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Abstract

A Riemannian manifold optimization strategy is proposed to facilitate
the relaxation of the orthonormality constraint in a more natural way in the
course of performing the independent component analysis (ICA) that em-
ploys a mutual information (MI)-based source adaptive contrast function.
Despite the extensive development of manifold techniques catering to the or-
thonormality constraint, we are devoid of adequate oblique manifold (OB)
algorithms to intrinsically handle the normality constraint. Essentially, im-
posing the normality constraint implicitly, in line with the ICA definition,
guarantees a substantial improvement in the solution accuracy, by way of
increased degrees of freedom while searching an optimal unmixing ICA ma-
trix, in contrast with the orthonormality constraint. Towards this, a design
of the steepest descent (SD), conjugate gradient (CG) with Hager-Zhang
(HZ) or a hybrid update parameter, quasi-Newton (QN) and cost effective
quasi-Newton (QN-CE) methods, intended forOB, is presented in the paper;
their performance is validated using natural images and audio signals, and
compared with the popular state-of-the-art approaches. We surmount the
computational challenge associated with the direct estimation of the source
densities using the improved fast Gauss transform (IFGT)-based function
and gradient evaluation. The proposed OB schemes may find applicability
in the offline image/signal analysis, wherein on the one hand the computa-
tional overhead can be tolerated and on the other hand the solution quality
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holds paramount interest.
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1. Introduction

Linear independent component analysis (ICA) linearly transforms multi-
variate data such that the transformed data components remain as indepen-
dent as possible. The efficiency of an ICA approach to separate the mixed
real world data relies on the choice of a contrast function and an optimiza-
tion strategy imposing necessary constraints. The supreme importance in
selecting the contrast function is its capability to adaptively estimate the
source densities. As a consequence, use of a fixed nonlinear function to
measure negentropy approximation in the case of popular fastICA produces
inferior separation results, compared to the methods employing source adap-
tive contrast functions [1]. On the other hand, moment-based ICA schemes
such as JADE measure independence using higher-order cross-cumulants,
which may not be well-suited for real data in many applications [2], for ex-
ample, they are not robust to outliers [3]. In contrast, the non-parametric
density estimation does not assume any statistical model of the sources be-
sides being source adaptive. Even though the parametric models achieve
source adaptivity, their performance degrades when the sources do not fol-
low the assumed parametric model [1]. Therefore for applications where
the major emphasis is the estimation accuracy of the ICA unmixing matrix,
and the computational burden can be tolerated, the non-parametric density
estimation is more apt.

Traditionally, the ICA estimation is treated as a constrained optimiza-
tion of a contrast function, so that it becomes plausible for the algorithm to
find an optimal solution in the restricted search space. The constraint impo-
sition between subsequent iterations, as exemplified by the Gram-Schmidt
(GS) orthogonalization procedure, is a well-known constraint handling strat-
egy. Alternatively, the contrast function is modified by adding a penalty
term such that the function has a minimum when the constraint is satisfied
[4]. Another possibility is to restrict changes to the unmixing matrix to elim-
inate any deviation from the constraint [5]. Nevertheless, these attempts
do not guarantee the constraint always, as the tendency of the unmixing
matrix to “drift” away from the constraint surface has to be continually
tackled [6]. Therefore, instead of seeking for an optimal unmixing matrix
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on the Euclidean space, the Riemannian optimization is formulated in such
a way that the search is always restricted to the constraint set admitting a
manifold structure, which enjoys the following merits.

1. It does not necessitate any extra effort to “coax” the solutions to follow
the constraint, since the optimization takes place on the constraint
surface.

2. All the iterates (trial solutions) during the optimization procedure
remain “locked” to the curved space, which ensures good convergence
characteristics.

Consequently, in the pursuit to impose the constraint implicitly and simul-
taneously preserve the convergence characteristics, manifold optimization
has been a topic of interest in ICA applications during recent years.

1.1. Is normality constraint a viable assumption in ICA estimation?

Indeed a constellation of ICA learning algorithms on the Stiefel, Grass-
mann and flag manifolds [4, 7–11] have already been proposed, which are
premised on the hypothesis that the independent components (ICs) are mu-
tually orthogonal to each other. Nevertheless, we consider a collection of
unconstrained deterministic optimization algorithms on the oblique mani-
fold (OB)—the set of all matrices with normalized columns—by relaxing
the orthonormality constraint for the following reasons.

1. An insightful definition of the ICA as postulated by Lee et al. [12, p.
867] goes like this: ICA is a way of finding a linear non-orthogonal
co-ordinate system in multivariate data that minimizes mutual infor-
mation (MI) among the axial projections of the data.

2. Despite the orthogonality constraint being well-founded in the case
of Principal Component Analysis (PCA), there is no underlying the-
oretical justification for this constraint to be maintained in the ICA.
Hyvärinen et al. [13, pp. 223, 275–276] reiterated the key difference be-
tween using the MI and an ICA contrast based on the non-Gaussianity;
we force the estimates of the ICs to be uncorrelated while maximiz-
ing the sum of their non-Gaussianities, whereas, this is not necessary
when minimizing the MI.

3. Intuitively, relying on the orthonormality constraint implies a smaller
subset of unitary matrices which simplifies the optimization, however
to the detriment of solution accuracy. As a consequence of imposing
the orthonormality constraint on an unmixing matrix of order d × d,
the degrees of freedom are restricted to d(d−1)/2; on the contrary, the
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choice of normality constraint will allow one to increase the degrees of
freedom to d(d− 1).

4. Lewicki and Sejnowski emphasized in their work that the ICA be-
ing an extension of the PCA allows the learning of non-orthogonal
(oblique) bases for data with non-Gaussian distributions. It has been
stressed with an illustration [14, pp. 343–344] that if the data have
non-Gaussian structure and the ICA model insists on the orthogonal-
ity constraint, then the model poses a risk of underestimating the like-
lihood of data in the dense regions and overestimating it in the sparse
regions. By Shannon’s theorem, this will limit the efficiency of the rep-
resentation. Therefore it is recommended that the ICA assumes the
coefficients have non-Gaussian structure and allows the components
to be non-orthogonal.

5. To further support the applicability of unit-norm constraint in the
ICA problem, Douglas et al. [15] described self-stabilized, gradient-
based, one-unit ICA algorithms to implicitly maintain the normality
constraint to estimate the minimum-kurtosis ICs. Furthermore, of
late, a conjugate gradient (CG) algorithm was suggested on the unit
sphere by Shen et al. [16] for the non-whitened one-unit ICA problem.

6. Even though relaxing the constraint from orthonormality to normal-
ity provides a good avenue in the quest for better minimization of
an ICA contrast function, and designing the Riemannian optimization
algorithms suited for OB is relatively simpler compared to their coun-
terparts on the Stiefel or Grassmann manifold, as far as we are aware,
the problem of ICA learning on OB has been considered only in [17]
and [18].

Since the MI is invariant to changes in the scale of the sources, the
minimization problem admits infinite number of solutions corresponding to
any real value of the scaling coefficient; precisely, the problem is ill-posed.
Therefore, it becomes essential to enforce a constraint either on the norm
of the unmixing matrix or its columns to have a unique solution. For sim-
plicity’s sake, we opt for the unit-norm column constraint of the unmixing
matrix. The naive implementation is to relax the orthonormality constraint,
and to search in a more exhaustive space such as the set of all normalized
column matrices, by imposing the normality constraint between the iter-
ations. However, such an attempt does adversely affect the convergence
properties of the optimizers, in the vein of ICA approaches enforcing an
orthogonalization procedure during the course of optimization, and in turn
warrants the design of Riemannian algorithms. We envisage that allowing
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more degrees of freedom for the unmixing matrix by designing a suitable
Riemannian unconstrained optimizer, and making use of a source adaptive
contrast function which is robust in the absence of a priori statistical infor-
mation about the sources, will definitely improve the solution quality in an
ICA algorithm.

1.2. Related work

Sengupta et al. employed kernel density estimation using smoothing
methods to estimate the underlying probability density distributions of the
sources; this algorithm was reported to perform the source separation satis-
factorily in the presence of outliers and in non-Gaussian zero-kurtotic signal
mixture [3]. A generalized form of Shannon’s entropy, called Rényi’s entropy,
was estimated using Parzen windowing with a Gaussian kernel by Hild et al.
in the blind source separation (BSS) algorithm; the Givens rotation ensures
the orthonormality constraint in the unmixing matrix [19]. Even though
this algorithm claimed superior performance when experimented with audio
sources in terms of the signal-to-distortion ratio (SDR), compared to the
fastICA, infomax and Comon’s minimum mutual information (MMI), in a
later work by Pham et al., the Rényi-entropy-based criterion was proved to
be risky in the context of BSS [20]. Pham provided low-cost algorithms to
perform ICA through the minimization of the MI criterion with the help
of a binning technique and cardinal splines; a new estimator of the score
function for calculating the gradient of the estimated criterion was also in-
troduced [21]. Chen demonstrated a fast kernel density ICA (FastKDE)
algorithm by choosing the Laplacian kernel for kernel density estimation;
the computational and statistical efficiencies were reported to be promising
[22]. A noteworthy contribution was made by Boscolo et al. towards a non-
parametric ICA approach (NPICA) that estimates the kernel density using
the fast Fourier transform (FFT)-based technique; it outperformed the state-
of-the-art ICA techniques in terms of the signal-to-interference ratio (SIR)
[2]. Even though the orthonormality constraint among the ICs was relaxed
in the quasi-Newton (QN) method, the optimization scheme in the NPICA
does not follow the framework of the Riemannian-manifold-based approach
endowed with the super-linear convergence characteristics. Shwartz et al.
presented an analogous ICA algorithm based on accelerated kernel entropy
estimation utilizing FFT-based fast convolution to manage the computa-
tionally intense task [23]. In the recent past, Xue et al. proposed a source
adaptive ICA algorithm (GEKD-ICA) hinged on iteratively solving the gra-
dient equation and simultaneously estimating the density by kernel density
method [1]; in most of the test cases, a comparable performance of this

5



scheme with the NPICA, in terms of the SIR, performance index (PI) and
computational complexity, was evident from the experimental results. Tsai
and Lai attempted a method that combines binning-principle-based density
estimation and a particle swarm optimizer (PSO) for background subtrac-
tion in indoor surveillance applications [24]; nonetheless, its robustness in
the camouflage foreground and the extension of this method to higher data
dimensions are questionable.

Learning algorithms on manifolds, stemming from differential geometry
techniques, have been of primary interest for the machine learning commu-
nity over the past few decades. Gabay discussed search algorithms by treat-
ing the Riemannian optimization to be locally equivalent to the smoothly
constrained Euclidean space optimization [25]. Edelman et al. developed
a Newton and a CG algorithm on the Grassmann and Stiefel manifolds
which represent orthogonality constraint [26]. Fiori customized the differ-
ential geometry concepts to the orthogonal group, and demonstrated the
non-negative ICA through a deterministic- and a diffusion-type-gradient al-
gorithm [7]. In [27], retraction-based ICA algorithms tailored for the or-
thogonal matrix manifold optimization were experimentally concluded bet-
ter in performance than the fastICA. Plumbley solved the non-negative ICA
problem by optimizing over the space of orthogonal matrices with a steepest
descent (SD) and a CG method in conjunction with techniques involving a
Lie group and its corresponding Lie algebra [4]. Nishimori et al. investi-
gated a Riemannian optimization method on the flag manifold, by adapting
a geodesic formula to the Stiefel manifold in the context of the independent
subspace analysis [11]. Yamada and Ezaki adopted the dual Cayley pa-
rameterization technique to decompose the orthogonal matrix optimization
problem into a pair of simple constraint-free optimization problems, and
validated its applicability to the ICA [28]. Abrudan et al. derived an SD [8]
and a CG algorithm [9] with geodesic search methods to minimize the JADE
criterion on the Lie group of unitary matrices. Selvan et al. hybridized a
Riemannian QN approach and a PSO employing Lie group techniques, in
an attempt to produce a near-global-optimum solution, while minimizing
a non-convex ICA contrast function [10]. Absil and Gallivan broke with
tradition in proposing a strategy on OB for the ICA based on joint diag-
onalization by employing a Riemannian trust-region (RTR) approach; the
efficacy of this non-orthogonal ICA for high accuracy source separation was
evidenced by the numerical experiments [17]. Shen and Hüper followed suit
to optimize joint diagonalization cost functions on OB by devising a family
of block Jacobi-type methods [18].

6



1.3. Contribution

The scope of this paper is to design Riemannian unconstrained opti-
mizers—SD, CG and QN—which exploit the differential geometry methods
associated with OB, to optimize a source adaptive contrast function that
can be evaluated with an efficient non-parametric density estimation tool.
We were inspired by the work in [17] where an OB optimization, namely,
RTR approach, is introduced for the ICA implementation via joint diago-
nalization, that involves the techniques to project the Euclidean gradient of
the contrast function onto a tangent space and to establish a correspondence
between tangent vectors and points on the manifold using a retraction. Of
late, there has been a growing interest in many real applications to seek
for a non-orthogonal ICA unmixing matrix to better separate the observed
data; face recognition [29], hyperspectral image classification [30], anomaly
detection in hyperspectral imagery [31] and noisy data separation [32] are
a few examples. Albeit the potential applications of non-orthogonal ICA,
to the best of our knowledge, but for the RTR approach on OB, other un-
constrained optimizers tailored to OB were not reported in the literature.
Even though RTR methods address some of the shortcomings of the Newton
method such as lack of global convergence and prohibitive numerical cost of
solving the Newton equation, they suffer from algorithmic complexity and
may not perform ideally on all problems [33]. We were motivated to pro-
pose an SD method on OB, since it always converges to a local minimum
when the step-size selection is subject to the Armijo’s rule [34], although
asymptotically the rate of convergence is only linear. Moreover, since ob-
taining the second-order information through the evaluation of Hessian is
very expensive for our contrast function, we have developedOB optimization
methods, namely, CG with Hager-Zhang (HZ) or a hybrid update parame-
ter, QN—in the spirit of [35], adapted to the ICA problem—and cost effec-
tive QN (QN-CE), that provide lower-cost numerical iterations and stronger
global convergence properties than the Newton iteration by approximating
the second-order properties to obtain super-linear local convergence. The
original contributions of our paper are consolidated below.

1. We have designed an SD algorithm with the Armijo’s step-size on OB
for the ICA application that employs the notions of gradient vector
projection onto the manifold tangent space and a retraction.

2. For the same task, super-linear algorithms—CG and QN—on OB are
developed with the following ingredients associated with the manifold
of interest:
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(a) use of a vector transport on OB which has computationally sim-
ilar expense, compared to its equivalent classical concept in the
manifold optimization termed as parallel transport;

(b) derivation and application of a corresponding inverse vector trans-
port;

(c) appropriate operations to the Hessian that involve vector trans-
port operation back and forth between the subsequent iterates.

2. Ingredients of oblique manifold optimization

FormallyOB(n, d) is defined as the set of all n×dmatrices whose columns
have unit Euclidean norm

OB(n, d) =
{

X ∈ Rn×d : ddiag(XTX) = Id, rk(X) = d
}
, (1)

where ddiag(·) represents the diagonal matrix whose diagonal elements are
those of the matrix in the argument, rk(·) is the rank of the matrix of
interest and Id is the d × d identity matrix. For n = d, Eq. (1) coincides
with the definition of OB found in [36]; it is of particular interest to our
ICA application where the assumption that the number of ICs is equal to
the number of observed mixtures holds. Clearly, OB can be viewed as an
embedded Riemannian manifold of Rn×d, which allows one to define the
canonical inner product

〈Z1,Z2〉 := trace(ZT
1 Z2) (2)

in Rn×d, where trace(·) is the square Frobenius norm defined as the sum
of the squares of the elements of the matrix under consideration. For com-
pleteness sake, we briefly present the orthogonal projection onto a tangent
space to OB and a retraction, which are introduced in [17]. The tangent
space is defined as

TXOB =
{
Z : ddiag(XTZ) = 0

}
; (3)

it means that x(i)Tz(i) = 0, i = 1, 2, . . . , d, where x(i) and z(i) are the ith
columns of X and Z, respectively. The orthogonal projection of Z ∈ TXRn×d
onto the tangent space to OB at X, TXOB, can be expressed as

PTX
(Z) = Z−Xddiag(XTZ). (4)

Notice that OB is isometric to the product of d unit spheres in Rn, thanks
to the fact that OB is endowed with a Riemannian metric. Therefore, the
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various ingredients of optimization on OB can be conveniently derived first
for the unit sphere Sn−1 embedded in Rn and then extended to OB(n, d).

Riemannian optimization approaches are currently being investigated to
assess the interplay between the choice of retraction/transport and the ef-
ficiency and effectiveness of the resulting algorithm. For some manifolds,
e.g., the Stiefel manifold, parallel transport and the exponential map are
more costly computationally than many vector transports and their asso-
ciated retractions. In this case, vector transport-based algorithms can be
more efficient as long as their convergence does not degrade significantly
compared to the convergence of the parallel transport-based algorithm. For
some manifolds, e.g., Sn−1, parallel transport and the exponential map are
only moderately more costly than efficient implementations of some vec-
tor transports and retractions. However, it is becoming more apparent in
the literature that some vector transport/retraction-based algorithms have
superior convergence behavior and the moderate computational savings on
each iteration are amplified to significant savings overall due to fewer itera-
tions (see [33] and [37] for details). We have observed this phenomenon in
our experiments.

While optimizing on Sn−1, the kth iterate xk must move along some
direction, ξk, e.g., the steepest descent direction, such that the next iterate
xk+1 is “locked” to the manifold; this is achieved by a retraction

Rxk
(ξk) :=

xk + αkξk
‖xk + αkξk‖

, (5)

where ‖ · ‖ denotes the Euclidean norm. For the sake of simplicity, the step-
length αk is assumed to be 1 in the sequel. A special case of retraction for
Sn−1 is the standard Riemannian exponential map [38]

exp |xk
(ξk) := xk cos ‖ξk‖+

ξk
‖ξk‖

sin ‖ξk‖; (6)

notice that there is similar computational complexity compared to the re-
traction given in Eq. (5). By generalizing either Eq. (5) or (6) for the product
of d unit spheres i.e., OB(n, d), one can establish a correspondence between
the tangent vectors and points on OB.

During each iterative step of the optimization process, the evaluation of
the next steepest descent direction involves the tangent vectors pertaining
to the current and the subsequent iterations; this necessitates the notion of
vector transport proposed in [33], which provides a mechanism to move a
tangent vector between the tangent spaces corresponding to two different
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iterates. The conventional Levi-Civita parallel transport [39] of λk ∈ Txk
S

along the geodesic, ζ, from xk in the direction of ξk ∈ Txk
S is given by

P t←0
ζ λk =

{
I + [cos(‖ξk‖t)− 1]

ξkξ
T
k

‖ξk‖2
− sin(‖ξk‖t)

xkξ
T
k

‖ξk‖

}
λk. (7)

Since the manifold is endowed with a retraction R, one possible choice of
vector transport1 for Sn−1 is given by

Tξk(λk) =

[
I− (xk + ξk)(xk + ξk)

T

‖xk + ξk‖2

]
λk, (8)

where I is the n × n identity matrix, xk ∈ Sn−1 and ξk,λk ∈ Txk
S; it

is straightforward to extend the formula for OB. Notice that the compu-
tational complexity of parallel transport on Sn−1 is similar to the cost of
vector transport on Sn−1.

By defining vk = xk + ξk, the retraction in Eq. (5) is written as

Rxk
(ξk) =

vk
‖vk‖

= xk+1. (9)

Now applying the vector transport operator on λk ∈ Txk
S from Eq. (8)

yields

Tξk(λk) =

(
I−

vkv
T
k

‖vk‖2

)
λk

= (I− xk+1x
T
k+1)λk.

It can easily be verified that λk is transported to the tangent space Txk+1
S

due to the operation in Eq. (8) as follows:

xT
k+1Tξk(λk) = xT

k+1(I− xk+1x
T
k+1)λk

= xT
k+1λk − xT

k+1xk+1x
T
k+1λk = 0.

Therefore, we conclude that Tξk is a map Txk
→ Txk+1

.
When a vector transport exists, the inverse of the linear map Tξk is

denoted by T −1ξk
; in order to make sense, both a vector and an inverse vector

1Eq. (8) means that any arbitrary element λk given in the argument, belonging to
the tangent space TxkS to the manifold S at the incumbent iterate xk, is transported by
the operator T to the tangent space Txk+1S at the next iterate xk+1; note that xk+1 is
obtained via a retraction involving xk and another element ξk in TxkS which is denoted
in the subscript.
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Xk+1
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Λ
k

f ′(Xk)
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k T

Ξ
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k

T
Ξ
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k

P
T

X
k
(f
′ (
X
k
))

gradf(Xk)

RXk
(Ξk)

Xk
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Figure 1: Various mechanisms involved in OB optimization algorithms. The Euclidean

gradient evaluated at Xk =
[
x
(1)
k x

(2)
k · · ·x

(d)
k

]
∈ OB, f ′(Xk) ∈ TXkR

n×d, is projected

onto the tangent space to OB at Xk, TXkOB, represented by the green line. Given

the search direction Ξk =
[
ξ
(1)
k ξ

(2)
k · · · ξ

(d)
k

]
, a retraction RXk (Ξk), designated by the

orange arc, “locks” the subsequent iterate Xk+1 to the constraint surface OB. The ma-
genta arrow typifies the role of a vector transport TΞk which moves an arbitrary tan-

gent vector Λk =
[
λ

(1)
k λ

(2)
k · · ·λ

(d)
k

]
from TXkOB to TXk+1OB; the reverse operation,

namely, inverse vector transport T −1
Ξk

is a map TXk+1 → TXk that enables the transport

of Λ̃k =
[
λ̃

(1)
k λ̃

(2)
k · · · λ̃

(d)
k

]
∈ TXk+1OB to TXkOB as symbolized by the blue arrow.
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transport operator must be considered together. It is essential to derive
the corresponding inverse vector transport for realizing a QN algorithm on
OB. One may refer to Appendix A for a formal derivation of an inverse
vector transport, and Fig. 1 for comprehending the role played by each OB
optimization ingredient. A suitable choice for the inverse vector transport
on Sn−1 is

T −1ξk
(λ̃k) =

[
I−

(xk + ξk)x
T
k

xT
k (xk + ξk)

]
λ̃k, (10)

where λ̃k ∈ Txk+1
S, which can be justified in a manner similar to the vector

transport and easily adapted for OB. We can express the operation of the
inverse vector transport on λ̃k ∈ Txk+1

S as follows2:

T −1ξk
(λ̃k) =

[
I− (xT

k vk)
−1vkx

T
k

]
λ̃k

=
[
I− (xT

k xk+1)
−1xk+1x

T
k

]
λ̃k.

It is trivial to demonstrate that λ̃k is transported back to Txk
S:

xT
k T −1ξk

(λ̃k) = xT
k

[
I− (xT

k xk+1)
−1xk+1x

T
k

]
λ̃k

= xT
k λ̃k − (xT

k xk+1)
−1xT

k xk+1x
T
k λ̃k

= xT
k λ̃k − xT

k λ̃k = 0,

which implies that T −1ξk
is a map Txk+1

→ Txk
. We have chosen a particular

vector/inverse vector transport pair; admittedly, there are other potential
choices such as two oblique projectors, which may have more satisfactory
theoretical properties, and are under investigation.

3. Evaluation of contrast function and its derivative

Assuming the conventional generative ICA model with d independent
and stationary sources a(1), a(2), . . . , a(d) mixed by an unknown, full-rank
mixing matrix W, the observed mixtures are expressed as m = Wa. The
original sources are recovered by minimizing the MI between the estimated
sources b = XTm, given by

f(X) =

d∑
i=1

H
(
b(i)
)
−H

(
b(1), b(2), . . . , b(d)

)
, (11)

2Throughout this paper, the tilde symbolizes that the vector has already been trans-
ported from one tangent space of the manifold to another.
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where H
(
b(i)
)

stands for the Shannon entropy of b(i), H
(
b(1), b(2), . . . , b(d)

)
denotes the joint entropy of b(1), b(2), . . . , b(d) or precisely the entropy of the
vector b and X is the unmixing matrix to be determined. Since H(b) =
H(m) + log |det X| and the term H(m) does not depend on X, the contrast
function can be stated as follows

f(X) =

d∑
i=1

H
(
b(i)
)
− log |det X|

= −
d∑
i=1

E
{

log p(i)
(
b(i)
)}
− log | det X|,

(12)

which does not involve H(m). Here E {·} is the expectation operator, the
symbol log stands for the natural logarithm and p(i)(η) is the marginal
probability density function (PDF) that can be estimated using the Parzen
window

p(i)(η) ' 1

N

N∑
v=1

1

h
√

2π
exp

−
(
η − b(i)v

)2
2h2

 , (13)

where b(i) =
[
b
(i)
1 , b

(i)
2 , . . . , b

(i)
N

]
= x(i)TM, i = 1, 2, . . . , d, with M being

the d × N matrix containing the observed data, and the bandwidth h is
optimally selected as a function of the sample size N [40]

h = 1.06N−
1
5 (14)

assuming unit standard deviation3 of b(i), thereby simplifying the design of
the kernel density estimator. Observe that this criterion obviates the need
for estimating the joint density [21].

In many offline source separation applications involving images or audio
signals the major emphasis is on the accurate estimation of the unmixing
matrix, despite the computational overhead. Therefore, we have resorted to
the direct estimation of the statistical independence with the aid of Parzen
window density estimation for evaluating the contrast function and its first
derivative. This method adapts itself fully to the particularity of the source

3Eq. (14) can be generalized for any standard deviation as h = 1.06σ̂N−
1
5 , where an

estimate of the standard deviation, σ̂, can easily be obtained as σ̂ =

√√√√ 1

N

N∑
v=1

b2v; note

that the dependence on the component index is omitted for the sake of simplicity.
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distributions, since everything is estimated from the data [21]. Unlike the
approaches whose computational complexity is ducked by implementing a
simple gradient algorithm, wherein some “surrogate” functions substitute
the unknown score functions in this gradient (refer, e.g., [13, p. 185]), the
Parzen window density estimation uses the recently proposed improved fast
Gauss transform (IFGT) to efficiently evaluate the sum of Gaussians in
higher dimensions, compared to the fast Gauss transform (FGT) in which
case the computational complexity and storage grow exponentially with di-
mension. The crux of the IFGT algorithm is subdividing the d-dimensional
space using a k-center-clustering-based geometric data structure, followed
by building a truncated representation of kernels inside each cluster using
a set of decaying basis functions. In our approach, direct evaluation of the
contrast function and its derivative is simultaneously carried out; in conse-
quence, the overall computational load is lessened by performing the k-center
clustering only once at each iterative step. Additionally, akin to the work
of Boscolo et al. [2], it precludes the need to separate the optimization step
from the step involving the re-estimation of the score functions as in [41].
As claimed in [42], the IFGT reduces the computational complexity into
linear time. Moreover, as opposed to the kernel density estimators based on
the FFT which is limited to evaluating the density estimates of the gridded
data, the IFGT does not require the data to be on grids. Given N source
data-points, the direct evaluation of densities at M target points takes only
O(N) time for the IFGT, where M = N specific to our case applies; it is
significantly less compared to the O(N logN) time taken by the FFT. For a
detailed treatment on the IFGT for efficient kernel density estimation, one
may refer to [42] and [43]. The closed-form expression for the gradient of
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the contrast function, derived in Appendix B, is furnished below:

∂f

∂xrs
=

1

Nh2

N∑
u=1

1∑N
v=1 exp

[
−
(
b
(r)
u −b

(r)
v

)2

2h2

]
b(r)u m(s)

u

N∑
v=1

exp

−
(
b
(r)
u − b(r)v

)2
2h2


− b(r)u

N∑
v=1

m(s)
v exp

−
(
b
(r)
u − b(r)v

)2
2h2


−m(s)

u

N∑
v=1

b(r)v exp

−
(
b
(r)
u − b(r)v

)2
2h2


+

N∑
v=1

b(r)v m(s)
v exp

−
(
b
(r)
u − b(r)v

)2
2h2




− [(XT)−1]rs.

(15)

4. ICA learning on oblique manifold

4.1. Steepest descent on oblique manifold

Albeit its linear convergence rate, the reason for attempting the SD
algorithm is that if coupled with the Armijo’s step-size rate [44], it almost
always converges to a local minimum. In the following, the ICA learning on
OB employing an SD algorithm is discussed in detail; one may refer to Table
1 for the implementation steps. A non-orthogonal unmixing matrix X0 of
size d× d, where d is the dimension of the multivariate data being unmixed
with its columns normalized, is randomly chosen to be the initial seed for
the optimization algorithm. The cost f(X0) and the Euclidean gradient
f ′(X0) are evaluated at X0 using Eqs. (12) and (15), respectively. Unlike
the Euclidean SD algorithm, f ′(X0) has to be projected onto the tangent
space to OB at the current iterate X0, which is computed as

gradf(X0) = PTX0
(f ′(X0)) = f ′(X0)−X0ddiag(XT

0 f
′(X0)). (16)
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At the initial iteration, the step-size α0 and the search direction Ξ0 are
set to be 1 and −gradf(X0), respectively, provided that the convergence
criterion is not met. If the iteration number k > 0, the step-size αk is to be
determined by successively reducing αkguess = 1 by a factor γ, termed as the
backtracking line-search, until it satisfies the Armijo step-size rule [44]

f(Xk+1)− f(Xk) ≤ −
1

2
αk‖vec(gradf(Xk))‖2. (17)

Here, vec(·) denotes generating a column vector by concatenating the columns
of the matrix in the argument, and the reverse operation is unvec(·). The
next iterate Xk+1 always lies on OB, since we use a retraction to determine
Xk+1 as

RXk
(Ξk) = (Xk + αkΞk)(ddiag((Xk + αkΞk)

T(Xk + αkΞk)))
− 1

2 . (18)

The algorithm is terminated when

‖vec(gradf(Xk+1))‖∞ < ε(1 + ‖vec(gradf(X0))‖∞), (19)

where ‖ ·‖∞ denotes the infinity norm, and ε > 0 is a preset threshold value.
Even though in most of the experimented cases the SD algorithm with the
values of α0, αkguess = 1 performs satisfactorily, as cautioned in [44, p. 58], it
may happen that the SD and CG methods do not produce well-scaled search
directions; nonetheless, an expedient to circumvent this drawback is to use
the current information about the problem and the algorithm to make the
initial guess for the step-size

α0 =
1

‖vec(gradf(X0))‖
(20)

as recommended in [45], and

αkguess =
αk−1((vec(gradf(Xk−1)))

Tvec(Ξk−1))

(vec(gradf(Xk)))Tvec(Ξk)
. (21)

4.2. Conjugate gradient on oblique manifold

In our ICA formulation, evaluating the second-order information through
a closed-form Hessian is prohibitively expensive. Therefore, instead of merely
being content with the SD algorithm having linear convergence, it is possible
to approximate the second derivatives by “comparing” the first-order infor-
mation—tangent vectors—at distinct points on OB [33, p. 169]. Since we
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Table 1: Steepest descent algorithm on oblique manifold.

1. Select a random initial seed X0 with the normality constraint, and evaluate f(X0) and f ′(X0) found
in Eqs. (12) and (15), respectively; project f ′(X0) onto TX0OB as in Eq. (16) to obtain gradf(X0)
and form Ξ0.

2. Accept αk which satisfies the Armijo step-size rule in Eq. (17) using the backtracking line-search.
3. Make use of a retraction in Eq. (18) to generate Xk+1.
4. Compute f(Xk+1) and f ′(Xk+1).
5. Evaluate gradf(Xk+1) and decide Ξk+1.
6. Subject to the convergence criterion in Eq. (19), either terminate or divert to Step 2.

are endowed with a vector transport on OB, we can transport an arbitrary
tangent vector Λ from a point X ∈ OB to another point RX(Ξ) ∈ OB.
This information is sufficient to design a CG algorithm on OB, which is
characterized by low memory requirement and strong local and global con-
vergence properties [46]. A CG algorithm on OB to be applicable for our
ICA problem is detailed below, along with the step-wise realization proce-
dure as summarized in Table 3.

The initial seed X0, as described earlier, is randomly selected to evaluate
f(X0) and f ′(X0) based on Eqs. (12) and (15), respectively. As shown in
Eq. (16), the tangent space gradient gradf(X0) on OB at X0 is computed,
that enables the initial search direction to be set as Ξ0 = −gradf(X0). Due
to the concern raised by the failure to produce well-scaled search directions,
the initial step-size guesses α0 and αkguess are calculated as furnished in Eqs.
(20) and (21), respectively. In contrast to the SD algorithm, in the case
of CG, it is not trivial to determine the search directions Ξk+1 which are
always descent; conversely, to ensure global convergence, the determination
of αk demands an exact line-search. We have cautiously adopted the update
parameter βk+1—HZ [47] or a hybrid value [48] derived from Dai-Yuan (DY)
[49] and Hestenes-Stiefel (HS) [50]—that appears in the expression for Ξk+1,
in which case it is sufficient if αk satisfies the weak Wolfe conditions [44, p.
37]

f(Xk+1) ≤ f(Xk) + c1αk(vec(gradf(Xk)))
Tvec(Ξk) (22)

(vec(gradf(Xk+1)))
TΞ̃k ≥ c2(vec(gradf(Xk)))

Tvec(Ξk), (23)

where 0 < c1 < c2 < 1. We perform an inexact line-search iterative tech-
nique employing the cubic/quadratic polynomial method as proposed in
[51] on OB to estimate αk. Note that while evaluating the product of
vec(gradf(Xk+1)) and Ξk to verify the curvature condition (Eq. (23)) by
Wolfe, we confront a foreseen difficulty since gradf(Xk+1) corresponds to
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the tangent space to OB at Xk+1, TXk+1
OB, whereas Ξk is an element be-

longing to the tangent space to OB at Xk, TXk
OB. Favorably, the vector

transport mechanism defined on OB renders a better means to deal with
such situations, wherein a mathematical operation between the quantities
pertaining to two different points on the manifold has to be carried out. As
a result, we first transport the tangent vector Ξk from TXk

OB to TXk+1
OB

following

T
αkξ

(i)
k

(ξ
(i)
k ) =

[
I−

(x
(i)
k + αkξ

(i)
k )(x

(i)
k + αkξ

(i)
k )T

‖x(i)
k + αkξ

(i)
k ‖2

]
ξ
(i)
k (24)

and then multiply vec(gradf(Xk+1)) ∈ TXk+1
OB with Ξ̃k = vec(TαkΞk

(Ξk)) ∈
TXk+1

OB. Similarly, in the Euclidean case expression for determining Ξk+1

Ξk+1 = −f ′(Xk+1) + βk+1Ξk (25)

the use of TαkΞk
(Ξk) ∈ TXk+1

OB instead of Ξk ∈ TXk
OB is warranted to

adapt to the manifold case, stated as

Ξk+1 = −gradf(Xk+1) + βk+1unvec(Ξ̃k). (26)

Clearly, in Eq. (26) all the quantities are defined in TXk+1
OB, and thus

compatible to be operated with.
As pointed out earlier, it is crucial to decide βk+1 that guarantees good

convergence characteristics. Popular choices for βk+1 such as the Fletcher-
Reeves (FR) and Polak-Ribière-Polyak (PRP) require a line-search of suf-
ficient accuracy to ensure that the search directions yield descent [52]. For
instance, as evidenced in [53], even the strong Wolfe condition

|(vec(gradf(Xk+1)))
TΞ̃k| ≤ c2|(vec(gradf(Xk)))

Tvec(Ξk)| (27)

may not produce a descent direction unless c2 ≤ 1/2 for the FR scheme,
which is very restrictive; as opposed to this stringent choice, in most of the
practical implementations, c2 close to 1 results in efficient performance. For
the PRP method, any choice of c2 ∈ (0, 1) in Eq. (27) may not result in a
direction of descent [47]. Therefore, in our implementation, βk+1 proposed
by Hager and Zhang with due alterations, βHZ

k+1, is considered as specified in
Table 2. Notice that yk expressed as

yk = vec(gradf(Xk+1)− TαkΞk
(gradf(Xk))) (28)

and β
HZ
k+1 to deduce βHZ

k+1 involve the vector transport of gradf(Xk) and Ξk

from TXk
OB to TXk+1

OB. Alternatively, a hybrid method comprising DY
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Table 2: Possible choices of βk+1 for conjugate gradient algorithm on oblique manifold.

Scheme βk+1

βHZ
k+1 = max

{
β
HZ
k+1, ϕk

}
, where

Hager and Zhang β
HZ
k+1 =

1

Ξ̃T
k yk

(
yk − 2Ξ̃k

‖yk‖2

Ξ̃T
k yk

)T

vec(gradf(Xk+1));

ϕk =
−1

‖vec(Ξk)‖min {ϕ, ‖vec(gradf(Xk))‖}
; ϕ > 0.

βhybridk+1 = max
{

0,min
{
βHS
k+1, β

DY
k+1

}}
, where

Hybrid βHS
k+1 =

(vec(gradf(Xk+1)))
Tyk

Ξ̃T
k yk

;

βDY
k+1 =

‖vec(gradf(Xk+1))‖2

Ξ̃T
k yk

.

and HS update parameters is adopted to compute βk+1 in our approach; the
rationale behind the surpassing performance of such hybridization is briefed
below. The available choices for βk+1 in the literature can be broadly classi-
fied into two groups: their numerator being either ‖vec(gradf(Xk+1))‖2 or
(vec(gradf(Xk+1)))

Tyk. The first group of methods—the FR, DY and con-
jugate descent (CD)—have strong convergence properties; however if they
encounter a bad search direction and a tiny step, then the direction and the
step corresponding to the next iterate are likely to be poor as well. This
phenomenon known as “jamming” [54] will adversely affect the performance
of these methods. In contrast, the second group of methods—the PRP, HS
and Liu-Storey (LS)—although often perform better than the first category,
suffer from poor convergence. Therefore to exploit the desirable features
from each set, hybrid methods are investigated. We employ βhybridk+1 , follow-
ing [48], after introducing the necessary modifications to suit the manifold
case, as found in Table 2. Given Xk, αk and Ξk, the following iterate Xk+1

that “lives” on OB can be computed by the retraction in Eq. (18). The algo-
rithm proceeds iteratively until the solution fails to improve further, which
is indicated by a relatively small value of ‖vec(gradf(Xk+1))‖∞.

4.3. Quasi-Newton on oblique manifold

The QN algorithm makes use of both gradient and curvature information
about the optimization landscape for exploring the solution space [55], and
possesses several other advantages listed by Yang et al. in [56], namely, use
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Table 3: Conjugate gradient algorithm on oblique manifold.

1. Start with a random initial guess X0 abiding by the normality constraint, and evaluate f(X0) and
f ′(X0) stated in Eqs. (12) and (15), respectively; using gradf(X0) in Eq. (16), determine Ξ0 and
set α0 as in Eq. (20).

2. If k > 0, initialize αk as in Eq. (21).

3. Vector transport Ξk from TXk
OB to TXk+1

OB with the aid of TαkΞk
(Ξk) in Eq. (24), which yields Ξ̃k.

4. Select αk such that the weak Wolfe conditions in Eqs. (22) and (23), are met by employing
the inexact line-search.

5. Obtain Xk+1 as expressed in Eq. (18), and compute f(Xk+1) and f ′(Xk+1).
6. Evaluate gradf(Xk+1), and deduce yk as per Eq. (28).
7. Determine βk+1 by either Hager-Zhang or hybrid approach as specified in Table 2.
8. Find Ξk+1 in Eq. (26) for the next iteration.
9. Proceed to Step 2, unless the convergence criterion in Eq. (19) is reached.

of only gradient information to obtain the Hessian update, small compu-
tational load, super-linear convergence and superior performance while the
SD methods face convergence difficulty. Furthermore, it is noteworthy to
mention that even if the Hessian matrix happens to incorrectly estimate the
curvature in the objective function, the Hessian approximation will tend to
correct itself within a few steps [44, p. 200]. Due to the aforementioned rea-
sons, it is worthwhile to design the optimizer suitable for OB minimization.
The implementation issues are discussed here for a QN scheme restructured
to optimize on OB, and a concise description of the algorithm is provided
in Table 4.

The random initial unmixing matrix X0 with unit-norm columns is used
to evaluate the cost f(X0) (Eq. (12)) and the Euclidean gradient f ′(X0) of
the contrast function (Eq. (15)). Using Eq. (16), the tangent space gradient
on OB at X0, gradf(X0) is computed, and the corresponding Hessian H0

is assumed to be the identity matrix of order d2 × d2. The search direction
at X0 is given by

Ξ0 = unvec(−B0vec(gradf(X0)))

= unvec(−H−10 vec(gradf(X0))),
(29)

where B0 = Id2 is the initial inverse-Hessian approximation. According to
[51], the initial step-size guesses are set as

αkguess =

 min

{
1

‖vec(gradf(X0))‖∞
, 1

}
if k = 0

1 if k ≥ 1.
(30)

Since the Hessian Hk acts on subspaces of the embedding space, care must
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be taken to guarantee efficiency and rigor in its estimation relative to in-
vertibility on the appropriate subspaces. One possible approach is that,
instead of evaluating the inverse of Hk, its pseudo-inverse can be computed
via a rank factorization technique such as the singular value decomposition
(SVD). While updating the Hessian as per the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) formula modified to the manifold setting

Hk+1 = H̃k +
yky

T
k

yT
k sk
−

H̃ksks
T
k H̃k

sTk H̃ksk
(31)

care should be taken to ensure whether the tangent vectors belong to the
same tangent space prior to mathematically operating them. Here,

sk = vec(TαkΞk
(αkΞk)) (32)

is the input change which is transported from TXk
OB to TXk+1

OB and yk is
given in Eq. (28). Since Hk is defined at a point Xk ∈ OB, it only acts on the
vectors in the tangent space TXk

OB. In order to have well-defined operations
between the terms in Eq. (31), all the quantities should necessarily be defined
at the same point Xk. Besides, the resulting sum ought to define an operator
at the next iterate Xk+1. Incidentally, the vectors sk and yk are derived
by transporting αkΞk and gradf(Xk) to TXk+1

OB, and the ensuing result
is that the linear operator Hk can no longer be applied on these vectors
owing to their confinement to TXk+1

OB. Therefore, it becomes imperative
to replace Hk in the original BFGS update expression [44, p. 198] with the
transported Hessian H̃k which is defined at the iterate Xk+1 as

H̃k = THkT −1, (33)

where

T =


T
αkξ

(1)
k

0 . . . 0

0 T
αkξ

(2)
k

. . . 0

...
...

. . .
...

0 0 . . . T
αkξ

(d)
k

 (34)

T −1 =


T −1
αkξ

(1)
k

0 . . . 0

0 T −1
αkξ

(2)
k

. . . 0

...
...

. . .
...

0 0 . . . T −1
αkξ

(d)
k

 . (35)

21



The tangent vectors from TXk+1
OB are hence transported with the block di-

agonal matrix constructed with an inverse vector transport operator defined
as

T −1
αkξ

(i)
k

= I−
(x

(i)
k + αkξ

(i)
k )(x

(i)
k )T

(x
(i)
k )T(x

(i)
k + αkξ

(i)
k )

(36)

to TXk
OB on which Hk is defined. Consequently, Hk transforms the trans-

ported vectors on TXk
OB and then forwards the result with the block di-

agonal matrix, whose diagonal elements are the vector transport operators,
to TXk+1

OB. Another desirable option to handle the issue concerning the
Hessian update is to straightaway estimate the inverse-Hessian using the
Sherman-Morrison-Woodbury formula [57]

Bk+1 =B̃k +

(
1 +

yT
k B̃kyk

sTk yk

)
sks

T
k

sTk yk

− 1

sTk yk
(sky

T
k B̃k + B̃kyks

T
k )

(37)

that allows the direct calculation of the search direction without the need
for matrix inversion; B̃k is the transported inverse-Hessian at the iterate
Xk+1, that can be denoted by

B̃k = T BkT −1. (38)

Thus the Hessian and inverse-Hessian operators are to be transported back
and forth between the two different iterates Xk and Xk+1 in the manifold
optimization [58]. The subsequent search direction by taking into account
either the inverse-Hessian or Hessian update can be reformulated as

Ξk+1 = unvec(−Bk+1vec(gradf(Xk+1)))

= unvec(−H−1k+1vec(gradf(Xk+1))).
(39)

The performance of the QN method can degrade if the line-search is not
based on the Wolfe conditions [44, p. 201]; therefore, we select αk that
satisfies the strong Wolfe conditions mentioned in Eqs. (22) and (27) by
employing the inexact line-search algorithm presented in [51]. In practice, to
meet the curvature condition yT

k sk > 0 at a chosen step, the Hessian/inverse-
Hessian update is skipped if the condition

sTk yk ≥ θsTkHk+1sk (40)
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Table 4: Quasi-Newton algorithm on oblique manifold.

1. Randomly select X0 with the normality constraint, and evaluate f(X0) (Eq. (12)) and
f ′(X0) (Eq. (15)); compute gradf(X0) in Eq. (16) to set Ξ0 and α0 given by Eqs. (29) and (30),
respectively.

2. With the initial guess, αk = 1, vector transport Ξk to the tangent space TXk+1
OB to produce Ξ̃k

using Eq. (24).
3. Determine αk such that the strong Wolfe conditions in Eqs. (22) and (27) are satisfied by

performing the inexact line-search.
4. Obtain Xk+1 with Eq. (18) and evaluate f(Xk+1); compute gradf(Xk+1) from f ′(Xk+1).
5. By transporting αkΞk and gradf(Xk) to TXk+1

OB, calculate sk and yk as in Eqs. (32) and (28),
respectively.

6. Choose an inverse vector transport operator defined in Eq. (36) to formulate either an
inverse-Hessian transport (Eq. (38)) or Hessian transport (Eq. (33)).

7. Update the inverse-Hessian/Hessian following Eq. (37) or (31).
8. Determine Ξk+1 for the subsequent iteration as mentioned in Eq. (39).
9. If the convergence criterion in Eq. (19) is not satisfied, return to Step 2.

is not adhered to, where θ > 0 (typical θ value is 10−2 [44, p. 538]). For
the reasons outlined in Section 2, since the retraction in Eq. (5) and vector
transport in Eq. (8) are a particular choice, a Riemannian QN algorithm
can also be realized by replacing them with the exponential map in Eq. (6)
and Levi-Civita parallel transport in Eq. (7), respectively.

In [59], Manton argued that it may be an overkill to perform parallel
transportation along geodesics in an optimization problem formulated on
either the Stiefel or Grassmann manifold; as a consequence, it may suffice to
utilize a “simple transport”. This idea is reinforced in the improved BFGS
algorithm proposed by Brace and Manton [60], which conveniently precludes
the Hessian transport mechanism. In addition, Depczynski and Stöckler
implemented a Riemannian BFGS algorithm on a sphere by merely adopting
the inverse-Hessian update formula for the Euclidean case and omitting the
inverse-Hessian transport [38]. It is relevant to remark that one can however
use an efficient but rigorously defined vector transport to get efficiency, in
some cases, compared to parallel transport [35]. Anyway, in agreement with
Manton’s notion, we have formulated an equivalent procedure on OB to
update the Hessian/inverse-Hessian using either Eq. (31) or (37) by replacing
H̃k and B̃k with Hk and Bk, respectively; the objective here is to relieve
the computational burden, due to the Hessian/inverse-Hessian transport
calculation, which is not at the expense of efficiency. One may refer to Table
5 for the steps involved in the determination of Ξk+1 in the proposed cost
effective QN scheme well-suited for OB. The halting criterion for the QN
scheme is also based on ‖vec(gradf(Xk+1))‖∞, so that it would be congruent
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Table 5: Deciding Ξk+1 in cost effective quasi-Newton algorithm on oblique manifold.

1. Determine sk and yk expressed in Eqs. (32) and (28), respectively, using the vector transported
αkΞk and gradf(Xk).

2. Update the inverse-Hessian/Hessian as per Eq. (37) or (31), where B̃k and H̃k are replaced by
Bk and Hk, respectively.

3. Find Ξk+1 using Eq. (39).

with the rest of the algorithms discussed in this paper.
A systematic analysis of the Riemannian BFGS method can be found

in [37]. The study includes convergence theory generalizing the standard
Euclidean results of QN methods, discussion of choices of transport and
retraction, and tradeoffs relative to efficient implementation.

5. Evaluation

5.1. Algorithms evaluated

In this section, we evaluate the efficiency and effectiveness of algorithms
designed using various combinations of the ideas discussed above: Rieman-
nian vs. Euclidean framework and normality vs. orthonormality constraints.

We evaluate a set of Riemannian manifold algorithms:

• Riemannian QN (specifically Riemannian BFGS) on OB. These
enforce normality in a Riemannian framework. Three versions are
tested that vary the choice of the retraction/transport mechanism.

– OM-QN-PT is Riemannian BFGS using the exponential map as
the retraction to maintain normality and parallel transport to
move tangent vectors and linear operators on tangent spaces be-
tween tangent spaces.

– OM-QN-VT is Riemannian BFGS using a simple scaling to unit
length as the retraction to maintain normality and a nonisometric
vector transport to move tangent vectors and linear operators on
tangent spaces between tangent spaces.

– OM-QN-CE is Brace and Manton’s Riemannian BFGS algorithm
that ignores transport of the linear operators between tangent
spaces.

• Riemannian QN on the Stiefel manifold. SM-QN-LG enforces
orthonormality in a Riemannian framework by working on the Stiefel
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manifold and making use of a Lie Group perspective on the computa-
tions [10].

• Alternate methods on OB. Three line search-based methods onOB
are employed to assess using the Riemannian framework, normality
and an alternate to the QN class of optimization methods.

– OM-SD is a generalization of steepest descent.

– Two generalizations of conjugate gradients that differ based on
the strategy of choosing their update parameter, OM-CG-HZ and
OM-CG-hybrid.

All of these Riemannian algorithms, of course, use the Riemannian notions
of gradients, linear operators on tangent spaces and the Riemannian metric
defined as a function of the tangent spaces to define distance on the manifold.

We also evaluate two Euclidean algorithms that use the Euclidean form
of the gradients, linear operators and distance. They are both a QN method
(BFGS) and differ in the enforcement of normality and orthonormality.
Specifically, we have

• E-QN-GS that enforces orthogonality on each iteration using GS pro-
cedure.

• E-QN-NI that enforces normality on each iteration by scaling the in-
dividual vectors to unit length.

5.2. Performance improvement attributed to normality constraint and man-
ifold learning

To validate the performance improvement of the proposed optimization
scheme, OM-QN-VT, which accentuates the relaxation of the orthonormality
constraint and manifold learning, we have performed a simulation with a
set of natural images using the E-QN-GS, SM-QN-LG and E-QN-NI. The
aforestated three strategies, which have already been reported in the ICA
literature, optimize the same contrast function in Eq. (12) by making use
of the analytical gradient in Eq. (15) to be consistent in the quantitative
comparison of the source separation results with the OM-QN-VT.

A set of 12 natural images was taken from the MATLAB Image Process-
ing Toolbox, and resized to have 50 × 50 pixels each. To begin with, the
image data were converted into a multispectral data by concatenating the
pixel values along the columns in each image, and stacking d such image
data to form an input data of size d× 2500. Observe that for 9-D and 11-D
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simulations, we have exhaustively supplied the image combinations arising
from a pool of 11 and 12 images, i.e., C11

9 and C12
11 different data inputs,

respectively. Each multispectral data was first mixed by a random non-
orthogonal mixing matrix as in [61], and then whitened for the following
reasons, although our approach does not strictly require this preprocessing
step.

1. Primarily with relevance to OB optimization, preprocessing the data
by whitening can be regarded as a good initialization for the search,
which will therefore speed up the convergence. In other words, mere
whitening brings the data globally close to independence, and we can
proceed further by locally finding a non-orthogonal unmixing matrix
which reduces the MI further [32]. On top of that, it has been argued in
[62] that whitening reduces the complexity of the problem in finding an
optimal unmixing matrix, despite it being very simple and a standard
procedure.

2. Interestingly, the whitening process helps to simplify the design of
kernel density estimator due to the fact that such a constraint enables
the reconstructed signals to be treated as zero-mean and unit variance
random variables [2]; resultantly, the bandwidth h can be safely chosen
as in Eq. (14).

The parameter values for the algorithms—the E-QN-GS, SM-QN-LG
and E-QN-NI—were set as reported in [2] and [10], whereas in the design
of OM-QN-VT, the values conform to those followed conventionally in the
equivalent Euclidean setting, as recorded below: ε = 10−6, c1 = 0.01 and
c2 = 0.9. Various parameters in the OB line-search routine were assigned
values as follows, which are recommended in [51]: τ1 to determine the size of
the jumps of the iterates in the bracketing phase is 9; τ2 and τ3 to restrict a
trial point from being arbitrarily close to the extremes of the interval in the
sectioning phase are 0.1 and 0.5, respectively; the line search threshold is set
to be 2.2204 × 10−15. The software system was implemented in MATLAB
7.5 on a PC (Pentium D 3-GHz CPU, 2-GB DDR2 RAM) using Windows
XP Professional SP3.

The unmixing matrices from the experimented schemes were used to
reconstruct the separated source images Î(i), i = 1, 2, . . . , d; since we already
have the original images I(i), after necessary reordering of Î(i), i = 1, 2, . . . , d

RMSE =

√√√√√√
∑d

i=1

∑
l,c

(
I
(i)
l,c − Î

(i)
l,c

)2
∑d

i=1

∑
l,c

(
I
(i)
l,c

)2 , (41)
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Table 6: Comparison of MI values from E-QN-GS, SM-QN-LG, E-QN-NI and OM-QN-VT
in ICA learning.

Optimizer d = 9 d = 11

minimizing MI MI mean MI std. dev. least MI % MI mean MI std. dev. least MI %

E-QN-GS 12.212951 0.269491 0 14.911829 0.225228 0

SM-QN-LG 11.603528 0.124083 0 14.170216 0.099226 0

E-QN-NI 11.512988 0.197401 3.64 14.053028 0.173112 0

OM-QN-VT 11.425382 0.172612 96.36 13.905114 0.135201 100

Table 7: Comparison of RMSE in ICA learning using E-QN-GS, SM-QN-LG, E-QN-NI
and OM-QN-VT.

Optimizer under d = 9 d = 11

investigation RMSE mean RMSE std. dev. least RMSE % RMSE mean RMSE std. dev. least RMSE %

E-QN-GS 0.219962 0.040694 0 0.250308 0.023857 0

SM-QN-LG 0.090414 0.025770 7.27 0.121046 0.038539 0

E-QN-NI 0.115623 0.039241 5.45 0.145189 0.050567 0

OM-QN-VT 0.066644 0.022887 87.27 0.081939 0.022371 100
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Figure 2: Boxplots depicting the RMSE values resulted in the simulations involving the
E-QN-GS, SM-QN-LG, E-QN-NI and OM-QN-VT, which make use of an input image
data of dimension (a) 9 and (b) 11.
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where l and c are the row and column indices of the pixels, respectively,
in I(i) and Î(i), i = 1, 2, . . . , d. Additionally, the minimized MI values by
the algorithms under study were recorded. Since the RMSE measure is al-
ways non-negative, scale invariant and does not suffer from the permutation
ambiguity due to the reordering of the estimated sources, it possesses the
virtues of the well-known performance measures such as the SIR and PI.
Furthermore, unlike the SIR and PI, which compare the original and esti-
mated unmixing matrices, the RMSE measure we intend to work with takes
the original and reconstructed sources into account. Therefore, the RMSE
lends itself to consider any random non-orthogonal mixing matrix in the
simulation, whereas the retrieved unmixing matrices are either subject to
orthonormality or normality constraint.

To assess the performance of the OM-QN-VT with regard to the rest
of the optimization methods, the outcome of the experiment, namely, the
mean, standard deviation, and percentage of cases with the minimum value
of MI and RMSE are provided in Table 6 and 7, respectively. We infer from
the empirical studies that it is beneficial to stay onOB and enjoy the superior
convergence characteristics rather than enforcing the normality constraint
by mere post-normalization. This result has been illustrated using the E-
QN-NI as a counterexample, by incorporating an Euclidean QN—identical
to the NPICA—which reimposes the constraint by post-normalization after
each iteration. Indeed, it is of interest to investigate whether the increased
degrees of freedom offered by the normality constraint, compared to the
conventional orthonormality constraint, substantially contributes to the so-
lution quality in the ICA implementation. Keeping this in mind, we have
replaced the routine for post-normalization with the popular GS orthogonal-
ization procedure in the E-QN-NI to maintain the orthonormality constraint
in the E-QN-GS. Since it has been reported in a recent work [10] that learn-
ing the ICA unmixing matrix on the Stiefel manifold, by accounting for the
manifold’s curved geometry in a more natural way, using a Lie group method
improves the IC estimation accuracy, a QN algorithm in conjunction with
Lie group techniques, SM-QN-LG, is also included.

It is straightforward to conclude that the OM-QN-VT can better mini-
mize the MI, since in 96.36% and 100% of the total test cases its minimiza-
tion performance surpassed the other approaches for the data of dimension
9 and 11, respectively. Even though the differences in the MI values between
the investigated algorithms may be seemingly inappreciable, the importance
of manifold learning and relaxing the orthonormality constraint is corrob-
orated by the noticeable reduction in the RMSE values resulted from the
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OM-QN-VT. Observe from the boxplots4 in Fig. 2 that the true medians of
the RMSE values corresponding to the OM-QN-VT for both the 9-D and 11-
D data sets do differ from the medians of the remaining methods with 95%
confidence, since the notches in the boxes do not overlap. Conspicuously,
the proposed algorithm outperformed the rest of the methods in terms of
the RMSE values in 87.27% and 100% of the total trials. We attribute the
superior performance of the OM-QN-VT, particularly in comparison with
the E-QN-NI wherein the minimization is subject to post-normalization, to
its ability to preserve the asymptotic super-linear convergence thanks to
manifold learning.

5.3. Results in simulations with natural images and audio signals

To subjectively assess the performance of the ICA algorithms on OB in
relation to the methods—the JADE [63], infomax [64], fastICA [65], GEKD-
ICA [1] and NPICA [2]—well-known among the ICA community, a simula-
tion was performed using nine natural images, each having 200×200 pixels.
The multispectral data of size 9× 40000, constructed using the image pixel
values, were mixed by a random non-orthogonal matrix, followed by whiten-
ing, and then supplied as the input for all the investigated approaches. The
source estimates were reconstructed with the unmixing matrices estimated
by the various schemes under study and are furnished in Fig. 3 for visual
scrutiny along with the original source and mixed images. Notably, the
methods built on the source adaptive contrast functions excelled the ones
relying on a “surrogate” function to measure independence. The separation
performance was quantitatively evaluated using Eq. (41) and the RMSE
value for the OM-QN-VT—0.030149—is remarkably lower than the JADE,
infomax and fastICA values, which are 0.191902, 0.196403 and 0.213413, re-
spectively. Although the SM-QN-LG and E-QN-NI were implemented with
the contrast function in Eq. (12), due to the orthonormality constraint intro-
duced by the Stiefel manifold learning and the enforcement of the normality
constraint, their performances are limited as evident from the RMSE values
of 0.065568 and 0.128786, respectively. Of particular interest is the GEKD-
ICA RMSE value—0.041362—which is higher than the OM-QN-VT, even if

4In this paper, the boxplots are defined as follows: the thin horizontal line passing
through the notches in the box stands for the median of the data, the upper and lower
ends of the box correspond to the upper and lower quartiles, respectively, and the whiskers
extending from the box refer to points within a standard range of the data, defined as 1.5
times the interquartile range; beyond the ends of the whiskers, outliers are displayed with
a plus sign.
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Figure 3: Simulation results using nine natural images of size 200× 200 for subjective as-
sessment. (a) Original source images. (b) Mixed images. (c)–(j) Reconstructed sources us-
ing the ICA unmixing matrices estimated by the JADE, infomax, fastICA, E-QN-NI, SM-
QN-LG, GEKD-ICA, NPICA and OM-QN-VT with RMSE values of 0.191902, 0.196403,
0.213413, 0.128786, 0.065568, 0.041362, 0.030149 and 0.030149, respectively.
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it claims to outmatch a class of popular source adaptive ICA algorithms.
Unlike the multimodal density distributions of the pixel values in natural

images, the amplitudes of the audio signal samples follow unimodal density
distributions which can trivially be estimated using parametric techniques.
Moreover, some of the existing ICA algorithms, which will make use of a
prior assumption about the density distributions of the underlying sources,
may be befitting for the audio signal separation task. However, to eval-
uate the robustness of the proposed method over a wider range of appli-
cations, an experiment was set up with nine audio signals in the WAVE
format comprising speech, song, music and mechanical sound, which are
sampled at 8 KHz with a sample size of 8 bits. Since the duration of each
signal is roughly 6 seconds, they all have a length of 50000 time points.
The same set of ICA algorithms investigated with the simulation involving
natural images were supplied with the mixed and whitened multispectral
data of size 9 × 50000; similar to the previous experiment, the mixing ma-
trix was considered to be a random and non-orthogonal one. The retrieved
source estimates from various approaches were reordered and quantitatively
compared with the original source signals. For visual comparison of the
source separation performance, the amplitude error corresponding to each
source sample is plotted for all the algorithms in Fig. 4; to clearly distin-
guish between the approaches whose performance distinctly differ from the
rest—more than an RMSE difference of 0.001—the plots are shown in dif-
ferent colors. Aside from the case of audio source 1, the OM-QN-VT and
NPICA could retrieve the sources with the least RMSE measure. In com-
parison with the “surrogate”-function-based techniques, the SM-QN-LG and
GEKD-ICA managed to reproduce the sources with an increased accuracy.
With respect to the separation results, the tested algorithms are graded
in the following order: OM-QN-VT/NPICA, GEKD-ICA, SM-QN-LG, fas-
tICA, infomax, JADE and E-QN-NI with the RMSE values of 0.014899,
0.015991, 0.017998, 0.022889, 0.023890, 0.044443 and 0.058083, respectively.
The worst RMSE value yielded by the E-QN-NI emphasizes the fact that
the post-normalization performed on the ICA unmixing matrix, in the pre-
text of ascertaining its columns to be of unit-norm by naive methods, will
significantly deteriorate the source separation quality, in defiance of a robust
contrast function grounded on non-parametric density estimation tools.

It is candidly stated that the NPICA performs on par with the OB algo-
rithms, because unlike approaches where the constraint is imposed between
the iterations, Boscolo et al. carefully adopt the normality constraint in
the gradient calculation, which turns out to be an unconstrained optimiza-
tion task. Since the underlying supposition in [2] regarding the constraint
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Figure 4: The amplitude error between each estimated and original source sample while
retrieving the nine audio signals of approximately 6 seconds duration, sampled at 8 KHz
and mixed with a non-orthogonal matrix, using various ICA algorithms. To appreciate
the differences in performance subjectively, the methods whose RMSE values differ below
a threshold of 0.001 are clubbed together. For grading the performance quantitatively, the
RMSE values of OM-QN-VT/NPICA, GEKD-ICA, SM-QN-LG, fastICA, infomax, JADE
and E-QN-NI are listed as 0.014899, 0.015991, 0.017998, 0.022889, 0.023890, 0.044443 and
0.058083, respectively, in the increasing order.
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Table 8: Convergence of OM-SD, OM-CG-HZ, OM-CG-hybrid, OM-QN-VT and OM-QN-
CE algorithms, experimented with 3, 6 and 9 natural images of size 50× 50, by supplying
10 random initial input matrices. Standard deviations of MI are less than 10−7, implying
consistency in finding a local minimum. As a benchmark for the empirical study, the MI
values from OM-QN-PT are tabulated in the last column.

d Mean MI Value

OM-SD OM-CG-HZ OM-CG-hybrid OM-QN-VT OM-QN-CE OM-QN-PT

3 3.517011 3.517011 3.517011 3.517011 3.517011 3.517011

6 7.586613 7.586613 7.586613 7.586613 7.586613 7.586613

9 11.553152 11.553152 11.553152 11.553152 11.553152 11.553152

imposition is practically equivalent to ours, where the major emphasis is
to allow the iterations to proceed unperturbed by intrinsic preservation of
the normality constraint, it is not surprising to infer from the results that
they converge to the same solution. Nevertheless, this paper specifically
concerns itself with a manifold optimization strategy—a more general opti-
mization framework founded on the notions of differential geometry—which
can handle any ICA contrast function intended to work with the normal-
ity constraint. Importantly, the recently proposed source adaptive contrast
functions such as the non-parametric likelihood ratio (NLR) [66] and the MI
based on Jensen’s inequality [67], which are the preferred choices over the
NPICA for speech separation, can readily be applied in our manifold tech-
niques without any modification; whereas, it is not always guaranteed that
the Euclidean gradients of the contrast functions can be tailored to account
for the normality constraint for the optimization problem to be treated as
an unconstrained one, as in the case of NPICA.

5.4. Convergence and scalability issues of oblique manifold algorithms

To better understand the optimization landscape and to verify the con-
vergence behavior of OB algorithms—the OM-SD, OM-CG-HZ, OM-CG-
hybrid, OM-QN-VT and OM-QN-CE—in practical problems, the mixed and
prewhitened multispectral data of size d × 2500, where d = 3, 6, 9, were al-
lowed to be unmixed by the aforementioned methods. Specified below are
the parameter settings for the OM-SD, OM-CG-HZ and OM-CG-hybrid:
γ = 0.5, c1 = 0.01, c2 = 0.1, ϕ = 0.01 and ε = 10−6. Due to the uniqueness
of the unmixing matrix apart from the scaling and permutation indetermi-
nacies, convergence to a local minimum was feared to end up in a suboptimal
solution. Optimistically, as discussed in [68], it may be quite sufficient in
practice if the convergence to a local minimum can be attained for an arbi-
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trary initial guess. We surmise that the above requirement is satisfied by the
methods designed for OB, because for each data dimension, the MI corre-
sponding to the optimal solution remains unaltered regardless of 10 different
random initial inputs as enlisted in Table 8. By way of explanation, the stan-
dard deviations of the MI lie well below 10−7 in all the experiments, which
is due to the convergence thresholds set for the optimization algorithms; it
implies that the proposed methods consistently locate the local minimum.
In addition, these MI values coincide with the minimization results, included
in the last column of Table 8, from the OM-QN-PT algorithm built with
the exponential map in Eq. (6) and Levi-Civita parallel transport in Eq.
(7). This highlights the fact that replacing the conventional Riemannian
optimization ingredients in Eqs. (6) and (7) with a retraction in Eq. (5) and
vector transport in Eq. (8), respectively, is practically equivalent. Although
the retraction update appears to be simple in our case, OB optimization
does not amount to mere post-normalization. We recall that for ensuring
convergence, suitable mechanisms to project the gradient onto a tangent
space, transport of various elements between different tangent spaces, and
transport of an approximate Hessian back and forth between the tangent
spaces at subsequent iterates are to be incorporated in the algorithm de-
sign. To discern the structure of the optimization landscape generated by
our contrast function, we have portrayed the simplest case concerning a 2-D
natural image data of size 50× 50 in Fig. 5, where one of the four possible
global minima is indicated using a pink circled asterisk.

To examine the scalability issue, 10 trial executions were performed us-
ing the proposed OB techniques with random initial starts for each data
dimension varying from two to nine, and the average CPU time consump-
tion in seconds for each technique was recorded. In order to be fair in
comparison, all the approaches were supplied with an identical set of ini-
tial solution guesses and were subject to the same stopping criterion. It is
plausible to conjecture that the execution time for the proposed collection
of optimizers increases quadratically with the data dimension; in the scala-
bility graph depicted in Fig. 6, a quadratic fit is more appropriate for the
data-points representing the execution time taken by each approach, with
95% confidence bounds. In essence, this investigation ascertains that the
proposed schemes are computationally scalable for the multispectral offline
data analysis.
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6. Conclusion

This paper describes a collection of geometric optimization algorithms—the
OM-SD, OM-CG-HZ, OM-CG-hybrid, OM-QN-VT, OM-QN-PT and OM-
QN-CE—meant to convert the ICA optimization task subject to the nor-
mality constraint into an unconstrained one by staying on OB. The present
work has been motivated by the rationale that follows. Even though a con-
siderable effort has recently been focused by the ICA community on the
development of Riemannian methods, optimizing effectively on the Stiefel,
Grassmann and flag manifolds to account for the orthonormality constraint,
manifold algorithms with an intent to handle the normality constraint have
not been widely investigated. Ironically, as conceded in the literature, the
ICA methods grounded on the normality constraint yield a more accurate
solution in comparison with the ones insisting on the orthonormality con-
straint due to the following reasons: (1) the former methods rely on the
contrast functions which go for a direct estimation of source densities and
(2) they enjoy more degrees of freedom during the course of optimization.

The OM-SD algorithm, though simple in construction, in conjunction
with the Armijo’s step-size rule assures convergence to a local minimum.
However, the linear convergence inherent to the OM-SD approach outweighs
its potential use to unmix the higher dimensional data. To resolve this, we
ventured in the design of OM-CG algorithms with the choice of HZ and a
hybrid update parameter; owing to the strong convergence properties and
the ability to overcome “jamming”, these update parameters did supersede
the traditional choices. Inspite of the super-linear convergence rate offered
by the OM-CG, since the QN is the favored choice in many real world appli-
cations, we have incorporated all the OB optimization ingredients—gradient
projection onto a tangent space, retraction, vector transport, inverse vector
transport and Hessian transport—to develop a OM-QN-VT algorithm and
its slight variation, OM-QN-CE, which evades the Hessian transport. We
have systematically compared these Riemannian algorithms and two Eu-
clidean QN algorithms, E-QN-GS and E-QN-NI, to evaluate the influence
on efficiency and effectiveness of the choices of Riemannian and Euclidean
frameworks for the problem and the enforcing of normality and orthonor-
mality.

It turns out that the accurate estimation of the unmixing matrix is of
prime concern in certain dedicated applications, for instance, offline medical
image segmentation [69]. To be pertinent to such an application, we have
demonstrated the techniques on OB by opting for a source adaptive con-
trast function, where the non-parametric density estimation is considerably
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expedited thanks to the IFGT. In order to give insight into the influence of
manifold learning on the solution accuracy with regard to both normality
and orthonormality constraints, an experimental validation using natural
images and audio signals is provided. For a visual assessment, the ICA sep-
aration results from prominent ICA techniques as well as the OM-QN-VT
are furnished; apparently, as predicted by the RMSE values, learning on OB
is conclusively better than either orthogonalizing the IC estimates between
the iterations or implicitly handling the orthonormality constraint through
manifold learning or enforcing the normality constraint. To verify whether
ICA algorithms with the normality constraint reach the lower Cramér-Rao
bound is deferred to future work. However, what is stressed in the present
paper is that the MI-based estimation of ICs by relaxing the unnecessary
orthogonality constraint is more accurate than the ones obtained with the
same constraint, regardless of whether the optimal lower Cramér-Rao bound
is reached or not. A possible future direction is to examine the suitability
of optimizing contrast functions such as the NLR criterion or the MI based
on Jensen’s inequality by staying on OB for quantifying the brain tissues
in magnetic resonance image (MRI) data. Further research is underway to
speed up the function and gradient evaluation step by alternatively estimat-
ing the densities by way of a Gaussian mixture model.

Appendix A. Proof for the choice of oblique projector as inverse
vector transport operator

We are given xk ∈ Sn−1 and we choose a direction ξk ∈ Txk
S to define

the tangent space corresponding to the next iterate Txk+1
S, where

xk+1 = Rxk
(ξk) =

xk + ξk
‖xk + ξk‖

.

Theorem 1. Given a vector transport on Sn−1, Tξk = I−(xk + ξk)(xk + ξk)
T

‖xk + ξk‖2
,

an inverse vector transport is T −1ξk
= I−

(xk + ξk)x
T
k

xT
k (xk + ξk)

.

Proof: A. Linear algebra interpretation
Note that both operators are linear maps on Rn, and T −1ξk

Tξk = I when
restricted to Txk

S. From the definitions of tangent space and retraction, we
can write

xT
k ξk = 0;

vk = xk + ξk = xk+1‖vk‖.
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Figure A.7: Geometric approach to explicate that if the chosen vector transport on OB is
an orthogonal projector, the corresponding inverse vector transport should be an oblique
one.

Substituting the expressions for Tξk and T −1ξk
in T −1ξk

Tξkξk yields ξk as shown
below:

T −1ξk
Tξkξk =

[
I− (xT

k vk)
−1vkx

T
k

] [
I− xk+1x

T
k+1

]
ξk

= ξk − xk+1x
T
k+1ξk − (xT

k vk)
−1vkx

T
k ξk +

(xT
k vk)

−1vk(x
T
k xk+1)(x

T
k+1ξk)

= ξk − xk+1(x
T
k+1ξk) +

vk
(xT
k xk+1)(x

T
k+1ξk)

(xT
k vk)

= ξk − xk+1(x
T
k+1ξk) +

xk+1

‖vk‖(xT
k xk+1)(x

T
k+1ξk)

(xT
k xk+1)‖vk‖

= ξk − xk+1(x
T
k+1ξk) + xk+1(x

T
k+1ξk)

= ξk.

Hence T −1ξk
is the related inverse vector transport of Tξk .

B. Geometric interpretation
A general projection setup uses two spaces of dimension 1 ≤ k ≤ n, K and
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L. A projector P can then be defined such that for any vector z ∈ Rn

Pz ∈ K
z−Pz ⊥ L.

It is possible to show that if we have bases K and L for K and L, respectively,
and suppose LTK is nonsingular then

P = K(LTK)−1LT.

Furthermore, if K = L we may take K = L = Q with QTQ = Ik, and the
symmetric matrix

P = QQT

is an orthogonal projector. If K 6= L, the projector is called oblique. These
ideas are applied to define Tξk and T −1ξk

; Fig. A.7 illustrates that if Tξk is

an orthogonal projector then T −1ξk
must be an oblique one. Since Tξk is an

orthogonal projector, λ̃k = Tξkλk is the best approximation in Txk+1
to λk.

In terms of the general projector notion, we have K = L = Txk+1
. Therefore

I =
[
Qxk+1

xk+1

] [
Qxk+1

xk+1

]T
= Qxk+1

QT
xk+1

+ xk+1x
T
k+1

Tξk = Qxk+1
QT

xk+1
= I− xk+1x

T
k+1,

where Qxk+1
∈ Rn×n−1 is the orthonormal basis of Txk+1

. From Fig. A.7, it

is clear that the angular relationship of the residual λk − λ̃k and Txk
is not

perpendicular; therefore to map λ̃k to λk, we must use an oblique projector.
Let λ̂k = λ̃k − λk be the residual that results from the oblique projection
defining T −1ξk

. We seek a projector P such that λ̂k = Pλ̃k; if we succeed it
follows that

λk = λ̃k − λ̂k = λ̃k −Pλ̃k

= (I−P)λ̃k = T −1ξk
λ̃k.

Since we have

λ̂k = λ̃k − λk ⊥ Txk+1
→ λ̂k ∈ R(xk+1) = K

λk = λ̃k −Pλ̃k ∈ Txk
→ λk ⊥ R(xk) = L,

where R(·) is the span of the vector under consideration, the projector can
be written as

P = xk+1(x
T
k xk+1)

−1xT
k .
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It implies that the related inverse vector transport is

T −1ξk
= I−

xk+1x
T
k

xT
k xk+1

.

�

Appendix B. First derivative of contrast function

The contrast function is given by

f(X) =

d∑
i=1

Hi − log |det X|,

where

Hi := −E
{

log p(i)
(
b(i)
)}

' − 1

N

N∑
u=1

log p(i)
(
b(i)u

)
and p(i)

(
b
(i)
u

)
is expressed in Eq. (13). Here N and d are the total number

of data-points and dimension of the multispectral data input for the ICA
algorithm, respectively, h is the kernel bandwidth and the superscript in-
dices signify that the density function is not the same for all components in
general. In what follows, for ease of notation, we resort to the same symbols
f and H to refer to the contrast function and entropy, respectively, that
have been approximated by means of the estimators of kernel density and
expectation. The first derivative of the contrast function can be derived as
follows:

∂Hi

∂xrs
= − 1

N

N∑
u=1

1

p(i)
(
b
(i)
u

) ∂

∂xrs
p(i)

(
b(i)u

)

∂

∂xrs
p(i)

(
b(i)u

)
=

1

Nh
√

2π

N∑
v=1

∂

∂xrs
exp

−
(
b
(i)
u − b(i)v

)2
2h2


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∂

∂xrs
exp

−
(
b
(i)
u − b(i)v

)2
2h2

 = exp

−
(
b
(i)
u − b(i)v

)2
2h2

×
−2
(
b
(i)
u − b(i)v

)
2h2

∂

∂xrs

(
b(i)u − b(i)v

)

= − 1

h2
exp

−
(
b
(i)
u − b(i)v

)2
2h2

× (b(i)u − b(i)v )(m(s)
u −m(s)

v

)
δri.

From b
(i)
u =

∑d
t=1 xitm

(t)
u , it follows that

∂b
(i)
u

∂xrs
=

{
0 if r 6= i

m
(s)
u if r = i.

Therefore,

∂

∂xrs
p(i)

(
b(i)u

)
=

1

Nh
√

2π

N∑
v=1

(
− 1

h2

)
×

exp

−
(
b
(i)
u − b(i)v

)2
2h2

(b(i)u − b(i)v )(m(s)
u −m(s)

v

)
δri

∂Hi

∂xrs
=

1

N2h3
√

2π

N∑
u=1

1

p(i)
(
b
(i)
u

) N∑
v=1

exp

−
(
b
(i)
u − b(i)v

)2
2h2


×
(
b(i)u − b(i)v

)(
m(s)
u −m(s)

v

)
δri

∂H

∂xrs
=

d∑
i=1

∂Hi

∂xrs
=

1

N2h3
√

2π

N∑
u=1

1

p(r)
(
b
(r)
u

)×
N∑
v=1

exp

−
(
b
(r)
u − b(r)v

)2
2h2

(b(r)u − b(r)v )(m(s)
u −m(s)

v

)
.
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After substituting p(r)
(
b
(r)
u

)
into

∂H

∂xrs
, we arrive at

∂H

∂xrs
=

1

Nh2

N∑
u=1

1∑N
v=1 exp

[
−
(
b
(r)
u −b

(r)
v

)2

2h2

]
b(r)u m(s)

u

N∑
v=1

exp

−
(
b
(r)
u − b(r)v

)2
2h2


− b(r)u

N∑
v=1

m(s)
v exp

−
(
b
(r)
u − b(r)v

)2
2h2


−m(s)

u

N∑
v=1

b(r)v exp

−
(
b
(r)
u − b(r)v

)2
2h2


+

N∑
v=1

b(r)v m(s)
v exp

−
(
b
(r)
u − b(r)v

)2
2h2




which is added to − ∂

∂X
(log |det X|) = −(XT)−1 to result in Eq. (15).
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