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Abstract. We show that the coupled continuum pipe flow model (CCPF)

for flows in karst aquifers is ill-posed in the sense that no reasonable solution

exists. We also demonstrate that Hua’s modified CCPF model is ill-posed in
3D although it is well-posed in two spatial dimensions. A new modification of

the original CCPF model that is consistent with basic physics is proposed and

its well-posedness is proved here. We believe that this is the first physically
relevant well-posed CCPF type model in 3D.

1. Introduction. Karst is a type of landscape that is formed by the dissolution
of a layer or layers of soluble bedrocks, including carbonate rocks, limestone and
dolomite. Karst regions contain aquifers that are capable of providing large supplies
of water. A karst aquifer, in addition to a porous limestone matrix, typically has
large cavernous conduits that are known to have great impact on groundwater flow
and contaminant transport within the aquifer [26].

Karst aquifers supply a significant portion of the drinking water in the United
States (about 40%) and are particularly crucial in states like Florida for which karst
aquifers provide more than 90% of the fresh water used [24]. Therefore the study of
flows in karst aquifers is of great importance to us, especially since the aquifers are
now being seriously threatened by over withdrawals and increasing contamination
[34, 26].

The mathematical study of flows in karst aquifers is a great challenge due to the
coupling of the flows in the conduits and the flows in the surrounding matrix, the
complex geometry of the network of conduits (pipes), the vastly disparate spatial
and temporal scales, the strong heterogeneity, and the huge associated uncertainty
with the data. Even for a small lab size conceptual model with only one conduit
(pipe) imbedded in a homogenous porous media (matrix), significant mathemat-
ically rigorous progress has been only achieved recently via the so-called coupled
(Navier) Stokes-Darcy model with the classical Beavers-Joseph interface boundary
condition [7] or various simplified interface conditions [10, 14, 15, 28].
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On the other hand, geologists have proposed various ad-hoc simplified models in
order to make progress. One of the most popular models is the so-called coupled
continuum pipe flow (CCPF) model where the conduits are simplified into a
network of one dimensional pipes [25, 3, 4, 8, 31]. Classical pipe flow formulas
(such as the Poiseuille formula in the laminar case) are used in each segment of
the network, a Kirchhoff type condition is imposed at each node where different
segments of the conduit network meet, and the pipe system is coupled with the
continuum system (matrix) through exchange of fluids at the discrete nodes of
the conduit system via a Barenblatt type relation. Indeed, this CCPF model has
been recently incorporated into the US Geological Survey’s popular groundwater
flow software system MODFLOW [33] where the flow in the conduit network is
termed conduit flow process (CFP). However, the validity of this model has
not been studied from the mathematical point of view. The purpose of the current
short note is to address the following critical issues:
• Is the original CCPF model well-posed, i.e., does solution exist and behave

nicely?
• What would be a physically relevant and mathematical sound alternative if

the original CCPF model is deficient?
We found out that the original CCPF model, both the steady state and the time-
dependent cases, are in fact ill-posed in the sense that no solution exists with finite
head in the generic case of having fluid exchange between the matrix and the conduit
system. The alternative form proposed by Hua [22] is also ill-posed in 3D although
it is well-posed in 2D. We then propose a new modification of the original CCPF
model that is physically appealing and mathematically well-posedness. We believe
this is the first physically relevant and mathematically sound 3D CCPF type model.

The rest of the manuscript is organized as follows. In section 2 we recall the
original CCPF model and demonstrate that the model is ill-posed. In section 3
we first recall Hua’s CCPF model and its well-posedness in 2D. We then provide a
heuristic derivation of the model followed by a demonstration that Hua’s model is
ill-posed in 3D. In section 4, we propose our new physically relevant CCPF model
and provide the proof of its well-posedness. Physically less appealing alternatives
will also be presented. We offer concluding remarks in section 5.

2. The original CCPF model. In this section we first recall the original CCPF
model. We then show that this model is ill-posed in the steady state case and time-
dependent case. We treat the steady state case separately due to its importance
in applications. Indeed, it is expected that for any reasonable flow model for karst
aquifer, the flows will converge to a steady state provided that the boundary condi-
tions are time-independent (this is the case for the coupled Stokes-Darcy model for
flows in karst aquifers with the simplified Beavers-Joseph-Saffman-Jones interface
condition, or the original Beavers-Joseph interface condition with physically small
values of the Beaver-Joseph coefficient αBJ for instance [22, 10]).

2.1. The original CCPF model.

2.1.1. Continuum model for the matrix. It is well accepted that flows in fluid sat-
urated porous media (matrix) is governed by the following Darcy equation [5]
which was derived by Darcy on a phenomenological level but can be justified math-
ematically via homogenization under appropriate assumptions:

v = −K∇hm. (1)
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Figure 1. Schematic sketch of a domain for CCPF model

Here v represents the seepage velocity of fluid flows in the matrix, K represents the
hydraulic conductivity (a tensor in general although it will be treated as a scalar
below), and hm represents the hydraulic head in the matrix (continuum).

The conservation of mass in matrix (continuum) can be written as [5, 31]

∇ · (K∇hm)− Γex +Rm = S
∂hm
∂t

, (2)

where S is the storativity of the water, Rm represents the recharge rate to the
continuum matrix, and Γex represents the total exchange rate of the continuum
with other embedded systems (the pipe system in our case). In the CCPF model,
the total exchange rate is modeled through the following formula [31, 3, 4]

Γex =
∑
i

δ(x− xi) qex,i V −1, (3)

where xi represents the nodes of the (one dimensional) pipe system embedded in
the matrix, δ represents the Dirac delta function, V stands for the unit volume of
the continuum, and qex,i is the fluid exchange rate at the node xi which is modeled
via a Barenblatt type relation [2] and is of the unit [L3T−1]

qex,i = αex,i(hm,i − hc,i). (4)

Here hm,i and hc,i represent the hydraulic head of the matrix and conduit at the
ith node xi respectively, and the exchange coefficient αex,i is model through [31]

αex : = αAK, [L2T−1] (5)
A : = exchange surface area, [L2] (6)
K : = hydraulic conductivity, [LT−1] (7)
α : = fudging parameter, determined via local geometry,

interpreted as inverse fissure spacing, [L−1]

2.1.2. Pipe flow model for the conduit. The flow in the network of conduits is mod-
eled in the following way. Pipe flow models are utilized in each segment of the
conduit system and the exchange of fluids with the surrounding continuum hap-
pens at the nodes only. In particular, if the flow is laminar, the following classical
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Poiseuille flow formula is applied for a conduit segment from node xi to node
xj

Qij = −
πd4

ijg

128ν
hc,i − hc,j

Lij
, (8)

Lij : = distance between ith and jth nodes,
dij : = diameter of the segment of the pipe,

ν : = kinematic viscosity, [L2T−1],
g : = gravitational acceleration, [LT−2].

Here Qij represents the flow rate ([L3T−1]) from node j to node i.1

At each node of the pipe/conduit network the following Kirchhoff’s law is
utilized to couple different segments of the conduit system as well as the surrounding
matrix. ∑

j

Qij + qex,i +Rc,i = 0. (9)

Here Rc,i represents the recharge rate to the pipe flow system at the ith node.

2.2. Ill-posedness of the CCPF model. The coupled continuum pipe flow model
(2, 3, 4, 9, 8) is quite appealing due to its intuitive nature and simplicity. Unfortu-
nately the system is not well-posed in the sense that no reasonable solution exists.

Theorem 2.1. The original CCPF model (2, 3, 4, 9, 8) is ill-posed in the sense
that there is no solution to the system that has finite head at the nodes when there
is nontrivial fluid exchange between the matrix and the conduits. The ill-posedness
occur for both the steady state and time-dependent cases.

Proof: Indeed, if a reasonably regular solution (hm, hc) exists, the head in the
matrix and the conduit must be finite at each node so that the exchange term (4)
can be defined. We could then treat the exchange term qex,i at each node in the
mass conservation as a simple known source term. In the steady state case, the
solution can be represented (assuming given head b on the boundary, and constant
hydraulic conductivity for simplicity)

hm(x) = −K−1V −1
∑
i

G(x,xi)qex,i +K−1

∫
Ωm

G(x,y)Rm(y) dy

+
∫
∂Ωm

b(y)
∂G

∂n
(x,y) dS(y)

(10)

whereG(x,y) is the Green’s function of the steady state equation (Poisson equation)
with the associated boundary conditions (Dirichlet) and diffusive coefficient set to
1, Ωm is the region occupied by the matrix with its boundary denoted by ∂Ωm, ∂G∂n
is the normal derivative of the Green’s function [16]. Although the second and third
terms in the formula are harmless and produce smooth functions with given regular
boundary value (head) b and recharge rate function Rm, the first term induced by
the fluid exchange at the discrete nodes is problematic. Indeed,

G(x,y) = Φ(x− y)− φx(y)

where Φ(x) is the fundamental solution to the Poisson equation which possesses
a singularity at the origin (− 1

2π ln |x| in 2D, and 1
4π|x| in 3D), and φx(y) is a

1 In 2D the formula is given by Q = d3g
12ν

.
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nice harmonic function. This implies that |hm(xi)| = ∞ if qex,i 6= 0 which is
contradictory to the assumption and (necessity) that the head at node xi, hm(xi),
is finite.

For a given set of boundary data and recharge functions, the continuum matrix
and the conduit system do not exchange fluid if and only if the systems decouple
and the heads agree at each node xi. Of course the agreement of heads for the
decoupled system at each node happens only for special data satisfying particular
compatibility conditions. Therefore the steady state CCPF model is ill-posed in
generic situation.

As for the time-dependent problem, we follow a similar approach and utilize the
Green’s function for the heat equation [23, 27]. Suppose that there exists a solution
with finite head as required by basic physics. We can treat the total exchange term
(3) in the mass conservation (2) as a given function. Utilizing the Green’s function
representation and noticing that the leading order term in the Green function is
given by the fundamental solution to the heat equation [27]( Chap. IV, section 16),
we deduce that the leading order contribution to the head in the matrix due to the
singular fluid exchange is given by

hm(x) ≈ −
∑
i

1
SV

∫ t

0

1
(4π(t− s)K/S)

n
2

exp(− |x− xi|2

4(t− s)K/S
)qex,i(s) ds (11)

which blows-up as x→ xi if qex,i 6= 0 for spatial dimension 2 or 3 (n = 2, 3).
This ends the proof of the theorem.

Remark: No blow-up of heads have been reported although there have been ob-
servations that the heads are over-estimated near the conduit for relatively small
exchange coefficent αex as is suggested in (5). We speculate that no-blow-up is
due to the simple fact that the Dirac delta functions must be mollified in the finite
difference approximation utilized in MODFLOW [33] and conduit genesis studies
[31, 3, 4] and the speculation that the grid size is not small in these cited references.
The over estimate of the head close to the conduit is consistent with the analysis
above which suggests blow-up. We speculate that we will observe blow-up phenom-
ena under successive grid refinement. The ill-posedness is also consistent with the
reported high sensitivity of the CCPF model with respect to αex [31, 3, 4]. This
and other related works will be reported elsewhere.

3. Hua’s modified CCPF model.

3.1. Hua’s modified CCPF model. In the case of one conduit and the system in
a laminar steady state, Hua proposed the following version of the coupled continuum
pipe flow model in his PhD thesis [22]

−∇(K∇hm) = −α̃ex(hm − hc)δΩc
+Rm in Ωm

− ∂

∂τ

(
D
∂hc
∂τ

)
= α̃ex(hm

∣∣
Ωc
− hc) +Rc in Ωc,

(12)

where Ωm,Ωc are the regions occupied by the matrix and the conduit (conceptu-
alized to a one dimensional curve) respectively, ∂

∂τ represents tangential derivative
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along the conduit, and the laminar Poisieulle constant D is given by

D =


πd4g

128ν
for 3D,

d3g

12ν
for 2D.

The well-posedness of Hua’s modified CCPF model in two space dimension (2D)
as well as its accurate numerical approximation have been addressed by Hua and
collaborators [22, 11]. However, no derivation of this model was provided.

3.2. Heuristic derivation of Hua’s model. Since a derivation of Hua’s model
is not available in existing literature, we provide a heuristic derivation based on the
original CCPF model. The derivation is not only appealing intellectually, but also
provides insight into the construction of our new CCPF model which is valid in 3D,
and important information on the choice of the new continuum exchange coefficient
α̃ex.

We will focus on the case of one straight conduit along the x-axis with uniform
diameter d. More general one conduit case can be considered in a similar fashion.

We criticize the original CCPF model in restricting fluid exchange to the discrete
nodes only which is unphysical. We believe it probably makes more sense to have
fluid exchange everywhere along the conduit. Following this idea, we partition
our original conduit of length L into J, J � 1 segments with equal length L/J .
Heuristically the continuum fluid exchange should be the limit of the discrete fluid
exchange as J approaches infinity.

For a fixed node i, Kirchhoff’s law (9) leads to

D
hc,i−1 + hc,i+1 − 2hc,i

L/J
+ απd

L

J
K(hm,i − hc,i) +Rc,i = 0. (13)

Dividing the equation by L
J and taking the limit as J →∞ we arrive at the second

equation in Hua’s model (12) under the assumption that Rc,i

L/J → Rc. The last
assumption is natural since for a continuum (1D) recharge function Rc(x), a first
order discrete approximation at a node xi with grid size L

J is given by Rc,i ≈
Rc(xi)LJ .

Another very useful and important information that we obtained from this simple
exercise is that the continuum exchange coefficient α̃ex (dimension [LT−1]) must be
different from the discrete exchange coefficient αex,i (dimension [L2T−1]) proposed
in the original CCPF model. The calculation above suggests that the new continuum
exchange coefficient is given by

α̃ex = απdK. (14)

More general case with variable conduit diameter can be derived as well.
The convergence of the conservation of mass can be formally derived in a similar

fashion.
We remark that this derivation cannot be justified rigorously since the original

CCPF model is ill-posed.

3.3. Ill-posedness of Hua’s model in 3D. Although Hua’s modified CCPF
model is well-posed in two spatial dimension [22, 11], the model is not well-posed
in three spatial dimension in general. Indeed, consider the case of x independent
data and solution, and steady state, Hua’s model reduces to a 2D Poisson equation
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with atomic source at the origin which implies that the head must be infinite at the
origin (the conduit) unless there is no fluid exchange. The detailed proof would be
the same as the case for the original CCPF model.

4. A new CCPF model in 3D.

4.1. The new CCPF model in 3D. We observe that the mathematical problem
with the original CCPF and Hua’s CCPF is that the fluid exchanges occur on a
very singular space: point singularity in the original CCPF case and line singularity
in Hua’s model. On the physical side, we see that these simplified models do not
reflect the physical reality of fluid exchange happening over the interface between
the conduit and matrix. We may therefore view the mathematical difficulty as a
reflection of the physical deficiency of the simplified models. Taking into consider-
ation the physical observation of exchange of fluids over the whole interface Γ and
retaining the Barenblatt type fluid exchange relation, we arrive at the 1st equation
in our new model below (15). On the other hand, we do not want to resolve the
conduit flow completely, and hence it makes sense to use the averaged head of the
matrix on a proper cross section of the interface to calculate the Barenblatt ex-
change term in the conduit so that the conduit equation remains one dimensional.
This leads to the second equation below. To summarize, we propose the following
new CCPF model assuming the simple case of an one dimensional conduit centered
at the x-axis and laminar flow:

S ∂hm

∂t −∇(K∇hm) = −α̃ex(hmδΓ − hcδΓ)/|Γx|+Rm in Ωm

− ∂

∂x

(
D
∂hc
∂x

)
= α̃ex( 1

|Γx|
∫

Γx
hm dlx − hc) +Rc in Ωc;

(15)

where Γ is the boundary of the circular horizontal conduit centered at the x-axis,
Γx is the cross section of Γ at x (a circle), dlx represents the infinitesimal increment
of arc length on Γx (equivalent to r(x) dθ in the cylindrical coordinates with r(x)
being the radius and θ being the angle), and |Γx| is the length of Γx which is
πd(x) = 2πr(x).

4.2. Well-posedness of the new CCPF model. We demonstrate that the new
CCPF model is well-posed in three spatial dimension in this section. We assume
the following simple geometry for the sake of simplicity: Ωm := (0, 1)×By,z ⊂ R3 ,
Ωc := (0, 1)×{0, 0}, where By,z is a bounded domain in the y, z plane that contains
the origin. The physical pipe is a cylinder with constant radius r centered at Ωc
(hence |Γx| = 2πr) but is represented as a line Ωc in the mathematical domain. We
will assume that we have Dirichlet boundary condition, i.e. imposed head.

Without loss of generality we can assume that we have homogeneous Dirichlet
boundary condition since the boundary condition can be easily homogenized after
a translation of the head and a new re-defined recharge term. Therefore the space
that we shall work with for the steady state case is the classical Sobolev space H1

0

consisting of functions that the function itself and all its first derivatives are square
integrable, and the function vanishes on the boundary [1].
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We define the following bilinear form a(·, ·) on H×H, where H := H1
0 (Ωm)×

H1
0 (Ωc),

a(h,v) :=
∫

Ω

K∇hm(x) · ∇vm(x)dx +
∫ 1

0

Dh′c(x)v′c(x)dx

+
α̃ex
2π

∫ 1

0

∫ 2π

0

(hm(x, r, θ)− hc(x))vm(x, r, θ) dθ dx

−α̃ex
∫ 1

0

(
1

2π

∫ 2π

0

hm(x, r, θ) dθ − hc(x))vc(x)dx,

(16)

where h = (hm, hc),v = (vm, vc) ∈ H, where cylindrical coordinates are used in the
last two integrals.

Then the weak formulation of the new CCPF model (15) for the steady state
case after homogenizing the boundary conditions is

a(h,v) = (Rm, vm)L2(Ωm) + (Rc, vc)L2(Ωc) ∀ v ∈ H. (17)

The well-posedness of the weak problem (17) can be easily established.

Theorem 4.1. The new model (15) is well-posed in the steady state case, i.e., the
weak formulation (17) is well-posed. The time-dependent version of the new model
is also well-posed.

Proof: The proof is a straightforward application of the Lax-Milgram theorem
[29] for the steady state case. Indeed, it is easy to see that the bilinear form a is
continuous on H×H since H1 functions have well-defined square integrable traces
on the interface Γ = {(x, r, θ)|0 < x < 1, 0 < θ < 2π} [1]. We only need to check
the coercivity. For this purpose we notice that

a(h,h) =
∫

Ω

K∇hm(x) · ∇hm(x)dx +
∫ 1

0

D|h′c(x)|2dx

+
α̃ex
2π

∫ 1

0

∫ 2π

0

(hm(x, r, θ)− hc(x))hm(x, r, θ) dθ dx

−α̃ex
∫ 1

0

(
1

2π

∫ 2π

0

hm(x, r, θ) dθ − hc(x))hc(x)dx

=
∫

Ω

K∇hm(x) · ∇hm(x)dx +
∫ 1

0

D|h′c(x)|2dx

+
α̃ex
2π

∫ 1

0

∫ 2π

0

(hm(x, r, θ)− hc(x))2 dθ dx

≥
∫

Ω

K∇hm(x) · ∇hm(x)dx +
∫ 1

0

D|h′c(x)|2dx

which implies the coercivity due to the positivity of the hydraulic conductivity K
and the Poiseuille constant D. This ends the proof of the well-posedness of the
steady state problem.

An alternative way to show the well-posedness is that we could view hc as a
function of hm through the second equation in the new CCPF model (15). Indeed,
the weak formulation of (15)2 for given hm ∈ H1(Ωm) and Rc ∈ H−1(Ωc) is given
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by

a2(hc, vc) =
∫ 1

0

Rc(x)vc(x) dx+
α̃ex
2π

∫ 1

0

(∫ 2π

0

hm(x, r, θ) dθ
)
vc(x) dx,(18)

a2(hc, vc) : =
∫ 1

0

(Dh′c(x)v′c(x) + α̃exhc(x)vc(x)) dx. (19)

Here and below, some of the integrations must be interpreted in terms of duality
between appropriate dual spaces (such as H1

0 and H−1) with the duality induces
by the L2 inner product. The well-posedness of this problem is straightforward
via a Lax-Milgram argument. We denote the linear solution operator as Ψ, i.e.
a2(h, v) = (R, v)L2(Ωc),∀v ∈ H1

0 (Ωc) if and only if h = Ψ(R), and hence

hc = Ψ(Rc) +
α̃ex
2π

Ψ(
∫ 2π

0

hm(x, r, θ) dθ) ∈ H1
0 (Ωc). (20)

The solution operator can be represented explicitly in terms of Fourier sine series

Ψ(f)(x) =
∞∑
k=1

f̂k
π2k2D + α̃ex

sin(πkx), for f(x) =
∞∑
k=1

f̂k sin(πkx). (21)

This solution operator and the first equation in (15) can be combined to form a single
(nonlocal) linear equation for the head hm in the matrix whose weak formulation
takes the form

a1(hm, vm) =
∫

Ωm

Rm(x)vm(x) dx +
α̃ex
2π

∫ 1

0

(
Ψ(Rc)(x)

∫ 2π

0

vm(x, r, θ) dθ
)
dx, (22)

a1(hm, vm) :=
∫

Ωm

K∇hm(x) · ∇vm(x)dx +
α̃ex
2π

∫ 1

0

∫ 2π

0

hm(x, r, θ)vm(x, r, θ) dθ dx

− α̃
2
ex

4π2

∫ 1

0

(
Ψ(
∫ 2π

0

hm(x, r, θ) dθ)
∫ 2π

0

vm(x, r, θ) dθ
)
dx. (23)

The continuity of a1 on H1
0 (Ωm)×H1

0 (Ωm) follows from the standard trace theorem
[1] as well as the well-posedness of the second equation through a2 and the regularity
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of Ψ. As for the coercivity, we have

a1(hm, hm) =
∫

Ωm

K∇hm(x) · ∇hm(x)dx +
α̃ex
2π

∫ 1

0

∫ 2π

0

h2
m(x, r, θ) dθ dx

− α̃
2
ex

4π2

∫ 1

0

(
Ψ(
∫ 2π

0

hm(x, r, θ) dθ)
∫ 2π

0

hm(x, r, θ) dθ
)
dx

=
∫

Ωm

K∇hm(x) · ∇hm(x)dx +
α̃ex
2π

∫ 1

0

∫ 2π

0

h2
m(x, r, θ) dθ dx

+
α̃ex
4π2

∫ 1

0

(
D(Ψ(

∫ 2π

0

hm(x, r, θ) dθ))′(
∫ 2π

0

hm(x, r, θ) dθ)′
)
dx

− α̃ex
4π2

∫ 1

0

(∫ 2π

0

hm(x, r, θ) dθ
∫ 2π

0

hm(x, r, θ) dθ
)
dx

≥
∫

Ωm

K∇hm(x) · ∇hm(x)dx

+
α̃ex
4π2

∫ 1

0

(
D(Ψ(

∫ 2π

0

hm(x, r, θ) dθ))′(
∫ 2π

0

hm(x, r, θ) dθ)′
)
dx

≥
∫

Ωm

K∇hm(x) · ∇hm(x)dx,

where ′ stands for differentiation with respect to x and we have utilized the weak
formulation for the 2nd equation as well as the explicit formula (21) for the solution
operator Ψ. This proves the coercivity.

This alternative approach of viewing hm as the single unknown is useful, espe-
cially for the time-dependent case since the dynamics is in terms of hm only with the
hc slaved (through Ψ) by hm. Since we already have the continuity and coercivity of
the bilinear form associated with the steady state problem, the time-dependent case
can be established via classical semi-group theory, or utilising backward Euler time
discretization and taking the limit [35, 10]. We leave the detail to the interested
reader.

This ends the proof of the theorem.
Remark: The new CCPF model (15) can be integrated into the MODFLOW
system just as the the original CCPF model. Indeed, we may view the second
equation in (15) as the new conduit flow process (CFP) and the new fluid exchange
term defined as

Γex,new = −α̃ex(hmδΓ − hcδΓ)/|Γx|.
The same iterative process that was used in incorporating the original CFP model
into MODFLOW can be utilized here as well.

4.3. Other possible modified CCPF models. Of course there are many other
possible ways of modifying the original CCPF model or Hua’s model without prop-
erly taking care of the physics. For instance, we could replace the conservation
of mass in matrix (2) by the following mollified version while maintain a discrete
conduit network with (fixed) finitely many nodes

∇ · (K∇hm)−
∑
i

αex,i

(
1

|∂B(xi, ri)|

∫
∂B(xi,ri)

hm(x) dS(x)− hc,i

)
V −1

+Rm = S
∂hm
∂t

,

(24)
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where ∂B(xi, ri) denotes the sphere centered at xi with radius ri. It can be shown
that this together with the Kirchhoff type relation (9) leads to mathematical well-
posedness. We do not believe that this is a good model however since it does not
reflect the basic physics. A slight modification of the model above is to replace the
average over the sphere by the average over the ball. We believe that it suffers from
similar deficiency although it is mathematically well-posed and may be closer to the
numerically mollified version of the original CCPF model.

A good competitor of (15) is to replace the average over the interface in (15)
by the average over the whole (solid) cylinder/conduit/pipe. The mathematical
well-posedness is straightforward and the numerical treatment of this model might
be slightly easier since the forcing is now regular (versus a singular forcing on the
interface in (15)). The disadvantage is that the fluid exchange is now assumed to
take place on the whole solid conduit instead of the interface only which is physically
less appealing.

The validation and invalidation of these models using available lab/field data or
the well established Stokes-Darcy model will be reported elsewhere.

5. Conclusion and remarks. We have shown that the original CCPF model is ill-
posed in the sense that no reasonable solution exists if there exists fluid exchange
between the conduit system and the matrix system. We have also shown that
Hua’s modification of the original CCPF model suffers from similar deficiency as
well in three spatial dimension although it is well-posed in 2D. We have proposed
a new modified CCPF model in 3D that mimics the true physics while maintain
the one-dimensionality of the conduit dynamics. The new model is shown to be
mathematically sound in both the steady state case and the time-dependent case.

There are many questions to be answered:

• MODFLOW behavior. Our analysis indicates that solution to the original
CCPF may blow-up near the discrete nodes of the conduit system. It would
be very interesting to perform numerical experiments with MODFLOW to
see the behavior of the discrete solution under successive grid refinement. It
is also of interest to figure out the exact numerical mollification of the Dirac
delta function used in MODFLOW.

• Numerical approximation of the new model. Although we believe developing
a convergent numerical scheme to the new model is not difficult, developing
fast and accurate numerical solver may be non-trivial due to the existence of
singular forcing concentrated on the surface, and the disparate spatial scales.
Another important practical issue is the efficient integration with the MOD-
FLOW system (a crude coupling is proposed in section 4).

• Validation of the new model. Although the new CCPF model (15) is mathe-
matically sound, it should be further validated utilizing either lab/field data or
existing well established models such as the Stokes-Darcy model with Beavers-
Joseph interface condition [10, 17] or simplified interface conditions [14, 15]. In
particular, the Stokes-Darcy system can be used as a benchmark to calibrate
the continuum exchange parameter α̃ex. Moreover, since we have filled the
physical conduit by artificial matrix, the hydraulic conductivity in this ficti-
cious domain needs to be quantified as well. Information such as the parameter
regime where the new CCPF model (15) provides reasonable approximation
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and parameter regime where CCPF cannot be used and the Navier-Stokes-
Darcy model must be used would be also very useful. Validation of other
related models discussed above should also be investigated.

• Hua’s model works fine in 2D but fails in 3D. His model is apparently more
efficient that the new model (15). Is there a regime where the simple 2D
model can be used in 3D reality?

• The case with turbulent pipe flow. We have dealt with the laminar flow
case only. In many applications the flows in the conduits are turbulent and
therefore there is a need to develop parallel theory for the turbulent case.

• Complex geometry. We have only dealt with the simple case of one straight
conduit. Real application calls for network of conduits. In this case Kirchhoff’s
law is still needed to couple different segments of the conduit system. More
complex formula involving local geometry may be required to deal with curved
conduits.

• Uncertainty and sensitivity. Apparently there are lots of uncertainties in the
karst system beyond the usual uncertainty associated with the matrix (hy-
draulic conductivity for instance). It would be very interesting to determine
the sensitivity of the solution on various parameters of the system, such as
the geometry of a single pipe and the geometry of the network of conduits.

• Determination of the conduits. It would be very interesting and perhaps
a great challenge to try to utilise the model and certain easily measurable
physically data (not the conduit geometry though) to locate the conduit and
determine its geometry from the data.

• Scaling-up. It would be very interesting to study if there is a good effective
large scale equation which avoids resolving the small conduits. Barenblatt’s
dual porosity is an example under the assumption that the pipes are extremely
small and no preferred direction exists (locally homogeneous and isotropic).

There are many potential applications of the new model: it could be used to study
conduit genesis just as the original CCPF model; Monte-Carlo simulations could be
performed to obtain statistics of conduit distributions within a given physical matrix
and external applied recharge; the statistics of conduits could in term be used to
reduce uncertainty in prediction as well as numerical scaling-up; possible application
in petroleum industry for reservoir in karst region, carbon dioxide sequestration in
karst region etc.
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