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1 Introduction

Sequential data assimilation is a relatively novel and versatile multidisciplinary
methodology. It combines observations of the current (and possibly, past) state
of a system with results from a mathematical model (the forecast) to produce
an analysis, providing ”the best” estimate of the current state of the sys-
tem. Central to the concept of sequential estimation data assimilation is the
propagation of flow dependent covariance errors.

In sequential estimation, the analysis and forecasts can be viewed of as proba-
bility distributions. The analysis step is an application of the Bayes theorem.
Advancing the probability distribution in time, in the general case is done by
the Chapman-Kolmogorov equation, but since it is unrealistically expensive,
various approximations operating on representations of the probability distri-
butions are used instead. If the probability distributions are normal, they can
be represented by their mean and covariance, which gives rise to the Kalman
filter (KF). However it is not feasible to store the covariance due to the large
number of degrees of freedom in the state, so various approximations based
on Monte-Carlo ensemble calculations are used instead.

In the present work we aim comparing standard ensemble Kalman filter (EnKF)
to the particle filter (PF) using various resampling strategies. In addition,
we compare the performance of each method in the presence of linear and
nonlinear observation operators which leads us to draw conclusion regarding
superiority of the particle filter vs EnKF.

While work on 4-D Var data assimilation using as model the Kuramoto-
Sivashinsky equation has been carried out by very few research workers (see
Protas et al. [19]), to the best of our knowledge only the work of Chorin and
Krause [26] has used Bayesian filters.

We further discuss issues of computational efficiency of the two methods taking
into account the additional effort required by PF due to various resampling
strategies.

The structure of the present work is as follows. After the introduction, we
present in section 2 the K-S equation and its numerical solution. In section 3
we present the formulation of the PF along with its various sampling strate-
gies. The formulation of the standard EnKF is presented as well. Section 4 is
providing discussion of the numerical experiments followed by a discussion of
their significance. Finally, section 5 contains summary and conclusions along
with directions for further research.
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2 The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (K-S) equation is an evolution equation in one
space dimension, with a Burgers nonlinearity, a fourth order dissipation term
and a second anti-dissipative term. It assumes the form

ut + uxxxx + uxx + uux = 0, (x, t) ∈ R × R
+ u(x, 0) = u0(x), x ∈ R (1)

The K-S equation models pattern formations in different physical contexts and
is a paradigm of low-dimensional behavior in solutions to partial differential
equations. It arises as a model amplitude equation for inter-facial instabilities
in many physical contexts. It was originally derived by Kuramoto and Tsuzuki
([5], [6]) to model small thermal diffusive instabilities in laminar flame fronts
in two space dimensions. It has also been derived in the context of angular-
phase turbulence for a system of reaction-diffusion modeling the Belouzov-
Zabotinskii reaction in three space dimensions. Sivashinsky([7],[8])derived it
independently to model small thermal diffusive instabilities in laminar flame
fronts. The equation also arises in modeling small perturbations from a refer-
ence Poiseuille flow of a film layer on an inclined plane [9], while Babchin et
al.[10] derived (1) as a general mechanism modeling the nonlinear saturation
of instabilities in flow films as in the Rayleigh-Taylor-type instability.

The K-S equation is non-integrable, and no explicit solutions exist. It is charac-
terized by a second-order unstable diffusion term, responsible for an instability
at large scales,a fourth-order stabilizing viscosity term, which provides damp-
ing at small scales; and a quadratic nonlinear coupling term which stabilizes
by transferring energy between large and small scales. This is readily apparent
in Fourier space, where one may write(1)with periodic boundary condition as

dûk

dt
= (k2 − k4)ûk +

i

2

∑
k′

k′ûk′ûk−k′ (2)

where

u(x, t) =
∑
k

ûk(t) exp(ikx), k = n
2π

L
, k′ = m

2π

L
, m, n ∈ Z, i =

√−1,

The zero solution is linearly unstable to modes with |k| < 1; whose number
is proportional to the bifurcation parameter L, are coupled to each other and
to damped modes at |k| > 1 through the non-linear term. In an effort to
characterize, understand and predict the spatially and temporally nontrivial
dynamical behavior including chaos of K-S, numerical simulation has been
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conducted by Hyman and Nicolaenko [11] and by Kevrekidis et al.[12] to cite
but few.

Foias et al. [13], Nicolaenko et al.[14] and Temam [16] established the exis-
tence of a unique compact inertial manifold for the K-S equation. They also
demonstrated that the K-S equation is strictly equivalent to a low-dimensional
dynamical system.That is, all orbits are attracted exponentially to a finite-
dimensional, bounded, compact, smooth manifold and the dynamics take a
place in this “inertial” manifold. This implies that the transition to chaos of the
K-S equation can be analyzed using the tools developed for low-dimensional
dynamics systems.

Desertion and Kazantzis [17] used the K-S equation to examine the perfor-
mance improvement of a class of nonlinear transport processes subject to
spatio-temporally varying disturbances through the employment of a compre-
hensive and systematic actuator activation policy. Lee and Tran [18] obtained
a reduced-order system that can accurately describe the dynamics of the K-S
equation by employing an approximate inertial manifold and a proper orthog-
onal decomposition. From this resulting reduced-order system, they designed
and synthesized the feedback controller for the K-S equation. Recently, Protas
et al.[19] came up with a comprehensive framework for the regularization of
adjoint analysis in multiscale PDE systems. They examined the regularization
opportunities available in the adjoint analysis and optimization of multiscale,
and applied the proposed regularization strategies to the K-S equation

2.1 Mathematical Formulation

We consider the solutions of

ut + uxxxx + uxx + uux = 0, (x, t) ∈ R × R
+ u(x, 0) = u0(x), x ∈ R (3)

which are space periodic of period L, u(x, t) = u(x + L, t), L > 0.

Let Ω ⊂ R, we denote by

L
2(Ω) =

⎧⎨
⎩u|u : Ω −→ R, u measurable and

∫
Ω

|u(x)|2dx < ∞
⎫⎬
⎭ ,
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the Hilbert space of square integrable function over Ω endowed with the norm

‖u‖2 =

⎧⎨
⎩

∫
Ω

|u(x)|2dx

⎫⎬
⎭

1/2

,

and by

H
4(Ω) =

{
u|u : Ω −→ R, u measurable and

diu

dxi
∈ L

2(Ω), for i = 0, · · · , 4
}

,

the fourth-order Sobolev space with the norm, see Adams [1] and also Mazya
[2],

‖u‖4,2 =

⎧⎨
⎩‖u‖2

2 +
4∑

i=1

∥∥∥∥∥diu

dxi

∥∥∥∥∥
2

2

⎫⎬
⎭

1/2

.

Finally, we denote by H
4
per(Ω) the closure of C ∞

per(Ω) for the H
4-norm. C ∞

per(Ω)
is the subset of C ∞(R) of Ω-periodic functions.
We set

A =
d4

dx4
, H =

{
u ∈ L

2(
−L

2
,
L

2
)
}

and

D(A ) = H
4
per(

−L

2
,
L

2
) ∩ H , V = D(A 1/2).

H is a Hilbert space, the dissipative operator A is a linear self-adjoint un-
bounded operator in H with domain D(A ) and dense in H . Assuming A
positive closed and that A −1 is compact, V is a Hilbert space endowed with
the norm |A 1/2 · |. Using Leray’s method (see Lions[3], Temam[4]), the K-S
equation (1) with initial condition u0 ∈ H has a unique solution defined for
all t > 0 and such that

u ∈ C (R+; H ) ∩ L
2(0, T ; V ) ∀T > 0.

Moreover, if u0 ∈ V , then

u ∈ C (R+; V ) ∩ L
2(0, T ; D(A )) ∀T > 0.
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Furthermore, it has been proved in Nicoleanko et al. ([14],[15]) that only the
odd solutions of (1) are stable for large t. Consequently, the subspace H is
restricted to

H =
{
u ∈ L

2(
−L

2
,
L

2
), u is odd

}

2.2 Numerical Solution of the K-S Equation

We consider the one-dimensional PDE with initial data as used in [20] and
[21]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = −uxxxx − uxx − uux, x ∈ [0, 32π]

u(x + L, t) = u(x, t), L = 32π, ∀t > 0

u(x, 0) = cos( x
16

)
(
1 + sin( x

16
)
) (4)

The system (4) is known to be stiff. In fact, the stiffness is due to rapid
exponential decay of some modes (the dissipative part), the stiffness is also
due to rapid oscillations of some modes (the dispersive part).

As the equation is periodic, a Fourier spectral method is used for spatial
discretization. Despite the remarkable success of the spectral and pseudo-
spectral methods for a wide range of applications [22] and [23], the set of
ODEs for the mode amplitudes is stiff, due to the time scale associated with
the nth mode scales as O(n−m) for large n, where m is the order of the highest
spatial derivative, so that the highest modes evolve on short time scales.

In order to carry out numerical solution of K-S, a modification of the exponen-
tial time-differencing fourth-order Runge-Kutta method (ETDRK4) has been
used. This method has been proposed by Cox and Matthews [25] and further
modified by Kassam and Trefethen [20]. A short review of the ETDRK4 is as
follows:

First we transform (4) to Fourier space

ût = −ik

2
û2 + (k2 − k4)û, (5)

set

L û(k) = (k2 − k4)û(k), N (û, t) = N (û) = −ik

2
(F((F−1(û))2)), (6)
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L and N stand for linear and nonlinear operators, respectively. F denotes
the discrete Fourier transform. Write (5) in an operational form

ût = L û + N (û, t). (7)

Define v = e−L tu where e−L t the integrating factor to obtain

vt = e−L tN (eL tv). (8)

Let h denote the time step length, then integrating (8) we obtain

un+1 = eL hun + eL h

h∫
0

e−L τN (u(tn + τ), tn + τ)dτ, (9)

where un is the solution at the time t = nh and 0 < τ < h.
The equation (9) is exact, and the various order EDT schemes differ only on
the way one approximates the integral in (9). Cox and Matthews [25] proposed
the generating formula

un+1 = eL hun + h
s−1∑
m=0

gm

m∑
k=0

(−1)k

⎛
⎜⎝ m

k

⎞
⎟⎠ Nn−k (10)

where s is the order of the scheme. The coefficients gm are provided by the
recurrence relation

⎧⎪⎨
⎪⎩

L (hg0) = eL h − I,

L (hgm+1) + I = gm + 1
2
gm−1 + 1

3
gm−2 + · · · + 1

m+1
g0, m ≥ 0.

(11)

We solve the K-S equation employing 64 Fourier spectral modes and integrate
from t = 0 to t = 250 (nondimensional time units) using the EDTRK4 time
stepping. The time evolution for the K-S equation is depicted in (Fig. 1), while
the time evolution for the K-S at four different locations is presented
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Fig. 1. Contours for the time evolution for the K-S equation
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Fig. 2. K-S solution at different spatial positions
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3 Data Assimilation for the K-S Equation

Data assimilation is the process by which observational data distributed in
space and time are fused with mathematical model forecast information. The
probabilistic state space formulation and the requirement for the updating of
information when new observations are encountered are ideally suited for the
Bayesian approach, and thus constitute an appropriate framework for data
assimilation. The Bayesian approach and in particular ensemble or particle
filtering methods are a set of efficient and flexible Monte-Carlo methods to
solve the optimal filtering problem. Here one attempts to construct the pos-
terior probability density function (PD) of the state based on all available
information, including the set of received observations. Since this PD embod-
ies all available statistical information, it may be considered to be a complete
solution to the estimation problem.

In the field of data assimilation, there are only few contributions in sequential
estimation (EnKF or PF filters) using the K-S equation. Chorin and Kruse
[26] used particle filters and proposed a strategy for reducing the size of the
system of equations to be solved for evolving the particles by adaptively finding
subsets of variables that do not need to be recomputed and solving only in
directions in which the dynamic system is expanding. In the work of Hu and
Temam [27], a robust boundary control method for the K-S equation has been
proposed, and a data assimilation problem corresponding to the K-S equation
has been considered.

3.1 Sequential Bayesian Filter

The sequential Bayesian filter employs a large number N of random samples
or “particles” advanced in time by a stochastic evolution equation, to approx-
imate the probability densities. In order to analyze and make inference about
the dynamic system at least a model equation along with an observation op-
erator are required. First, a model describing the evolution of the state with
time, and an observation operator for noisy observations of the state. Generi-
cally, stochastic filtering problem is a dynamic system that assumes the form

ẋt = f(t,xt, ut,vt) (12)

zt = h(t,xt, ut,nt) (13)

The equation (12) is state equation or the system model, (13) is the observation
operator equation, xt is the state vector, zt the observation vector and ut is the
system input vector serving as the driving force. vt and nt are the state and
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observation noises, respectively. In practical application, however, we are more
concerned about the discrete-time filtering, and we consider the evolution of
the state sequence {xk, k ∈ N}, given by

xk = fk(xk−1,vk−1), (14)

where the deterministic mapping fk : R
nx × R

nd −→ R
nx is a possibly non-

linear function of the state xk−1, {vk−1, k ∈ N} is an independent identically
distributed (i.i.d) process noise sequence, nx, nd are dimensions of the state
and process noise vectors, respectively, and N is the set of the natural numbers.
The objective is to recursively estimate xk from observations

zk = hk(xk,nk), (15)

where hk : R
nx × R

nn −→ R
nz is a possibly non-linear function, {nk, k ∈ N}

is an i.i.d. observation noise sequence, and nx, nn are dimensions of the state
and observation noise vectors, respectively.

We denote by z1:k the set of all available observations zi up to time t = k,
z1:k = {zi|i = 1, · · · , k}. From a Bayesian point of view, the problem is to
recursively calculate some degree of belief in the state xk at time t = k,
taking different values, given the data z1:k up to the time t = k.Then the
Bayesian solution would be to calculate the PDF p(xk|z1:k). This density will
encapsulate all the information about the state vector xk that is contained in
the observations z1:k and the prior distribution for xk.
Suppose that the required PDF p(x|z1:k−1) at time k − 1 is available. The
prediction stage uses the state equation (14) to obtain the prior PDF of the
state at time k via the Chapman-Kolmogorov equation

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (16)

The probabilistic model of the state evolution, p(xk|xk−1), is defined by the
state equation (14) and the known statistics of vk−1.

At time t = k, a measurement zk becomes available, and it may be used to
update the prior via the Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (17)

where the normalizing constant

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk. (18)
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depends on the likelihood function p(zk|xk), defined by the measurement equa-
tion (15) and the known statistics of nk.

The relations (16) and (17) form the basis for the optimal Bayesian solution.
This recursive propagation of the posterior density is only a conceptual so-
lution. It cannot be determined analytically. Solutions exist only in a very
restrictive set of cases like that of the Kalman filters for instance. (namely, if
fk and hk are linear and both vk and nk are Gaussian)

3.2 Particle Filters

Particle filters (see [30], [31], [32] and [28]) approximate the posterior densi-
ties by population of states. These states are called ”particles”. Each of the
particles has an assigned weight, and the posterior distribution can then be
approximated by a discrete distribution which has support on each of the par-
ticles. The probability assigned to each particle is proportional to its weight.
The different (PF) algorithms differ in the way that the population of particles
evolves and assimilates the incoming observations.

We use the Sampling Importance Resampling (SIR) or the Bayesian bootstrap
filter of Gordon et al. [33] see also Berliner and Wikel([28],[29]). The SIR
algorithm generates a population of equally weighted particles to approximate
the posterior at some time k. This population of particles is assumed to be an
approximate sample from the true posterior at that time instant.

The PF algorithm proceeds as follows:

• Initialization: The filter is initialized by drawing a sample of size N from
the prior at the initial time. The algorithm is then started with the filtering
step.

• Preliminaries: Assume that {xi
k−1}i=1,···,N is a population of N particles,

approximately distributed as in an independent sample from p(xk−1|z1:k−1)
• Prediction Sample N values, {w1

k, · · · , wN
k }, from the distribution of vk.

Use these to generate a new population of particles, {x1
k|k−1,x

2
k|k−1, · · · ,xN

k|k−1}
via the equation

xi
k|k−1 = fk(x

i
k−1,v

i
k) (19)

• Filtering: Assign each xi
k|k−1, a weight qi

k. This weight is calculated by

qi
k =

p(zk|xi
k|k−1)∑M

j=1 p(zk|xi
k|k−1)

(20)

This defines a discrete distribution which, for i ∈ {1, 2, · · · , N}, assigns
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probability mass qi
k to element xi

k|k−1

• Resampling: Resample independently N times, with replacement, from
the distribution obtained in the filtering stage. The resulting particles,
{xi

k}i=1,···,N , form an approximate sample from p(xk|z1:k) .

The method outlined above can be justified as follows. If the particles at time
t = k − 1 were an i.i.d sample from the posterior at time t = k − 1, then the
predictive stage just produces an i.i.d. sample from the prior at time t = k.
The filtering stage can be viewed as an importance sampling approach to
generate an empirical distribution which approximates the posterior.

The proposal density is just the prior p(xk|z1:k−1), and as a result of Bayes
formula, we obtain

p(xk|z1:k−1, zk) ∝ p(xk|z1:k−1)p(zk|xk), (21)

the weights are proportional to the likelihood p(zk|xk). As N tends to infinity,
the discrete distribution which has probability mass qi at point xi

k|k−1, con-
verges weakly to the true posterior. The resampling step is a crucial and com-
putationally expensive part in a particle filter. It is used to generate equally
weighted particles aimed at avoiding the problem of degeneracy of the algo-
rithm, that is, avoiding the situation that all but one of the weights are close
to zero. The performance of the algorithm is affected by the proper choice of
the resampling method. Generically, it is implemented as follows:

• Draw N particles {x̃i
k}i=1,···,N from the uniform distribution.

• Assign the resampled particles {x̃i
k}i=1,···,N to {xi

k}i=1,···,N and assign equal
weights 1

N
to each particle.

In addition to the systematic resampling proposed by Kitagawa [34] and also
by Liu and Chen [35] which is preferred by many authors ([32],[31]), both
in terms of resampling quality and computational complexity, we also imple-
mented a stratified resampling to emphasize the importance of resampling for
the particle filter.

3.3 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was first proposed by Evensen [37] and
further developed by Burgers et al. [38] and Evensen ([39],[40]). It is related to
particle filters in the context that a particle is identical to an ensemble member.
EnKF is a sequential filter method, which means that the model is integrated
forward in time and, whenever observations are available, these are used to
reinitialize the model before the integration continues. The EnKF originated as
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a version of the Extended Kalman Filter (EKF) ([43],[44]) for large problems.
The classical KF [36] method is optimal in the sense of minimizing the variance
only for linear systems and Gaussian statistics. Similar to the particle filter
method, the EnKF stems from a Monte Carlo integration of the Fokker-Planck
equation governing the evolution of the PDF that describes the prior, forecast,
and error statistics. In the analysis step, each ensemble member is updated
according to the KF scheme and replaces the covariance matrix by the sample
covariance computed from the ensemble. However, the EnKF presents two
potential problems namely:

1) Even though the EnKF uses full non-linear dynamics to propagate the
forecast error statistics, the EnKF assumes that all probability distributions
involved are Gaussian.
2) The updated ensemble preserves only the first two moments of the posterior.
Let p(x) denote the Gaussian prior probability density distribution of the state
vector x with mean μ and covariance Q

p(x) ∝ exp
(−1

2
(x − μ)TQ−1(x − μ)

)

We assume the data z to have a Gaussian PDF with covariance R and mean
Hx, where H is the so-called the observation matrix, is related to h of equation
(13), and where the value Hx assumes the value of the data z would be for
the state x in absence of observation errors. Then the conditional probability
or likelihood p(z|x) assumes the form

p(z|x) ∝ exp
(−1

2
(z −Hx)TR−1(z −Hx)

)
.

According to the Bayes theorem the posterior probability density follows from
the relation

p(x|z) ∝ p(z|x)p(x). (22)

The basic formulation of the EnKF ([37], [38], [42] [41], [48]) may be divided
into three steps, as follows:

• Setting and matching

� Define the ensemble

X = [x1, · · · ,xN ] (23)

be an nx × N matrix whose columns are a sample from the prior distri-
bution. N being the number of the ensemble members.
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� Form the ensemble mean

X̄ = X · 1N , (24)

where 1N ∈ R
N×N is the matrix where each element is equal to 1.

� Define the ensemble perturbation matrix X ′ and set the R
nx×nx ensem-

ble covariance matrix C

X ′ = X − 1

N
X̄ , (25)

C =
X ′X ′T

N − 1
, (26)

• Resampling

� Generate

Z = [z1, · · · , zN ] (27)

be an nz × N matrix whose columns are a replicate of the measurement
vector z plus a random vector from the normal distribution N (0,R).

� Form the R
nz×nz measurement error covariance

R =
ZZ t

N − 1
, (28)

• Updating Obtain the posterior X p by the linear combinations of members
of the prior ensemble

X p = X + CHT (HCHT + R)−1(Z −HX ) (29)

The matrix

K = CHT (HCHT + R)−1 (30)

is the Kalman gain matrix. Since R is always positive definite( i.e. covariance
matrix), the inverse (HCHT + R)−1 exists. An easy computation shows that
the mean and covariance of the posterior or updated ensemble are given by

X̄ p = X p + K [z − (HX p + d)] , (31)

and

Cp = C − K
[
HCHT + R

]
KT , (32)
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the vector d which appears in (31) stems from the affine measurement relation

h(x) = Hx + d. (33)

In the case of nonlinear observation operators, a modification to the above
algorithm is advised. As presented in Evensen [39], let x̂ the augmented state
vector made of the state vector and the predicted observation vector (nonlinear
in this case).

x̂ =

⎛
⎜⎝ x

H(x)

⎞
⎟⎠ . (34)

Define the linear observation operator Ĥ by

Ĥ

⎛
⎜⎝ x

y

⎞
⎟⎠ = y (35)

and carry out the steps of the EnKF formulation in augmented state space x̂
and Ĥ instead of x and H. Superficially, this technique appears to reduce the
nonlinear problem to the previous linear observation operator case. However,
whilst the augmented problem, involving linear observation problem, is a rea-
sonable way of formulating the EnKF, it is not as well-founded as the linear
case, which can be justified as an approximation to the exact and optimal KF.

15



4 Numerical Experiments

4.1 Filtering with a Linear Operator

In order to compare PF with various sampling strategies to the standard
EnKF the following numerical experiments were carried out. We will start with
description of the numerical experiments with a linear observation operator.

For the PF, 2000 particles were employed for each of the experiments. The
observations were provided at a frequency consisting of one observation every
300 time steps. Each run was carried out for 250 non-dimensional time units
with a time step of Δt = 1/10. The number of Fourier modes in (2) was set
to 64 modes. The observation error standard deviation was taken to be

√
2.

In Fig.(3) we present the contour flow of the mean forecast solution of the K-S
equation. On the right hand side of the same figure, we have the equivalent
mean PF filtered solution and as one can observe, there is a strong similarity
between the two.

Fig.(4) illustrates two different (modes) locations for the above mentioned
PF experiment. The trends show an almost perfect matching between the
forecast and the PF filter results and this fact is further confirmed by the
small value of the variances between forecast and PF as depicted in Fig.(5).
We also present in Fig.(6) the root-mean-square (rms) error. The rms error is
calculated according to the relation

rms(x, t) =

√√√√ 1

Ns

Ns∑
i=1

(ui(x, t) − utrue(x, t))2, (36)

it is assumed in the rms equation 36 that the true analysis solution denoted
by utrue(x, t), is given by the forecast solution used to produce the observa-
tions. This is assumed acceptable as pointed out by Gleeson [46] and also by
Anderson and Anderson [45].

An identical setting of the time step and the observation operator has been
employed for the standard EnKF. The number of ensemble members employed
in EnKF has been set to 40. The observations are available every 70 model
time steps. In view of further experimentation the aim to assess the impact of
number of ensemble members

on EnKF, performance with a double number of ensemble members, i.e. 80
which was found to yield almost identical result. Hence we decided that us-
ing EnKF with 40 ensemble members was sufficient for the purpose of this
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Fig. 3. Contours of the forecast & PF filter K-S solution
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Fig. 4. Forecast and PF filter mean K-S solution at two different locations

experiment.

Presented in Fig.(7) is the contour flow of the mean forecast solution of the K-
S equation. On the right hand side of the same figure, we have the equivalent
mean EnKF solution. As in the PF case, a strong similarity between the two
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Fig. 5. Variances between the forecast and filtered mean K-S solution at two different
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was observed. As for the PF experiment, we added Fig.(8) to emphasize the
perfect matching between the forecast and the EnKF filtered solution at two
different locations. In Fig.(9) we combine the forecast, PF, and EnKF mean
solutions results on the same plot. These results point to the conclusion that
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Fig. 7. Contours of the forecast & EnKF filter K-S solution

for the case of linear observation operator the EnKF and PF results for the
K-S equation are in good agreement.

To conclude this subsection, it is of importance to emphasize that the two
resampling procedures used for the PF method, namely the systematic and
stratified resampling performed equally well in quality and computational
complexity. Similar conclusion has been drawn by Hol and al. [47]. In fu-
ture work, we shall further investigate the use of the merging particle filter
(MPF) see Nakano et al. [50], as a way to reduce the computational cost even
more.

4.2 Filtering with Nonlinear Observation Operator

A similar setting to the linear observation case in terms of number of ensemble
member and particles has been used to carry out numerical experiments. The
EnKF version tailored to nonlinear observation operator as described in sec-
tion 3 has been implemented and H(x) = x2 has been considered. From Fig.
(11), which represents the contours of the forecast and EnKF K-S solution,
one can easily see that EnKF does not provide good estimates in the case
of nonlinear observation operator applied to the K-S model. The discrepancy
between the forecast and EnKF is better seen in Fig.(12).

Similarly, we considered the nonlinear observation operator H(x) = x2 and
applied the PF to the K-S model. As expected, the PF method performed
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Fig. 8. Forecast and EnKF filter mean K-S solution at two different locations
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Fig. 9. Means of the forecast, EnKF and PF filtered K-S solution at different spatial
locations

well as shown in Fig.(13) and Fig.(12). We went further in experimenting
with the observation operator and considered the highly nonlinear observation
operator H(x) = exp x, here again PF did provide a good estimate. Fig.(13)
shows good agreement between the contours of the forecast and the PF filtered
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Fig. 11. Contours of K-S solution using EnKF filter in presence of nonlinear obser-
vation operator, the square observation operator

K-S solution. Fig.(16) which depicts the forecast and filtered means of the K-S
solution using SIR particle filter at two different spatial positions reinforces the
conclusion that the PF method is better suited to handle nonlinear observation
operator in the case of the K-S model.
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Fig. 12. Means of the forecast and the EnKF filtered K-S solution in the case of a
nonlinear observation operator

Fig. 13. Contours of the K-S solution using SIR particle filter for the square obser-
vation operator
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Fig. 14. Means of the K-S solution using SIR particle filter in the presence of non-
linear observation operator

Fig. 15. Contours of the K-S solution using SIR particle filter for the exponential
observation operator
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Fig. 16. Means of the K-S solution using SIR particle filter in the presence of non-
linear observation operator
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5 Summary & conclusions

We have presented a data assimilation study for the Kuramoto-Sivashinsky
equation. We have used the EnKF and PF methods as a sequential-based
methods for Bayesian filtering. For each of the methods, linear and nonlinear
observation operators have been employed and numerical experiments have
been carried out. For the PF filtering, two resampling technics served to avoid
the degeneration problem, which is inevitable in the particle filter (PF).

It was clear a priori that the EnKF is subject to two major drawbacks. One
of them is common to all Kalman filtering schemes applied to non-Gaussian
distributions. The other drawback is when a nonlinear relationship exists be-
tween a state and observed data. Here the EnKF is simply not effectual. The
experiments presented here reveal the poor performance of the EnKF filter-
ing in the case of the nonlinear observation operator. Even with the solution
proposed by Evensen [39], the SIR particle filter presents a clear superiority.
This issue is of high importance for atmospheric and oceanic data assimilation
where the observation operators are mostly nonlinear.
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