Proceedings of the National Academy of Sciences
Volume 93, Number 19; Pages: 10007-10011
Applied Mathematics

A modified gambler's ruin model of polyethylene chains in the amorphous region

Zhong-Hui Duan, Louis N. Howard

1996 by the National Academy of Sciences

ABSTRACT   Polyethylene chains in the amorphous region between two crystalline lamellae M unit apart are modeled as random walks with one-step memory on a cubic lattice between two absorbing boundaries. These walks avoid the two preceding steps, though they are not true self-avoiding walks. Systems of difference equations are introduced to calculate the statistics of the restricted random walks. They yield that the fraction of loops is (2M - 2)/(2M + 1), the fraction of ties 3/(2M + 1), the average length of loops 2M - 0.5, the average length of ties 2/3M2 + 2/3M - 4/3, the average length of walks equals 3M - 3, the variance of the loop length 16/15M3 + O(M2), the variance of the tie length 28/45M4 + O(M3), and the variance of the walk length 2M3 + O(M2).