ is a scalar, such that0 6 µ < 1, qk is the random component of ME andGk[.] is
a linear operator (see Daley, 1992a for discussion on the implementation of two different
forms of this operator, again in a KF setting). UsingGk ≡ I, in the above form of
ME, D. Zupanski (1997) and Zupanski et al. (2005) (henceforth referred to as ZZ05)
provided results obtained using the NCEP’ s regional weather prediction system in weak
constraint VDA framework. They assumed the initial value of the model error,η0 to be
equal to zero and a coarse time scale for the evolution ofqk, such that at-most four
of such vectors are present in a12 hour time window of data assimilation (to limit the
size of control vector in minimization). In addition, all of thoseqk’ s were obtained via
minimization of the weak constraint VDA cost functional, thereby implicitly assuming
that eachqk is a mean deterministic forcing term. The model error covariance matrix
was derived in a novel way, please see ZZ05 and references therein for details.

Often discontinuities (on the scale of the model grid resolution) in solutions to
NWP models arise due to sharp fronts formed in low-pressure systems, hydraulic jumps,
etc. High resolution advection schemes provide means to capture such discontinuous
solutions accurately. A consistent formulation to improve the accuracy of the numerical
high resolution advection scheme, ranging from first order to second and third order
accuracy in space was provided by Akella and Navon (2005), hereafter referred to as
AN05. In the same paper was provided a comparison of the impact of using different
slope limited monotone upstream centered schemes for conservation laws (MUSCL) on
data assimilation (in strong constraint form) in one space dimension using a viscous
Burgers equation model and in two dimensions using a shallow water equations model.
Another consistent method of decreasing the discretization errors (principally truncation
errors) is to refine the model resolution, such an approach in VDA was suggested by
Le Dimet and Shutyaev (2005), henceforth referred to as LDS05. However this approach
is limited by the resolution of the observational system, indeed one of the conclusions of
LDS05 was that the improvement in predictability is most sensitive to the observational
errors. In the present article we extend the studies in AN05, by conducting various
VDA experiments in a more practical setting than that presented in AN05. In particular
the cost functional includesJb, the background cost functional, the formulation of
which seriously impacts the performance of data assimilation system. The square root
formulation using linear balance operator and diffusion operator has been used so that
the inverse of the background error covariance matrix is not required to be specified
(details are described in Appendix A).

Following is the outline of present paper. In section 2 we focus on the issue of
uncertainty in the specification of initial conditions only (recall that it contributes to
forecast errors) with no ME term in VDA. We first show that changing the advection
scheme used in discretization of the non-linear terms in the governing equations (which
can be considered as altering the numerical model) leads to a decrease in forecasting
error. Next we provide results obtained using various schemes by conducting VDA in
strong constraint form, and once again an improvement in predictability is achieved
by improving the numerical model used in VDA. Section 3 focuses on the issue of
accounting for model error in VDA, via weak constraint formulation. We provide a
detailed formulation of feasible forms of modeling the ME. Using three different forms
of modeling the evolution of ME, an analysis of the obtained results is discussed. Finally
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in section 4 we summarize our results emphasizing what is novel in our contribution and
outline future research directions in this area.

2. IMPACT OF USING DIFFERENT NUMERICAL ADVECTION SCHEMES

(a) Model forecasts
In this article a global two-dimensional shallow water equations (SWE) model

has been used for numerical experiments and analysis. The solutions of SWE exhibit
some of the important properties of large scale atmospheric flow and the equations have
certain important features (such as, horizontal dynamical aspects) in common with more
complicated NWP models. Therefore derivation and testing (Williamson et al. 1992) of
various algorithms for solving SWE has often been a first step towards developing new
atmosphere and ocean GCMs. In spherical coordinates the vorticity divergence form of
the SWE can be written as following,

∂h

∂t
+∇ · (Vh) = 0 (5)

∂u

∂t
= Ωv − 1

a cos θ

∂

∂λ
(κ + ϕ) (6)

∂v

∂t
=−Ωu− 1

a

∂

∂θ
(κ + ϕ) (7)

whereh represents the fluid height (above the surface height,hs), V = (u, v), u andv
represent the zonal and meridional wind velocity components respectively,θ andλ are
the latitude and longitudinal directions respectively,ω is the angular speed of rotation
of the earth,a is radius of the earth. The free surface potential is given by

ϕ = ϕs + g h,

ϕs = ghs, κ = 1
2V ·V is the kinetic energy, andΩ = 2ωsinθ +∇ × V is the absolute

vorticity. Details on other forms of writing the SWE and their development can be found
in Williamson et al. (1992) and Haltiner and Williams (1980).

The explicit flux-form semi-Lagrangian, finite volume shallow water equations
model of Lin and Rood (1997), henceforth referred to as LR97, has been used for
forward model integration. This model serves as the dynamical core in the community
atmosphere model (CAM), version 3.0, and its operational version implemented at
NCAR and NASA is known as finite volume-general circulation model (FV-GCM). A
two grid combination based on C-grid and D-grids was used for advancing from time
steptn to tn + ∆t. In the first half of the time step, advective winds (time centered
winds on the C-grid: (u∗, v∗)) are updated on the C-grid, and in the other half of the
time step, the prognostic variables (h, u, v) are updated on the D-grid. We will follow
the suggestion in LR97, and always use unconstrained van Leer scheme to advect winds
on the C-grid (this strategy provides solutions whose accuracy is comparable to those
obtained by using more CPU demanding advection schemes, for e.g., constrained van
Leer and PPM schemes), except for the first order advection scheme, in which case, we
will use first order scheme on both C- and D-grids. Therefore on the D-grid, we will be
using the unconstrained, constrained van Leer, and the PPM schemes. Using the finite
volume method, within each cell of the discrete grid, if we consider a piecewise linear
approximation to the solution, whose slope islimited in a certain way depending on the
values of the solution at the neighboring grid cells, one can consistently derive a family
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of van Leer schemes. Alternatively, if we assume a piecewise parabolic approximation
to the solution within each cell, then we obtain the PPM scheme. For further details on
formulation of these schemes see Lin et al. (1994) and AN05. From now onwards we
will use the following convention to refer to ourtest cases,

1. first order advection scheme: first order advection on both C- and D-grids,
2. unconstrained van Leer scheme: unconstrained van Leer on both C- and D-grids,
3. constrained van Leer scheme: constrained van Leer on D-grid and unconstrained

van Leer scheme on C-grid,
4. PPM scheme: PPM scheme on D-grid and unconstrained van Leer scheme on C-

grid.

The poles have been treated in a fashion similar to that in Suarez and Takacs (1995) using
a polar Fourier filter. Further details of the model can be found in LR97 and references
therein. Also a comparison of these schemes for the test cases proposed in Williamson
et al. (1992) are provided in LR97.

Unless specified otherwise, here we consider a regular latitude-longitude discretiza-
tion on the sphere, using a2.5o × 2.5o grid resolution, and a time step of∆t = 450
seconds. Reanalyzed data at500 hPa pressure level obtained from the ERA-40, ECMWF
40-year reanalysis (ECMWF (2002)) system, valid for 00 UTC 2 February 2001 (hence-
forth denoted byT−06) was used to specify the geopotential height field (winds fields
were obtained using geostrophic assumption) as initial conditions for forward model
integration. Using the above specified advection schemes, we integrated the model for
36 hours, saving forecasts at every6 hour interval. In the forecast and adjoint models,
to introduce systematic errorsω was set to0.95 times the value used for generating
observations, which was specified to be equal to7.292× 10−5s−1. In order to obtain
the observations, a twin experiment framework is considered. To simulate real-lifenoisy
observations, a1% random perturbation in the initial conditions prescribed atT−06 was
added and the PPM advection scheme was used on both C- and D- grids (though the
PPM scheme is expensive to implement, it provides a very accurate forecast, see LR97,
AN05). We integrated the model for36 hours, once again saving the states after every
6 hours, asobservations, see table (1) for nomenclature of the different time intervals.
RMSE between model forecasts and observations are provided for first order, uncon-
strained van Leer, constrained van Leer and PPM schemes (test cases: 1- 4) in Fig.1.
The RMSE indicate a trend of decreasing errors, the first order scheme being the most
erroneous whereas the PPM scheme being characterized by the least error when com-
pared with the observational data (since the first order scheme performs poorly when
compared to the other schemes, we will discontinue its usage in our further studies),
and the unconstrained van Leer scheme exhibits larger errors than the constrained van
Leer scheme. These results are consistent with previous results (see for instance AN05;
LR97; Lin et al. (1994)), the larger implicit diffusive property of the van Leer schemes
(the constrained van Leer scheme is better than the unconstrained van Leer scheme due
to the monotonicity constraint applied in the former) when compared to the PPM scheme
has been argued to be the reason for the above trend in errors. In the following subsec-
tion, we further analyze these schemes, particularly in the context of strong constraint
VDA (thus dealing with the issue of erroneous specification of initial conditions only).

(b) VDA experiments in strong constraint formalism
Data assimilation schemes determine the analysed atmospheric state as an optimal

combination of a-priori background information and observational information. Letxt
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be thetrue state of the atmosphere,xb be the background field andyo denote the ob-
servations. Usually a short-range forecast providesxb. Then the error in the background
field is equal toeb = xb − xt, and the error in the observations field is given byeo =
yo − H(xt). H is an observation operator that maps model variables to observations, if
all the model variables are observed and observations occur at every model grid point,
thenH ≡ I. Denoting the mathematical expectation operator byE[.], the background
error and observation error covariances are given byB = E[(eb − E[eb])(eb − E[eb])T ]
andR = E[(eo − E[eo])(eo − E[eo])T ], respectively. Error covariances measure the un-
certainty involved with both of these data sources, hence they determine the quality of
data assimilation. Due to lack of knowledge of the true state of the atmosphere,xt, we
can only guess whatB andR should be. Thus they are approximations of thetrue error
covariances.

In strong constraint version of VDA, neglecting the ME, minimization of the
following nonlinear quadratic cost functional,Jo, accomplishes the goal of fitting model
states (x(ti)) and observations (yo(ti)) in an assimilation time interval,[t0, tn]. Often the
so-called background cost,Jb is added toJo to regularize the following cost functional.
Its minimization with respect to the initial state,x(t0) as a control variable (Kalnay
2003),

J [x(t0)] = J (x0) =
1
2
[x(t0)− xb]T B−1 [x(t0)− xb]︸ ︷︷ ︸

Jb

+
1
2

n∑
i=0

[H(x(ti))− yo(ti)]T R−1 [H(x(ti))− yo(ti)],︸ ︷︷ ︸
Jo

(8)

subject to the following model equations as strong constraint,

x(t0) = x0,

dx(t)
dt

= M[x(t)], (9)

is achieved by using iterative minimization algorithms, such as quasi-Newton or
truncated-Newton methods. These algorithms require availability of gradient of the cost
functional with respect to the control variables, which is in-turn efficiently obtained
by backward integration of the adjoint model (Lorenc 1986; Navon et al. 1992; Zou
et al. 1993). Note that in the above model equations, we did not account for ME, i.e,
η(t)≡ 0, ∀t.

One of the principal causes of observational errors is instrumentation error, which
is sequentially correlated in space and time. Accurate specification of the observation
error statistics is very important in the implementation of data assimilation techniques.
However in this study we deal with model errors and the observational error and
background error covariances have been assumed to be invariant in time, for further
details regarding the impact of observational errors on data assimilation, please see
Daley (1992a, 1993). Further we assume that the observations are not biased and that
the background state and observations are mutually uncorrelated.

The formulation of theJb term is crucial to the performance of the data assimilation
system. Considering a single observation, at a single grid point, the analysis increment
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is proportional to a column ofB. Hence background error covariance spreads out the
information in the analysis from the observations and provides statistically consistent
increments at the neighboring grid points and levels of the model. It also ensures that
observations of one model variable produce dynamically consistent increments in the
other model variables. Using background knowledge makes the VDA problem well-
posed even when there are only a few observations, also it fills any data voids withgood
quality information (Navon et al. 2005). In addition the background state,xb provides
an initial guess for minimization ofJ . Ideally the optimal design of background error
covariance should take into account the average variances, autocorrelations and balance
properties of the background errors, so that the covariances of short range forecast errors
in data assimilation are adequately represented (Derber and Bouttier 1999). Dynamic or
flow dependent formulation ofB could improve analyses and subsequent forecasts (Ri-
ishøjgaard 1998), particularly if the observations are nonuniformly distributed. However
most of the studies and in particular, operational implementations use astatic back-
ground error covariance; since the focus of this paper is model error, we do not deal
with these issues anymore and follow the approaches of Weaver and Courtier (2001);
Derber and Bouttier (1999) to constructB as a multivariate and cross correlated operator,
see Appendix A for further details (see also Gaspari and Cohn 1999 for an alternative
formulation).

We used the same observations as used in the previous subsection to compare
different model forecasts to conduct DA using different advection schemes for a time
interval of24 hours in a twin experiment framework. These observations were obtained
by introducing random perturbations in the initial condition, which can be looked upon
as introducing uncertainty in initial conditions and using a slightly different version of
the model (namely, using PPM advection scheme on both C- and D-grids). The fact
that observations were generated by usage of a different model than that used for DA,
introduces a systematic model bias. We conducted three DA experiments, in each case,
we used either unconstrained van Leer (test case 2), constrained van Leer (test case 3)
or PPM advection scheme (test case 4) in both forward and adjoint modes (see AN05
for details on derivation of the adjoint model for high resolution advection schemes).

The background state,xb, which was the first guess for DA was obtained by a
6 hour forward integration of the reanalyzed data, at time,T−06; see table (1) and
Fig. 2 for naming and illustration of the different data sets used in DA experiment. Five
observational data sets (at times,T00, T+06, T+12, T+18, T+24, such that every6 hours
we have an observation) within a24 hour interval are assimilated using the observations
to model space operator,H = I, i.e, the observations occur at every grid point of
the model resolution. The observation error covariance matrix has been taken to be a
block diagonal matrix,R = [104I, 100I, 100I], such that observational errors at every
grid point are only autocorrelated and stationary in time. We used an unconstrained
limited memory quasi-Newton (L-BFGS) minimization algorithm (Liu and Nocedal
1989; Nash and Nocedal 1991) for minimization of the cost functional given in Eq. (8).
The following termination criteria was used to conduct DA experiments,

‖(∇J )k‖ ≤ EPS ·MAX(1, ‖xk(t0)‖), (10)

where‖ · ‖ is theL2 norm,(∇J )k is the gradient andxk(t0) is the optimal initial state
vector at thekth. minimization iteration, andEPS was set to5× 10−5.

During the minimization process, due to the regularization property of the mini-
mization algorithm, the differences on larger scales are fit in the first few iterations,
yielding the largest decrease in the cost functional, thereafter minimization proceeds to
fit the smaller discrepancies, or small decreases in the value of the functional. In general
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the observations occurring in the middle of the DA time window (in this case, at times,
T+12 andT+18) are best fit. We used the same minimization termination criteria given by
Eq. (10) for all three DA experiments, and it took114 function and gradient evaluations
for the unconstrained van Leer,78 for the constrained van Leer and the least,63 for the
PPM. A comparison of the RMSE in geopotential height field before and after DA is
provided in Fig.3 for the different advection schemes. Comparison of the differences
in geopotential height field between model forecast using PPM advection scheme and
observations atT+30, forecast verification time, before and after data assimilation is
provided in fig.4 (similar results were obtained for the wind fields, as well as, using
the unconstrained and constrained van Leer advection schemes). In all three cases we
achieved more than 50% reduction in the RMSE by DA. Also the optimized initial
condition is able to provide a better forecast atT+30 (30 hour forward integration) in all
the cases. Clearly the PPM scheme is much superior when compared to the constrained
and unconstrained van Leer schemes using lesser function and gradient computations in
achieving the same reduction in forecast RMSE. We have demonstrated that it is possible
to decrease the component of forecasting error associated with the mis-specification of
initial conditions only by consistently improving the numerical advection scheme used
for discretizing the nonlinear advection terms in the model, holding everything else
fixed (resolution of the model and observational system as well). In the next section we
will study the impact of introducing various forms of model error in VDA via weak
constraint formulation.

3. WEAK CONSTRAINT VDA

Now we turn our attention to one other cause of forecasting error, namely the model
error. In the strong constraint VDA, the model equations are assumed to beperfect,
therefore modeling errors (whose causes have been described earlier in the introduc-
tion) are not taken into account. The weak constraint VDA provides a framework for
incorporation of ME in the model equations, via explicit introduction of an extra term,
η(t), (as in Eq.1),

dx(t)
dt

=M[x(t)] + T[η(t)].

The operatorT maps the space of the ME to the space of the model state,x. If one has
a-priori knowledge that the numerical model has some drawbacks, for e.g., modeling of
the atmosphere in certain regions of the globe, (say, one of the poles) then the operator,
T should be specified in such a way that only those model grid points (at the poles)
have modeling errors, and the rest of the model states do not have any ME. In the
literature (for instance, see GN00 and VPLD04), it has been often assumed that the
model state at every grid point has an associated error, which implies thatT is identically
equal to the unit matrix,I, and, the dimension ofη is equal to that of the model state,x;
in the present article we assumeT = I.

Past research work by Dee and Da Silva (1998) indicated that ME has contribu-
tions that are both systematic (or, deterministic) and random in nature. Following Der-
ber (1989) and VPLD04 in the spirit ofvariational continuous assimilation, we will
model the evolution of ME as a continuous process, using the following initial value
problem (IVP), which is a continuous-in-time differential equation, (Eq.3),

dη

dt
= Φ[η(t), x(t)] + q(t).
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In this article, we are concerned only with the systematic part of ME, hence, the
stochastic component,q(t), is neglected; the sequential filtering approaches based on
KF, such as the ensemble KF provide an implicit framework for the inclusion of
the stochastic terms (see the next section for a simple stochastic differential equation
to model the evolution of the stochastic component in VDA). Therefore the above
differential equation simplifies to,

dη

dt
= Φ[η(t), x(t)]. (11)

For closure of the above IVP, we need to specify the initial value ofη(t0) = η0, and
the nature of the mapping,Φ[.]; both of them being very important parameters. First we
describe the methodology used to calculate the initial value of ME and then address the
issue of different approaches for modeling the evolution of ME, using different forms of
Φ[.]. To obtainη0 the following weak constraint VDA cost functional (J ) is minimized
(note that it is similar to the cost functional in Eq. (8), but includes an extra term,Jη),

J [x(t0), η(t0)] = J (x0, η0)

=
1
2
[x0 − xb]T B−1 [x0 − xb]︸ ︷︷ ︸

Jb

+
1
2

n∑
i=0

[H(x(ti))− yo(ti)]T R−1 [H(x(ti))− yo(ti)],︸ ︷︷ ︸
Jo

+
1
2
[η0 − ηb]T Q−1 [η0 − ηb],︸ ︷︷ ︸

Jη

(12)

whereQ is the model error covariance matrix (explained in Appendix B). Just as the
background state,xb was used as an initial guess forx0, to minimize the strong constraint
VDA cost functional, we useηb as an initial guess forη0 to minimize the aboveJη in the
weak constraint VDA. Hence the above cost functional,J (x0, η0) is minimized subject
to the following equations as constraints,

x(t0) = x0; η(t0) = η0,

dx(t)
dt

=M[x(t)] + η(t);
dη

dt
= Φ[η(t), x(t)].

 (13)

Introducing the following augmented Lagrangian functional, the above constrained
minimization problem becomes an unconstrained problem,

L(x, η, x∗, η∗) = J (x0, η0)

+
∫ tn

t0

〈 x∗, {dx(t)
dt

−M[x(t)]− η(t)}〉 dt

+
∫ tn

t0

〈 η∗, {dη

dt
− Φ[η(t), x(t)]}〉 dt, (14)
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wherex∗, η∗ are the Lagrange multiplier vectors corresponding tox, η respectively, in
other words,x∗ is the adjoint state corresponding tox andη∗ is the adjoint state ofη,
and〈·, ·〉 denotes Euclidean inner product.

Using calculus of variations, the extrema ofL are the solutions of the Euler-
Lagrange equations (the extrema ofL are the same as the extrema ofJ (x0, η0)). Using
the first order optimality criteria, at the extrema of the Lagrangian,L, the following
equations are satisfied,

∂L
∂x

= 0,
∂L
∂η

= 0, (15a)

∂L
∂x∗

= 0,
∂L
∂η∗

= 0. (15b)

Equations (15b) yield the equations describing the evolution of model state and ME,

dx(t)
dt

=M[x(t)]− η(t),
dη

dt
= Φ[η(t), x(t)].

respectively. Equations (15a) yield the following adjoint equations which describe the
evolution of the adjoint variablesx∗, η∗,

x∗(tn) = 0, η∗(tn) = 0, (16a)

−dx∗(t)
dt

= [
∂M
∂x

]T x∗ + [
∂Φ
∂x

]T η∗ + δ(t− ti)
n∑

i=0

[
∂H

∂x
]T R−1 [H(x(ti))− yo(ti)],

(16b)

−dη∗(t)
dt

= [
∂Φ
∂η

]T η∗ + x∗. (16c)

Note that the evolution ofx∗ andη∗ is coupled via theΦ[.] operator. Also the gradient
of the cost functional,J (x0, η0), with respect to the model state,x0 and ME state,η0 is
given by,

∇x0J =∇x0Jb + ∇x0Jo = B−1[x0 − xb] + x∗(t0), (17a)

∇η0J =∇η0Jη + ∇η0Jo = Q−1[η0 − ηb] + η∗(t0), (17b)

as usual, backward integration of the adjoint models (16b) and (16c) from timetn → t0,
provides us the values of initial adjoint states:x∗(t0) andη∗(t0). Therefore the gradient
in weak constraint VDA is given by(∇x0J ,∇η0J )T . Comparing this to the gradient in
strong constraint VDA, which was only∇x0J , the size of the optimization problem is
doubled. Recall thatT was set equal toI, hence the size of the initial ME control vector,
η∗(t0) is equal to size of the initial model state control vector,x0.

In strong constraint version of VDA we used a square-root formulation for the back-
ground error covariance matrix,B, and transformed the space in which minimization
was performed, such that there was no need for calculatingB−1. In Appendix B we
provide a similar treatment which involves bothB and the ME covariance matrix,Q,
thereby circumventing the need to specifyB−1 andQ−1.

Now we address possible approaches to model the evolution of ME, using different
forms of the mapping,Φ[η(t), x(t)], which maps the space of state variables,x and the
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space of ME,η, on-to η only. As noted above, this mapping couples the evolution of
the adjoint variables corresponding to the model states and ME variables, and it also
increases the complexity involved in the backward integration of the adjoint models,
Eq. (16). To the best of our knowledge, the issue of model errors in solutions of inverse
problems using high resolution advection schemes has not been addressed as yet, hence
to begin with, in this article we assume that∂Φ

∂x = 0, i.e,Φ[.] maps ME on-to itself. This
assumption significantly simplifies the adjoint model equations, since the evolution of
x∗ is unchanged, and we can concentrate only the evolution of ME and its corresponding
adjoint state.

The strong constraint VDA can significantly reduce the component of forecast
errors due to inaccurate specification of model initial conditions. Therefore through
weak constraint VDA, we aspire to further reduce the forecasting errors by reduction of
errors such as those arising from discretization. We have used a range of schemes which
have different dissipative and dispersive errors, the unconstrained van Leer being most
dissipative among all three of the advection schemes and the PPM scheme, which is well
known to be least dissipative and dispersive. Hence we expect that efficient modeling
of the evolution of ME should provide further improvement of results obtained using
the unconstrained van Leer scheme, for example. Note that other causes of model error
such as those in limited area models due to mis-specification of boundary conditions can
be tackled by following the approach used in ZZ05. Based on our experience about the
evolution of forecast errors, we can say that they exhibit a trend of anywhere between
linear to exponential growth. Hence we desire to modelη(t) to be an increasing function
of time. Since the ME evolution is given by the following equation,

η(t0) = η0,
dη

dt
= Φ[η(t)],

the rate of increase ofη(t) in time is given by the particular form ofΦ[η]. If Φ[η] < 0, ∀η
then the ME decreases in time, ifΦ[η] = 0, ∀η then ME is constant in time, and
if Φ[η] > 0, ∀η then ME increases in time. We considered all these possibilities and
investigated the following three forms ofΦ,

1. Decreasing ME,Φ[η] =−βη,
2. Constant ME,Φ[η] = 0,
3. Exponentially increasing ME,Φ[η] = γη,

whereβ andγ are constants, and in our numerical results we specifiedβ = 0.2/∆t, and
γ = 0.01/∆t. We used the same termination criteria as in Eq.(10),

‖(∇J )k‖ ≤ EPS ·MAX[1, (‖xk(t0)‖+ ‖ηk(t0)‖)],

where the gradient now includes the model error information,∇J = (∇x0J ,∇η0J )T ,

and ηk(t0) is the optimal initial state vector at thekth. minimization iteration. Note
that since the size of the gradient vector has doubled, the size of the Hessian of the
cost functional is increased by four times. Due to the monotonicity criteria, increasing
the size of the Hessian increases its condition number, which implies that a larger
number of minimization iterations would have to be performed to achieve the same
termination criteria (the same value ofEPS was used in both strong and weak VDA
for comparison sake). In fig.5 we provide a comparison of the RMSE in geopotential
height field after data assimilation using above forms of the ME for the unconstrained,
constrained van Leer and PPM schemes (though not shown, the RMSE in wind fields
was significantly reduced using different forms of ME). Clearly inclusion of ME
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provides further reduction in forecast errors. As we said earlier, the model errors usually
increase in time, therefore as expected the results obtained using the decreasing form of
ME are inferior to those obtained with the other two forms. This conclusion is further
substantiated by the fact that since the PPM scheme is least dissipative (compared to
the van Leer schemes) the decreasing form of ME yields the same results as given by
the strong constraint VDA. Though the constant form of ME is very simple, the results
obtained using the van Leer schemes indicate that it yields results comparable to the
increasing form. Noteworthy is the fact that in the case of PPM scheme, the increasing
form is the best. To indicate that the inclusion of ME positively impacts DA via efficient
preconditioning and weak constraint VDA, we provide a plot ofJo versus the number of
cost functional evaluations using the constant ME form and the unconstrained van Leer
scheme in fig.6. Note the markedly improved fit of model states and observations using
even the simplest form of constant ME. Figures7(a)- 9(a) show the differences in the
geopotential height field between model forecast and observation at forecast verification
time, T+30 for various forms of model error using the PPM advection scheme (though
not shown, the van Leer schemes yielded similar results). Note the improvement in
forecast using the ME, when compared to the strong constraint VDA (i.e, with no
ME), fig. 4. In figures7(b)- 9(b) we show isolines of different initial model error state
corresponding to the geopotential height field for the different forms of ME and PPM
advection scheme. The decreasing form of ME is very dispersed when compared to the
localized nature of the other two forms. As expected the obtained initial ME state for
the constant and increasing forms with the PPM scheme is even more localized than
that obtained with the van Leer schemes, indicating the lack of dissipative effect with
the PPM scheme.

4. SUMMARY AND CONCLUSIONS

In this work we have shown that various high resolution advection schemes such
as unconstrained, constrained van Leer and PPM provide different forecasting errors
in a twin experiment framework. Two principal causes for forecast errors being the
erroneous specification of model initial conditions and modeling errors. Various strong
constraint VDA (which does not include model error) experimental results obtained
using different advection schemes indicate that a mere change in the advection scheme
alone provides more than50% reduction in forecast RMSE. Next we studied in depth
the nature of modeling errors and suggested a decreasing, constant and increasing in
time forms of ME. Implementation of these forms in a weak constraint VDA framework
yielded a further reduction in forecast errors. If it is a-priori known (perhaps through
forecasts or numerical analysis using 1-D cases) that dissipative schemes were used
for weak VDA, then even the simplest forms of ME, such as a constant in time form
provides significantly better results. For highly accurate advection schemes such as the
PPM scheme, the increasing form of ME is the best (when tested in the framework
of a twin experiment). As such, based on the results obtained from our preliminary
investigation of impact of various forms of ME in the context of weak VDA, the
increasing form of model error is a good candidate for further research on this topic.
To sum up, three different forms of ME using high resolution advection schemes in the
presence of non-linear advection terms were studied in both strong and weak constraint
VDA framework.

A discussion of related topics of future research is provided in what follows. For
the sake of simplicity in the implementation of weak VDA, we selected forms of ME
which were independent of the model state, i.e,Φ[η, x] = Φ[η]. However at the expense
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of extra computational work and developmental challenges, one could consider the
tangent linear model (TLM) to beΦ, such a case was studied in KF framework by
Dee and Da Silva (1998). Recall that we used the first order optimality criteria to
derive the adjoint equations which provided us the means to obtain the gradient of
the cost functional with respect to the control variables. But if the TLM is used for
modeling the evolution of ME, i.e,Φ = ∂M

∂x then one also needs to specify the action
of [∂Φ

∂x ]T and [∂Φ
∂η ]T on η∗ (the adjoint state corresponding to model error variables)

which amounts to using second order information, see Le Dimet et al. (2002). The
complexity of such a second order adjoint model certainly depends on the complexity
of the NWP model as well as the equation used for the evolution of ME. The second
order optimality criteria provide the necessary and sufficient conditions for extrema of
the cost functional, whereas first order criteria are only necessary but not sufficient.
Also availability of the Hessian (of the cost functional) information, via Hessian/vector
product obtained from the second order adjoint model, speeds up the minimization
process, since implementation of the Newton methods is now possible.

Another topic of further research addressing improvement of the models used for
modeling the evolution of ME can be derived by using the additive property in both
weak and strong constraint versions of VDA (see Li and Navon 2001). We can separate
the observations into a few subsets and perform VDA for each subset (see Jarvinnen et
al. 1996). Same can be done with the model error, provided errors are uncorrelated in
time, allowing model error to adjust within a smaller time window. Hence, this could
be beneficial for better estimation of model errors. This is referred to as the property of
consistent optimality by Li and Navon (2001).
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TABLE 1. L IST OF ACRONYMS

Acronym Definition

ECMWF European Center for Medium-Range Weather Forecasts
hPa Hectopascals

RMSE Root-mean-squared error
UTC Universal time coordinate
PPM Piecewise parabolic method
T−06 Data set from ERA-40 reanalysis project valid for 00 UTC 2 February 2001
T00 Data set obtained by6 hour integration ofT−06

T+06 12 hour integration ofT−06

T+12 18 hour integration
T+18 24 hour integration
T+24 30 hour integration
T+30 36 hour integration
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Figure 1. RMSE in the geopotential height and wind fields for different advection schemes.
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Figure 3. RMSE in the geopotential height fields for different advection schemes before and after DA in strong
constraint form (a) Unconstrained Van Leer (b), Constrained van Leer (c), PPM schemes
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Figure 4. Isolines of differences in geopotential height field between model forecast using PPM scheme for
advection and observations atT+30, forecast verification time (a), Usingxb (b), using initial condition obtained

after strong constraint data assimilation
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Figure 5. RMSE in the geopotential height fields for different advection schemes with different forms of model
error (a) Unconstrained Van Leer (b), Constrained van Leer (c), PPM schemes
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Figure 7. (a) Isolines of differences in geopotential height field between model forecast using optimized initial
conditions obtained after weak constraint VDA (decreasing in time form of ME) and the PPM advection scheme,

(b) initial model error state corresponding to the geopotential height field
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Figure 8. (a) Isolines of differences in geopotential height field between model forecast using optimized initial
conditions obtained after weak constraint VDA (constant ME) and the PPM advection scheme, (b) initial model

error state corresponding to the geopotential height field
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Figure 9. (a) Isolines of differences in geopotential height field between model forecast using optimized initial
conditions obtained after weak constraint VDA (increasing in time form of ME) and the PPM advection scheme,

(b) initial model error state corresponding to the geopotential height field
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APPENDIX A

Description of the background error covariance operator
Following Eq. (8) the strong constraint VDA cost functional is given by,

J = Jb + Jo.

A static-in-timeB is constructed in the grid point space as an operator, which is based on
the formulation provided by Weaver and Courtier (2001); Derber and Bouttier (1999).

Let δx = x(t0)− xb, and define a transformation,v = B−1/2 δx, which implies
that δx = B1/2v. Where theB1/2 is taken to be any square-root matrix, such that
B = B1/2 BT/2; BT/2 denotes the transpose ofB1/2. Therefore the background cost
functional can be rewritten as,

Jb =
1
2
δxT B−1 δx =

1
2
δxT (B1/2 BT/2)

−1
δx =

1
2

vT v.

Hence the contribution to the gradient of the cost functional,J from the back-
ground cost functional is equal to∇v Jb = v, and to the Hessian of the cost functional,
∇2

v Jb = I. At the beginning of the minimization,v = δx = 0, such that the initial guess
for x(t0) is xb. This transformation of variables preconditions the minimization problem
for faster convergence of the minimization algorithm. An ideal preconditioning is ob-
tained if the Hessian matrix is an identity matrix. A good approximation to this is to
ensure that the Hessian ofJb is equal toI, which is indeed the case here, since the
minimization is performed in thev space. To summarize,

J = Jb + Jo =
1
2
[x(t0)− xb]

T
B−1[x(t0)− xb] + Jo =

1
2

vT v + Jo,

whereδx = x(t0)− xb, andv = B−1/2 δx, which impliesδx = B1/2v. Therefore gradi-
ent of the cost functional with respect tov is given by,

∇v J = v +∇v Jo = v + BT/2 ∇x0 Jo.

Thus every minimization iteration requires application ofB1/2 to obtain the analysis
incrementδx from v and BT/2 to get the gradient∇v Jo from ∇x0 Jo (which is
computed by a single integration of the adjoint model backward in time). As evident,
we do not require inverse ofB in the above formulation.

The model variables(h, u, v) are partitioned into balanced and unbalanced com-
ponents. The so-called balancing operator,K b acts on the unbalanced components of
the model variables and in-turn,K b = K’ b + I. Following Vidard et al. (2004),K’ b is
formulated using the linear balance equations, based on geostrophic balance (written in
spherical coordinates) and hydrostatic hypothesis.

Geostrophic balance:

u = − 1
ρ f

[
1
a

∂p

∂θ
],

v =
1

ρ f
[

1
a cos θ

∂p

∂λ
].

Hydrostatic hypothesis: p = ρ g h.
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Which implies,

u = − g

f
[
1
a

∂h

∂θ
],

v =
g

f
[

1
a cos θ

∂h

∂λ
].

Therefore

K b = K’ b + I =

 I 0 0
− g

a f
∂
∂θ I 0

g
a f cos θ

∂
∂λ 0 I


which is a lower triangular matrix, since our control vector is of the form(h, u, v)T .

Remark: At the North and South poles, one sided differences have been used
for computing the above derivative with respect to the latitude and at the equator,
whereθ = π/2, we have used the average values of the derivative (with respect to the
longitude) from the two neighboring latitude circles, above and below the equator.

Using the balance operator, we can writeB = K b Bu KT
b , where Bu is a block

diagonal error covariance matrix for the unbalanced component of the variables (see
Weaver and Courtier (2001)), which implies that the cross-covariances between the
unbalanced variables is taken to be negligible. ThusBu = Σb C Σb, whereΣb is a
block-diagonal matrix of the background-error variances in the grid point space, such
that the diagonal entries represent error variances at every grid point (in this work, we
prescribedΣb = [2000 I, 100 I, 100 I]).

C is a symmetric matrix of background-error correlations for the unbalanced
component of the variables. Assuming thatC is block-diagonal, which is a valid
assumption, sinceBu has already been assumed to be block-diagonal, we obtain the
square-root factorizationC = C1/2 CT/2.

Thus the square-root factorization of the background error covariance can be written
as,

B = K b Bu KT
b = K b (Σb C Σb) KT

b = Kb (Σb C1/2 CT/2Σb) KT
b (A.1)

= (K b Σb C1/2) (CT/2Σb KT
b )

= B1/2 BT/2.

Notice that the above formulation ensures thatB is symmetric and positive definite,
both of these properties are usually required to be satisfied by any preconditioning
matrix. The analysis increment is given byδx = B1/2v = K b Σb C1/2v. SinceC is
block-diagonal, the operationC1/2 v can be split into individual operatorsC1/2

α vα,
that act independently on different components of the variablev, such asvα. For each
variable, the univariate operator can be factorized intoCα = C1/2

α CT/2
α . The procedure

suggested by Weaver and Courtier (2001) has been implemented to model the univariate
correlation operator, has been implemented to model the univariate correlation operator,
Cα as an isotropic diffusion operator, assuming Gaussianity with a decorrelation length
equal to500 km.

We considered height field which was comprised of a single Dirac delta pulse
located at equator and longitude180o, and prescribed no wind field, the action ofB on
such a field is shown in Fig.A.1 (a). We see the effect of the correlation operator on the
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Dirac pulse and also on the wind field obtained under geostrophic balance assumption
(Fig. A.1 (b)), which is parallel to the isobars of the pressure. Since there is ahigh
pressureat the center, the direction of the wind is clockwise in the Northern hemisphere
and anti-clockwise in the Southern hemisphere; at the equator due to the balancing of
the pressure gradient and Coriolis forces, the wind blows straight.
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Figure A.1. Result obtained by operating withB on a single Dirac delta pulse in the height field (a), isolines of
the height field (b), geostrophic wind plotted along with the isolines of the height field.
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APPENDIX B

Square-root transformation used forB andQ
We have extended the procedure described in the previous Appendix A to include

model error control vector, thereby we achieve all the preconditioning properties for the
minimization process we discussed earlier (this procedure has also been described by
VPLD04). This approach circumvents the need to specify inverses of the background
and model error covariance matrices via a transformation which is similar to the one
described earlier for the strong constraint VDA which included onlyJb andJo in the
cost functional. Let

z =
[

x
η

]
,

such that

δz =
[

x0 − xb

η0 − ηb

]
.

Recall that the sum of background and model error cost functionals (Jb and Jη,
respectively) is given by,

Jb + Jη =
1
2
[x0 − xb]T B−1 [x0 − xb] + [η0 − ηb]T Q−1 [η0 − ηb]

=
1
2
δzT

[
B−1 0
0 Q−1

]
δz (B.1)

As in appendix A, letB1/2 and Q1/2 be any square-root matrices such thatB =
B1/2BT/2, Q = Q1/2QT/2, and let

w =
[

B−1/2 0
0 Q−1/2

]
δz

⇒ δz =
[

B1/2 0
0 Q1/2

]
w. (B.2)

The above transformation from(x, η) → w is similar to the previously described
transformation:x → v, which involvedB1/2 only. Using the above equations (B.1) and
(B.2),

Jb + Jη =
1
2

wT w,

hence the entire cost functional,

J = Jb + Jη + Jo

=
1
2

wT w + Jo, (B.3)

and the gradient of the cost functional with respect to the transformed variable,w is
given by

∇w J = w +∇w Jo

= w +
[

BT/2 0
0 QT/2

] (
∇x0 Jo

∇η0 Jo

)
. (B.4)
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We have modeledQ as a block diagonal matrix,

Q =

[
Qhh 0 0
0 Quu 0
0 0 Qvv

]
,

such that each of the blocks is an univariate Gaussian correlation operator and has a
square-root decomposition given by,

Qαα = ΣqCαΣq = ΣqCα
1/2Cα

T/2Σq = (ΣqCα
1/2) (ΣqCα

1/2)
T

= Q1/2
αα QT/2

αα ,

whereα = h, u, v; Σq is a diagonal matrix of variances (we prescribedΣq = 10−2Σb)
andCα is an isotropic diffusion operator, construction of which was described in the
previous appendix. The most simplistic model error covariance matrix is a diagonal
matrix, which implies that the analyzed model error increment at any specific grid point
does have any influence on the increments at the neighboring grid points. Alternatively
a diffusion operator provides such an increment in a localized region (given by the
length scale of diffusion) inexpensively. We have not used the balance operator,K b in
the above construction ofQ. The goestrophic balance and hydrostatic hypothesis which
were used in the construction ofK b are not required forQ since we do not have the same
information about model error covariances as we have for background error covariances;
therefore usage ofK b in specification ofQ will only involve extra computational work.

At the beginning of minimization, the initial guess forx0 = xb andη0 = ηb, there-
forew = δz = 0. Every minimization iteration (carried out inw space) requires applica-
tion of B1/2, Q1/2 to obtain the analysis incrementδz from w (Eq. (B.2)) and the adjoint
operators,BT/2, QT/2 to get the gradient∇wJo from (∇x0Jo,∇η0Jo)

T (Eq. (B.4)).
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