Synchronization of Pancreatic Islet Oscillations by Intrapancreatic Ganglia: A Modeling Study

Bernard Fendler, Min Zhang, Leslie Satin, Richard Bertram

Plasma insulin measurements from mice, rats, dogs, and humans indicate that insulin levels are oscillatory, reflecting pulsatile insulin secretion from individual islets. An unanswered question, however, is how the activity of a population of islets is coordinated to yield coherent oscillations in plasma insulin. Here, using mathematical modeling, we investigate the experimental evidence demonstrating intrapancreatic parasympathetic (cholinergic) ganglia and recent in vitro evidence that a brief application of a muscarinic agonist can transiently synchronize islets. We demonstrate using mathematical modeling that periodic pulses of acetylcholine released from cholinergic neurons is indeed able to coordinate the activity of a population or simulated islets, even if only a fraction of these are innervated. The role of islet-to-islet heterogeneity is also considered. The results suggest that the existence of cholinergic input to the pancreas may serve as a regulator of endogenous insulin pulsatility in vivo.