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Abstract. We construct unconditionally stable, uniquely solvable and second-order in time schemes for gradient flows with
2
energy of the form [, (F(V¢(x)) + E7|A¢>(x)|2> dx. The construction of the schemes involves appropriate combination and

extensions of two classical ideas: (i) appropriate convex-concave decomposition of the energy functional, and (ii) the secant
method. As an application, we derive unconditionally stable, second-order in time schemes for epitaxial growth models with
slope selection (F(y) = %(|y|2 —1)2) or without slope selection (F(y) = 7% In(1 + |y|?)). Two types of unconditionally stable
uniquely solvable second order schemes are presented. The first type inherits the variational structure of the original continuous
in time gradient flow while the second type does not preserve the variational structure. We present numerical simulations for
the case with slope selection which verify well-known physical scaling laws for the long time coarsening process.
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1. Introduction. Coarsening, i.e., the process by which a group of objects of different sizes transforms
into a group consisting of fewer objects with larger average size, is a very common natural phenomenon and
has attracted considerable attention recently [8]. The coarsening process usually takes place on a very long
time scale for large systems [9]. Therefore it is important to have accurate and efficient time stepping with
regard to numerical simulation.

Many phenomenological macroscopic coarsening processes are energy driven in the sense that the dy-
namics is the gradient flow of a certain “energy functional” [14, 15]. One well-known example associated
with epitaxial thin film growth is the gradient flow with the “energy” taking the form (non-dimensionalized)

56) = [ (F700)+ S 18660 ) . (1)

where F(y) is a smooth function of its argument y, = T? is the domain taken to be the d dimensional
periodic box with period 27 and d = 2,3, ..., ¢ : 2 — R is a periodic height function (in a moving reference
frame) with average zero, and € is a constant (inversely proportional to the size of the system). The first
term,

Pes(é) = | P(Vxolx))dx (1:2)

represents a continuum description of the Ehrlich-Schwoebel effect—according to which adatoms (absorbed
atoms) must overcome a higher energy barrier to stick to a step from an upper rather than from a lower

*CORRESPONDING AUTHOR, WXMQ@MATH.FSU.EDU
1



2 Shen, Wang, Wang and Wise

terrace [7, 22]—while the second term,

62
Esp(6) = /Q 0GP dx (1.3)

represents the surface diffusion effect. The case with higher order diffusion as well as Neumann type boundary
condition can be considered as well [17].
There are two popular choices for the Ehrlich-Schwoebel energy (1.2). The case without slope selection:

B) = [ (~3m01-+1VoR) + G1A0R) dx (1.4

and the case with slope selection:

Ba() = [ (§(1908 —1)" + GlaoR ) ax. (15)

The second energy may be viewed as an approximation of the first energy under the assumption that the
gradient of the height is small [18]. There are significant differences between the two models with the second
(simplified) model having a slope selection mechanism (structures with |V¢| = 1 are preferred) that is
absent in the first model. This leads to differences in energy minimizers and long time coarsening processes
14, 16, 18).

The variational derivatives of these functionals, which may be interpreted as chemical potentials, can be
calculated formally as

SE(¢)

M= 6 —Vix - VyF(Vxo) + €A% . (1.6)
The gradient flow then takes the form
¢ 2 A2
o5 = Mp=M (Vx - Vy F(Vx¢) — €A%9) | (1.7)

where M > 0 is a mobility, which can be always set to 1 (M = 1) by rescaling the time, and periodic
boundary conditions are assumed for ¢ in both spatial directions for simplicity.

The physically interesting coarsening process for spatially large systems (small €) occurs on a very long
time scale. For instance, for the model with slope selection, the minimal energy is of the order of € [14].
Assuming the widely believed t—3 scaling for the energy [16, 18, 19], it requires about 6% time for the system
to reach saturation from an initially order one profile (the saturation time would be of the order of e~2 under
the scaling that we have adopted for our equation). Therefore, numerical simulations for the coarsening
process of large systems require long time accuracy and stability. In particular, higher order (with respect to
time discretization) schemes are very desirable. In addition, unconditional energy stability is also coveted,
since we would like to have the capability of preserving the stability even if we take large time step (in
adaptive time stepping for instance).

Various first-order unconditionally energy stable schemes for models of thin film epitaxial growth are de-
rived recently [3, 28]. The purpose of this manuscript is to construct convex splitting schemes that are second-
order in time, uniquely solvable and unconditionally energy stable for gradient flows with Ehrlich-Schwoebel
type energy and apply them to models of thin film epitaxy. We note that second-order, uniquely solvable,
and unconditionally energy stable schemes have been constructed recently in [29] for Swift-Hohenberg and
phase field crystal type equations. The schemes in [29] can be applied to Allen-Cahn and Cahn-Hilliard-type
equations, as well as other gradient flows where the nonlinearity involves only the height function. (We refer
to [5, 23, 24, 31, 4, 27] for other related convexity splitting schemes.) It is not obvious whether any of the
schemes from the works just mentioned can be extended to gradient flows with an Ehrlich-Schwoebel type
energy that is a function of the gradient of the height function (instead of the height function only). We also
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point out that efficient second and third order in time accurate schemes have been investigated in [30] with
energy stability verified under certain assumptions on the numerically computed solutions.

The rest of the paper is organized as follows. In section 2 we present and analyze a family of second order
in time, uniquely solvable, unconditionally energy stable schemes that preserves the variational structure of
the continuous in time model. We introduce alternative schemes with all the desired properties except
the variational structure in section 3. Section 4 is devoted to specific applications to the models of thin
film epitaxial growth with or without slope selection. Fully discretized schemes including Galerkin Fourier-
spectral, collocation Fourier-spectral and finite-difference in space are considered in section 5. Numerical
results based on finite-difference in space and time stepping proposed in section 2 applied to the case with
slope selection is presented in section 6. We offer our conclusion remarks in section 7.

2. The scheme with variational structure. Without loss of generality, we assume that the Ehrlich-

Schwoebel type energy density F(y) is smooth and possesses a convex (+) — concave (-) splitting with a
quadratic concave term, i.e.,

F(y)=Fy(y)+ F_(y) with F_(y)=-Cly]>. (2.1)

The philosophy we shall use to construct a second-order energy stable scheme is a combination of the
convex-concave splitting (see [11] for instance) and the secant method (see for instance [5]) modified so that
it can be applied to vector form and utilized on the convex part only.

Following the general idea of treating the convex part implicitly and the concave part explicitly, a
second-order convex splitting scheme should take the following form for the gradient flow (1.7)

¢n+1 _ ¢n

2
A SAY (G 4 ) + Vi P EY)

3 | e
_ (2vyp_(vx¢ )~ 5V F (Vad 1)) (2.2)
where H**(F,) should be chosen such that the above scheme is second-order at ¢, 1 and energy stable.

Since the energy stability is usually proved by taking the inner product of the above with (¢"% — ¢"), the
following inequality has to be satisfied:

(P (E), V(0 = 6m) = [ Puverdx - [ FL(Te") dx (2.3)
Q Q
By direct calculation, we have
[Peworix - [ Pven ix
Q Q

dx
y=Vx¢pntl yo=Vyon

1
d
Z// —F (yo+7(y —yo0)) dr
oJo dr

1 (2.4)
~ [ [ @) dr - (Vo™ = V") dx
QJo Y=V +7(Vx T =V pm)
1
A ( | Vo) dv) (671 — ¢ dx.
Q 0 y:vx¢n+7—(vx¢"+l_vx¢n)
Therefore, a natural choice for H? 1 is
1
() =~V | [ (T R(3) ar ). (2.
0 y=vx¢n+‘r(vx¢n+l_vx¢n)



4 Shen, Wang, Wang and Wise

and our second-order convex splitting scheme is:

n+1l _ in 2 !
% + %AQ(W‘“ +¢") = Vx- (/0 (VyFi(y))

dT)
y:VX¢n+T(VX¢n+1 ,qugn)

= V- <;va_(vx¢") - ;va_(vxgz)”l)) . (2.6)

Alternatively, we can write the above scheme in the weak form: find ¢"+! € HZ2,.(Q) = {¢ € H*(Q) :
¢ is periodic with average zero} such that

(W7¢) + (622A(¢"+1 +¢"),Aw) + (/Ol(VyF+(Y))

3 .
— <2va_(vx¢") - %VyF_(an’l), Vx¢> , Ve HZ.(Q). (2.7)

dr, Vx¢>

y:Vx ¢n +T(VX¢"+1 7vx d)n)

Note that the treatment of the concave part is unique in the sense that, for quadratic energy, this is
the only way to get second-order with explict two-step treatment. The treatment of the diffusion term is
not unique. We have utilized the midpoint rule corresponding to Crank-Nicolson approach. Alternative
approximations, such as %AQ(b”“ + iAqu”_l, can be used as well if more dissipation is desired.

The main result of this section is the following
Theorem 1. Under the assumption (2.1), the scheme (2.7) is second-order accurate in time and uncondi-
tionally stable. More precisely, we have

n+1 nl|2
E(¢n+1) + g“v(¢n+1 _ ¢n)H2 + H(b B ¢) ” + g
2 k 2
= B + SVt - o P

V(g™ 4+ "1 —26™)|1?
(2.8)

Moreover, at each time step, the scheme corresponds to the Euler-Lagrange equation for the following strictly
convex coercive variation problem:

Buonemel( 6™, ") = S A0]12 + L 6]12 + [ 76,96 ax
scheme\ ¥, ) - 2 2% 0 j4 )

3 n _1 n—1
+/Q(—V-(2VyF(V¢) 5 VyF-(Ve" ™))

2 n
+%A2¢n _ i) ¢ dx (2.9)
with
!
FAT6.96") = [ L (PT6"+ (V0= V") = (V") dr. (210)

Therefore, the scheme is uniquely solvable provided that Fy (y) and VyFi(y) grow at most like a polynomial
my.

Proof. By taking the Taylor expansion at ¢, 1 it is easy to see that the scheme is second-order accurate
in time.

The unconditional stability of the scheme is guaranteed by the discrete energy law (2.8). In order to
derive this discrete energy law, we take ¢ = ¢! — ¢™ in (2.7).

Obviously, we have

62 62
[ -Saremt et - g ax= -5 [ (80P - |ag"P) dx. (2.11)
o 2 2 Ja
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Thanks to the assumption (2.1), we have VyF_(y) = —2CYy. Therefore,
‘/Q (2VyF<vx¢”> - ;Vywaas"-l)) V(@ — g7 dx
=C [ (3Ve" —V¢" 1) (Vo' — Vo) dx
Q
=2C | Vo™ - (Vo™ — V™) dx + 0/ (Vo™ — V") - (Vo™ — Vo") dx
Q
= C/Q (=IV 2+ [V T2 = [V (¢" T = ¢™)[? + (Vo — V" 1) - (Vo H! — Vo)) dx
= [ (HIT0nR 4 [T = LI - )+ 596" - Vo)
Q
—C %W(d)”“ + ¢t —2¢™) 2 dx . (2.12)

Q

Combining the above two inequalities and (2.4), we deduce the desired discrete energy law (2.8).
On the other hand, we can easily verify that
O o Fp(Vert Vo) dx

1
Ve | [ (9yFe)) d¢> - -
( o7 Y=V 7 (V™ H1 = Vo) LA

Therefore the scheme (2.6) is the Euler-Lagrange equation of the energy functional given in (2.9). The
convexity of F, follows from the convexity of

(2.13)

% (Fy(Vo" + (Vo — V™) — Fy(Ve"))

for all 7 € (0, 1], thanks to the convexity of F.y. So the coercivity of the energy functional (2.9) then follows
from the convexity of F, and the diffusion term. Therefore, the unique solution to the scheme exists and is
the unique minimizer of the energy functional (2.9) under usual differentiability and growth conditions on
F, [6, 10, 12). O

3. Alternative schemes without variational structure. Alternative second-order unconditionally
stable and uniquely solvable schemes do exist if we do not care about the preservation of the variational
structure. In this case, straightforward generalization of the secant method would work without involving the
integral form that we used in deriving the scheme with variational structure that we presented in the previous
section. The resulting schemes are generally more compact than the schemes derived in the previous section
although they lack the variational structure. Here we illustrate two alternative ways of deriving second-
order unconditionally stable and uniquely solvable schemes for equations of thin film epitaxial growth with
or without slope selection.

Without loss of generality, we assume that the Ehrlich-Schwoebel type energy density F(y) is smooth
and takes the form

F(y) =G(ly”). (3.1)

This certainly fits the thin film epitaxy models that we are interested here with G(&) = f% In(1+ &) for the
case without slope selection, and G(£) = (¢ — 1) for the case with slope selection.

Following the general convex-splitting idea (see for instance [11, 28]), we assume that it possesses a
convex-concave splitting with a quadratic concave term, i.e.,

GE) =G () +G_(¢) with G/ >0, G, >0 and G_(§)=—C¢. (3.2)

We now construct a scheme with the following considerations: (i) The concave quadratic term associated
with G_ can be treated explicitly via classical two level method as before in order to preserve the energy
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law and maintain the second-order accuracy; (ii) Likewise, the convex quadratic term (§||A¢|2) can be
treated easily using classical midpoint type approximation; (iii) For the convex part associated with G, we
mimic the classical secant method for second-order approximation (see for instance [5]) in this vector setting.
Taking into accounts the above considerations, we arrive at the following second-order scheme

Pt — " Gi([VO" ') = G (IVO"?) o ins1 n
v (e ve)
2
+ V- (3GL(VE" )V — G (|Vxg" )V ) — %A2(¢”+1 T gy . (3.3)

The weak form of the above scheme is: find ¢! € H2, (Q) such that

per
Pt — " € it n G4 (V" 1?) = GL (V") o int1 n
() + (Gt om.av) + (FE = S D womt 1 vary, vo )
= (3G (V" P )V¢" — G_(|Vx¢" V"1, Vi), Vb € H2. (Q). (3.4)

Theorem 2. Under the assumption (3.2), the alternative scheme (3.3) is second-order accurate in time,
unconditionally energy stable in the sense that

C n+1 n|l2
B + S — g + T Cyggrn g ot gy
(3.5)

C
= E(¢") + 5 V(6" =" I

Moreover, for the case energy functional given by the model with slope selection (1.5), and with the
splitting given by G4 (§) = 162 + 1, G_(§) = —1¢, the scheme is uniquely solvable.

Proof. The second-order accuracy of this scheme (3.4) can be verified by taking the Taylor expansion at
tn+%.

In order to prove the energy law (3.5), we take 1) = ¢" ! — @™ in (3.4). Notice that with the assumption
(3.2), the contribution of the concave part is exactly the same as in (2.12). Thus, the energy law (3.5) follows
similarly.

To prove the unique solvability, we need the following lemma.

Lemma 1. Consider the (nonlinear) problem

o e 2
E—V-]:(V(b,x)—FEA o=f (3.6)

where F, f are given (smooth) functions. Then a sufficient condition on uniqueness (of sufficiently smooth
solution) is that the symmetric part of the Jacobian of F is non-negative.
Proof of the lemma: Suppose we have two solutions ¢, ¢ to the general scheme (3.6). Then, we have

¢= o (r (F(Vé,x) — F(Vé x))+fA2(¢—¢3)*0
k ’ ’ 2 o

Taking the inner product of this equation with ¢ — é, we deduce
2 - - 2 ~
o_ le—al? ¢|| /( (Vé,%) = F(V,)) - V(6 = §) dx + S| A0 - )|
2 _ - 2 -
_llo—9I* ¢|I // F)Vé+1V(h— ), x)V(p — @) dr - V(¢ — &) dx+%||A(<z5—¢)H2

2
> le—2l” "5” C1AG- IR
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where in the last step we have used the assumption that the symmetric part of the Jacobian of F is non-
negative. O

It is now straightforward to prove the unique solvability stated in the theorem. Indeed, with the specific
choice of G and G_, we have

1 s
J(f(Y)):/O /O GLyl? +7(yol> = [yP)lyol* = Iy + 2y ® (y + yo)] drds + G (|y|*)I

1
= 7 Iyl + Iy + (y +50) @ (y +¥0) +Y@Y = y0 @Yo + (Y 2 ¥0 ~ Y0 ®Y)) -

It is then easy to observe that the symmetric part of this Jacobian matrix is non-negative.

Notice that this Jacobian matrix is non-symmetric in general. Therefore, we can conclude that the term
Vi F (V@™ 1) can not be interpreted as the variational derivative of any energy functional of V¢"*! since
that would imply the symmetry of the Jacobian. O

The scheme (3.3), while being more compact than the scheme (2.6), is only guaranteed to be uniquely
solvable for the energy with slope selection (1.5). At the expense of compactness we can construct second-
order unconditionally stable, uniquely solvable scheme for more general energy functional. In this case, we
adapt the classical secant method for the convex term to our vector setting via splitting the direction and a
symmetrisation at the end. In the two-dimensional case, the scheme takes the following form:

ot — " _5 FL (Vo) = FL (") + i (¢s) — F1 (Vo")
k o 811 (¢n+1 - ¢n)
Fy (V') — FiL () + FLL (¥%) — Fy (V")
612 (¢n+1 - ¢n)

2
+Vx . <Zva (vx¢n) o ;VyF(de)nl)) o %A2(¢n+1 4 ¢n) (37)

+6a:2

where

d)* = (axl ¢n7 axz ¢n+1)7 d)* (8331 ¢n+1a 8332 ¢n)

The scheme for the three-dimensional case can be constructed accordingly.

It is straightforward to verify that this scheme is second-order accurate, unconditionally stable and
uniquely solvable with the convex-concave decomposition as before. It can also be verified that the scheme
(3.7) coincides with the scheme (3.3) for the model with slope selection using the convex-concave splitting
given in (4.1). Therefore, this scheme does not possesses variational structure either. We leave the detail to
the interested reader.

4. Application to thin film epitaxy.
4.1. Case with slope selection. In this case, a convenient splitting of the Ehrlich-Schwoebel energy

density F(y) = 1(ly|* = 1)% is

1

1 1
Fi(y) = Z\Y|4 +3 )= —5|y|2 : (4.1)

In this case we can calculate the (variational) potential defined in (2.10) associated with the convex part
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of the scheme as

1
1
Fo(yoy0) = [ g0+l = 3ol = Iyol!)dr
0 T
'l
= [ o+ 7y =30 + Iyl o + 7y = 30)) - (v~ 30)dr
0

1
1
= [ 3ol +2rv0- (v = y0) + 72ly — 3ol 250 (v — yo) + 7ly = vl dr
0

1 4 1
= —(dyo- (y = yo)lyol> + 2(yo - (y —¥0))* + =¥0 - (y = ¥o)ly — ¥ol* + |yol’ly — yol* + v - yol*)

4 3
= S+ 330 ¥IyP + SlyoP Iy + 50 3)* +vo - yvol? = Tolvel") 4.2
Therefore
T2 = 5Py +lvoPyo) + 35 (¥ Py + Ivoly + 250 - )3 + yo)). (43)
Thanks to (2.13), the scheme (2.6) becomes
PO Ly (Ve Y + VeV
+5V - (VP PYG" 4 [V PTG 4 26" - Vo) (V6" + Vo)
aGen - Loty - Sarg 4. (4.9

On the other hand, it is easy to check that in this case, the scheme (3.3) and the scheme (3.7) takes the
form

R | 12 2 +1
T = gV (VTP 4 [V ) (Ve 4 Vg
aCs - Loy S Carr g (4.5)
2” T2 2 ' '

Note that the above scheme is more compact than the scheme (4.4). In fact, the scheme (4.4) may be
viewed as the symmetrization of the scheme (4.5).

4.2. Case without slope selection. In this case, a convenient convex-concave splitting of the Ehrlich-
Schwoebel energy density F(y) = —3In(1 + |y|?) is ([28])

Fry)=IyP— gm0+ yP) . Fo(y)= Iyl (16)

It seems non-trivial to represent the (variational) potential F, associated with the convex part using
elementary functions. However, we note that only the variational derivative is needed in the weak form of
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the scheme (2.7), and it can be calculated explicitly as follows:

/0 (Vy ) (30 + 7(y — yo)) dr

- 1 o B Yo +7(y — yo) T
_/0 (2(yo + 7(y — ¥o0)) 1+|y0+7(yf}’0)|2)d

1
yo+7(y — yo)
=2 + — ,/
Yo+ (¥ ~¥o) o L+ |yo+ 7y —yo)l?

o)) 2
Y — Yo (1+|y0|2_w) (‘y y0‘+y0 (y— YO)>

¥ —yol? ly—yol
=2y0+ (y —yo) — n

oy — 2 _ (yo(y=y0)\2 4 (Yo (y=vo) 2

ly = yol (1+ |yol* - 0y yol0 )2+ ( Oly*yo\o )?

-1 [y —yol )
b

— 2 — 5 ) — 3 an o 7 — tan o B)
(L+Iyol)ly = yol? = (yo - (¥ — ¥0)) L+ [yol? — sl 1+ Jyof2 — gy

(4.7)

where in the last step we have utilized the following elementary calculus identity

Cc1 + CoT c Cc1C5 — C2C cq4 + C5T
/ 21—22 dr = = In(c2 + (cq + c57)?) + 17224 arctan ———°~
3+ (ca+c57) 2cs c3cE c3

) _ 2
with ¢; = yo,c2 =y —yo,¢5 = |y —yol,ca = 7yﬂ;yyy‘°) c3 =1+ |yol*> - 7@0\3,(33,33)) .

This scheme enjoys the nice property of ungiue solvability and variational structure in any dimension
on top of the 2nd order accuracy and unconditional energy stability at the expense of compactness. On the
other hand, it is straightforward to write down the explicit form for the scheme (3.7) which works in 2D
although without the variational structure.

5. Full discretizations.

5.1. Full discretization by a Galerkin method. Notice that the proof of Theorem 1 (resp. Theorem
2) is based on the weak forms (2.7) (resp. (3.4)). Therefore, the results of Theorem 1 (resp. Theorem 2)
can be straightforwardly extended to for any consistent Galerkin approximation, such as Fourier-Galerkin
method and finite element Galerkin method, of the semi-discrete scheme (2.7) (resp. (3.4)). The only
modification needed is to view the “energy” as defined on the finite dimensional Galerkin space, compute
the variational derivatives within the same Galerkin projected space, and view the fully discrete scheme as
time discretization of a gradient flow on the finite dimensional Galerkin projected space.

5.2. Fourier-Galerkin method with numerical integration. While the results of Theorems 1
(resp. Theorem 2) hold for Fourier-Galerkin approximation to (2.7) (resp. (3.4)), it is usually not practical
to implement a pure Fourier-Galerkin method due to the convolution involved in computing nonlinear terms.
A common practice is to replace the integral by a numerical quadrature, leading to the so called Fourier-
Galerkin method with numerical integration.

We now sketch some detail for the Fourier-Galerkin method with numerical integration. For the sake of
simplicity, we shall only consider the alternative scheme for the case with slope selection, namely the scheme
(4.5). The Fourier-Galerkin method with numerical integration for other schemes can be formulated in a
similar fashion. Let us first write the scheme (4.5) in the following weak form: Find ¢"*! € HiO(Q) such
that

¢t —on 1 412 2 +1
(F0) = = (V6 4 [Va )V + T, T)

2
TG = 2. V0) — SAG 467, 80) Ve H2 (@), (51)
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Let us denote 2 = (0,27)? for d = 2 or 3. Given an even integer N, we set

N/2
Py=<¢:¢(x) = Z(&k cos ka + by sinkz) » | (5.2)

k=

—

and z; = %2, j=0,1,--- ,N - 1.

We also define the discrete inner product Py as

)

21 =
6.0)n =223 ola)(a) (53)
§=0
and the corresponding discrete norm by ||¢||n = / (¢, ¢)n. We recall that the above quadrature rule is
exact for ¢, ¢ € Py, i.e.,
(6,0) = (9,0), Vo,0 € Pon, (5.4)
and consequently,
o> = (¢, ¢)n, V¢ € Py. (5.5)

In the multidimensional case, Q = (0, 7)¢, we denote z; = II¢_ z;, with 0 < j, < N —1, Py = II¢_, Py,
and

d N
(¢, ¥)n = (W)d YD bl )il (5.6)

With the above notations, we can now write our Fourier-Galerkin method with numerical integration
for the scheme (5.1) as follows:
Find ¢! € P such that

n+l . n
(O = ) = L (V63 + V6" PV + Vok), Vi)
2
FVGHY — 205, 70) — SAGE +08). A0), Ve Pw.  (5)

Using the same argument as in the proof of Theorem 2, we can prove the following results:
Corollary 1. The scheme (5.7) is second-order accurate in time, uniquely solvable, and unconditionally
energy stable in the sense that

lon"" — o I1®

k
1
= Ex (o) + 7IV(5 — oy DI,

En(o3™) + EHV((Z)N-H —oRI? + + EHVWNH + R =200

(5.8)

where

1 2
Ew(6) = 7(V]* - DI + FllAg]>.

We observe that the weak formulation (5.7) can be intepreted as a Fourier-collocation method thanks
to the exactness of the quadrature (5.4). To this end, we introduce the Lagrange functions ¢;(x) € Py such
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that ¢;(zx) = 0x; for all 0 < k,j < N — 1, and denote by Dy the derivative matrix with (Dy),; := ¥j(z;).
It is shown (see, for example, [?]) that

L(=1)itl cot YD £
(D)= 2T 7 (5.9)
0, j=1L
Therefore, for ¢ € Py, we have ¢'(z;) = kN:_Ol(DN)jk¢(xk). In the multidimensional case, it is clear

that, for ¢ € Pn, (V¢)(x;) can be expressed by using the one-dimensional derivative matrix Dy. We can
then denote (V¢)(zj) = (Vno)j, where Vi is the multidimensional derivative matrix. Similarly, we denote
(Ag)(z;) = (AN);.
Now, it is easy to check that the scheme (5.7) is equivalent to the following Fourier-collocation method:
s

= VN (Vv 1P+ Vo) (VnoR + Vo))

“Vn(58% = 508 ) — FAR(GRT + o), (5.10)
where, with a slight abuse of notation, ¢, are vectors with entries being the values of ¢% at the collocation
points {z;: 0<jy <N —-1,k=1,---,d}.

5.3. Finite difference method. The purpose of this section is to define finite difference versions of
the schemes (4.4) and (4.5) for the slope selection equation

0=V - (|v¢|2v¢) —Ap— EA% (5.11)

Let Q@ = (0, L) x (0, Ly), where L, = m, - h and L, = m, - h, where h > 0. Set p; = (i — 1/2) - h for i taking
integer and half-integer values. Let E,,, = {p;|i= —1/2,3/2,...,m, +1/2} and similarly for E,, . Define
Crm, = {pili=1,2,...,my}, Cf . = Cp, U{20, 2, +1}, and similarly for Cy,, and Cy, . We define the
following 2D grid-function spaces:

Vingsm, = {t: Em, X Ep, — R}, (5.12)
Conaxny = {6 Cony X Cy = R}, Cl i = {¢ L O x G - ]R}7 (5.13)
Entsimy =S Bmy X Cry = RY o E = {f: Con, X B,y = R} (5.14)
The functions of Vp,, xm, are identified via w; 41/, j 1175 = w(Piy1/2, Pj1/5); those of Cpy, xm, and C:”memu are
identified via ¢; ; := ¢(p;, p;); those of Sﬁxxmy are identified via fiy1/,; := f(pi41/2,p;); and, finally, those
of & «m, are identified via f; jivn == f(pi, pj11s2)-
We define the operator dy : E5 ., — Cm, xm, component-wise via
1 =1,....mg
da:fi,j = E (fi+1/2,j - fifl/z,j) » j=1,e,my (5~15)
and define D, : C;zxmy — & «m, component-wise via
1 1=0,...,my
Datiifeg = 3 (biv1j = Gig) 5 =1 "m; - (5.16)
The operators dy : &7 ., = Cmy,xm, and Dy : C:%me — &, xm, are defined analogously. The standard
2D discrete Laplacian, Ay, : C;ELIme — Cinyxm,, is defined as

1 1=1,...,mg
Apgij = de(Dy@)ij +dy(Dy)ij = 72 (Gig1j + Gic1j + Gij1 + Gij—1 — 40 ), j:}:...:my . (5.17)
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Define the center-to-vertex derivatives ©,, ®, Cm xm, — Vm,xm, component-wise as

1

DaPivipajrrs 1= 5 (Dir1g+1 = gt + birry = $ij) o (5.18)
1 1=0,...,m4
DyPigryajr1/s 1= o (Pit1j41 — Pit1,j + Gij+1 — Pij) j:?)’,..f,my . (5.19)

The utility of these definitions is that the differences ®, and ©, are collocated on the grid, unlike the case
for D, D,. Define the vertex-to-center derivatives 0, 0y : Vin, xm, — Cm,xm, component-wise as

Ui j = % (Wi jagja = Wirrjaj + Wit ajo 1o = Wisajaj 1) s =1t s (5.20)
Oyt j i = % (Wi jarja = Wijajoje + Wisajojiaje = Wisajaj 1) 5 =1t - (5.21)
We say the cell-centered function ¢ € C; xm, 18 periodic if and only if
Om+1; = O1,5, Do = Pm,jy J=1,...,my, (5.22)
Dint1 = @i1s Gio = Gin, T=0,...,mzp+ 1. (5.23)
A similar notion exists for grid functions from Vin, sxm,, €0t xm,, and €5 o, ~as well.

The first-order convex-splitting, finite difference scheme for the slope selection equation (5.11) scheme
that was used (though not described) in [28] is the following: given ¢™ € C:%me periodic, find ¢"*! €
C+

m><m

periodic such that
¢n+1 —k [0:1: {Tn+1©$¢n+1} 4 Dy {Tn+1©y¢n+1H 4 keZAhwn+1 — ¢7L _ k,qu)n , (5.24)

where "+l = (©z¢"+1)2 + (©y¢"+1)2 € Vinuxm,» and w" T := Apg"tt € Cf

me

is periodic. The finite
difference version of the compact scheme (4.5) is precisely: given ¢"~ 1, ¢", w" € C;Mmy periodic, find

ot e C,*,'lem periodic such that
n k n n n n n n n n
ot = o { () (D0™ T 4 Dag™)} 0, {( 407 (D07 4+ D07 ]
k€2 n+1 n n 3 n 1 n—1
where w™*! is periodic. Finally, the second-order finite difference version of (4.4) is as follows: given

onL, o, wn € C,T%me periodic, find ¢"*! € C,T%me periodic such that

=B o (D, ) o, (D8 0 (D) + 0, 9,07
k
-5

12

_ﬁ [D {fn+1 (@ ¢n+1 +D, ¢n)}+a {AnJrl (@y¢n+1 +®y¢n)}]

0, {r" D"} + 0y {19y 0, {1 D0 40y {1 1D }]

k 1
+7 (AhwnJrl + Ahw") = ¢n —k <2Ah¢n — 2Ah¢n1> , (526)

where 7" := D,¢" D ¢0" + D" Dy¢" € Vi, xm,, and the other quantities are the same as defined
above.
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We now define some grid inner-products and norms:

Bl1Y) =D dijthis &% € Conyremy UCH s (5.27)
i=1 j=1
1 m n
UH 1 Z Z (ui+1/2,j+1/2vi+1/2,j+1/2 + uifl/z,j+1/zvi71/2,j+1/2
=1 j=1

+ui+1/2,j—1/2Ui+1/2,j—1/2 + ui—1/2,j—1/2vi—1/2,j—1/2) , U,V E mexmya

(5.28)
[£119)ew ZZ (Fisr2gGiviyeg + fimrpaiGiziei) s fr 9 € ER s, s (5.29)
i= 1] 1
[£119)s ZZ (figavebigere + Figmpabijai) »  fr 9 € ER - (5.30)
i=1 j=1
If ¢ € Cropximy, UCrn, m, > then [[0]ly := /B2 (¢]|¢), and for all ¢ € Cf, ., , define
1946l == /12 [Dedl| Doy, + 12 (D, Dy, (5.31)

We now can establish the following summation-by-parts formulae for periodic grid functions. We omit the
proofs for the sake of brevity.
Proposition 1. Let ¢ € Cm xmy and u € Vi, xm, be periodic grid functions. Then

? (Dagllu) = =h? (dlogu) and  h* (Dy¢llu) = —h* (glloyu) . (5.32)

If ¢ € szxmy, re&ny X1y and g € £ xm, OT€ periodic grid functions, then

? [Dadl fle = =17 (@lldaf) and 1 [Dyo|fl, = —h* (¢lldyf) - (5.33)
Let ¢, ¢ € C;f, xm, be periodic. Then
? [Do@l|Datfley, + h? [DydlIDyy], = —h* (SllAY) and  h* (]| Av) = h* (Ad]v) . (5.34)

Now, a discrete energy corresponding to (1.5) may be defined as

h2 2 2 1 2 62 2
En(@) == { (0200 + (0,0)°) +1[1) = S IVholl3 + 5 12n0l3 (5.35)
for all ¢ € Cm xmy . Using the summation-by-parts formulae just given, and the techniques for the space

continuous case, we can establish the following result:
Corollary 2. The schemes (5.25) and (5.26) are second-order accurate in time and space and uncondi-
tionally stable. More precisely, we find

By (") + [V = a3+ £ 07 = g+ 1V (7 +0n 1 = 207) (5.36)
= Bu (0" + 5 [ Va (6"~ o)}

Both schemes are uniquely solvable. The scheme (5.26) enjoys the additional property that it is the Euler-
Lagrange equation for a strictly convezx, coercive variation problem (in finite dimensions).



14 Shen, Wang, Wang and Wise

Because of the last fact, solving the scheme (5.26) is equivalent to minimizing a coercive, strictly convex
functional, Ep scheme(@), at each time step. To compute the results given in the next section we use the
simple Polak-Ribiére variant of the nonlinear conjugate gradient method for the minimization step [21]. In
our implementation, in contrast to what is usually done (see, e.g, [1, 2]), we avoid using Brent’s method in
the line search stage, since it uses only information about the function to be minimized, namely Ej, scheme ().
(Note also that, since Brent’s method is a comparison method, line minimizers are found with, at best, only
single-precision precision accuracy.) In place of Brent’s method for line search (that is, line minimization of
Eh scheme(¢)) we directly use the gradient information and a secant method to do the line search. In other
words, instead of finding a line minimizer, we perform the equivalent operation of finding a line zero of the
gradient; and to do the latter we use a simple secant method. This can be expressed as

& = argming Fy, scheme (@ + o) = argzero,, (04 Eh, scheme (@ + a)||C) . (5.37)

where ( is a given search direction and a € R. Setting

9(@) 1= (0¢ En,scheme (¢ + aQ)|[() (5.38)

we employ the secant search scheme

Sy Qp — Q1

We have the guaranteed convergence elim ay = & due to strict convexity. In this way, we need not ever
— 00

actually assemble or compute the functional Ep scheme ().

6. Numerical results. In this section we present some computational results for the slope selection
equation, i.e., (1.5) — (1.7) or (5.11), using our second-order finite difference scheme (5.26) described in the
last section. We use the simple nonlinear conjugate gradient solver just described to solve the algebraic
equations at each time step. We first present a numerical test that gives evidence of the expected second-
order convergence of the scheme as h, &k — 0. In a second test, we reproduce some calculations from a
previous paper [28] to show that in long-time calculations the scheme predicts the accepted coarsening rates
for the system.

As, in [13] we perform a Cauchy-type convergence test of our scheme as h, k — 0 along a linear refinement
path, namely k = Ch. At the final time T, we expect the global error to be O(k?) + O(h?) = O(h?) as
h, k — 0 along such path. However, the evolution equation (5.11) does not possess a natural time-dependent
forcing (or source) term that can be manipulated to give a known solution (although one could be added
artificially). So instead of measuring the error, we measure the Cauchy difference, §4(T) := d)gff — d)}[:ic,
where h. = 2hy, ke = 2ky, T = kyNy = kcN., as h¢, k. — 0. Here ¢y, is the finite difference solution
obtained using the finer resolution mesh size hy, and ¢, the finite difference solution obtained using the
coarser resolution mesh size h.. Using a linear refinement path, we again expect [|64]l, = O(h?). Further
details of the test can be gleaned from [13]. We use the final time is 7" = 0.32, and the refinement path is
taken to be k = 0.1h. The other parameters are € = 0.1; L, = L, = 3.2. The initial data for the test are

¢(z,y,0) = 0.1sin’ (2£Tj> - sin <47r(yL;14)) —0.1cos <27T(x[;20)) - sin <2[7;y> . (6.1)

The results are given in Tab. 6.1 and give supporting evidence for the expected second-order convergence of
the scheme.

We now reproduce a calculation from [28] where we use the scheme to predict the coarsening exponents
for the slope selection equation (5.11) on a square domain beginning with random initial data. The results
are given in Figs. 6.1 — 6.3. The parameters are ¢ = 0.03 (Figs. 6.1 and 6.2) and ¢ = 0.04 (Fig. 6.3);
L, =L, = 128; h = 12.8/512; k = 0.001, ¢t € [0,400]; £ = 0.01, ¢t € [4000,6000]; and k = 0.02,
t € [6000, 16000]. Note that the computation in Fig. 6.3 is finished by time ¢ = 6000. The pyramid/anti-
pyramid shapes of the hills and valleys are evident in Fig. 6.1, and the slopes of the faces of the pyramids are
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he Ry 19012 rate

e 132 4.844x 1072 -

/32 1f6a 1373 x 1072 1.82

1/6a 1/128 3478 x 1072 1.98

1128 1/256  8.675 x 10~%  2.00
TABLE 6.1

L? Cauchy convergence test. The final time is T = 0.32, and the refinement path is taken to be k = 0.1h. The other
parameters are € = 0.1; Ly = Ly = 3.2. The Cauchy difference is defined via §y := thf — ¢n,, where the approrimations

are evaluated at time t = T. The norm of the Cauchy difference at T is expected to be O(k?) + O (h2) =0 (hz), and this is
confirmed in the test.

approximately 1. The system depicted in Fig. 6.1 clearly saturates (to a one-hill-one-valley configuration)
by time 16000. (A similar one-hill-one-valley configuration represents the equilibrium state for e = 0.04 as
well, though this is not shown.) Roughly speaking, the saturation time can be gleaned from Fig. 6.2 (or
Fig. 6.3 for the ¢ = 0.04 case) as the time after which the roughness and energy are essentially flat. There
are ways, as we discuss in [3], that one can use a linear extrapolation of the early-time data to obtain a
cheap approximation of the saturation time. Basically, one uses the fact that Fyi,(€) = O(¢), though we do
not pursue this topic here. We do point out that our calculations here yield

Emin(€ = 0.03)

~ 0.7469 6.2
Emin(€ = 0.04) ’ (62)

which confirms the linear dependence of F,;, on €.
The theoretical coarsening exponents for the slope selection equation (as determined by formal scaling
arguments) are a = 1/3 and 8 = —1/3, where the roughness, i.e.,

1 2
w(t) = \/IQI [ [oexn = a0 ax. (6.3)

evolves like w(t) ~ O(t*), and the energy (1.5) evolves like E(t) ~ O(t?) [18]. (In fact, there is a sense in
which these exponents may be established rigorously [16], though we do not need that level of detail here.)
In Figs. 6.2 and 6.3 we found the linear least-squares fit of the log —log data up to time ¢ = 100. Using
these fits, for ¢ = 0.03 (Fig. 6.2) we calculate o ~ 0.3218 and 8 =~ —0.3042, and for ¢ = 0.04 (Fig. 6.3)
we calculate a = 0.2997 and g ~ —0.2918. Thus we observe that the coarsening exponents are reasonably-
well-approximated in our simulations, and our figures agree with those found previously in [28]. This is also
in accordance with earlier works [20, 25, 26, 30] although we have computed to longer time horizon (up to
steady state) which leads to the "non-straight” part of the coarsening curve.

7. Conclusion remarks. We have presented and analyzed several second order in time, uniquely
solvable, unconditionally energy stable, and convergent schemes for gradient flows with Ehrlich-Schwoebel
type energy. Applications to models for thin film epitaxial growth with or without slope selection are
presented. There are two types of schemes: one type preserves the variational structure of the continuous in
time gradient flow while the other doesn’t. The ones without variational structure are usually more compact
than the ones with variational structure. Fully discretized schemes with either Galerkin Fourier-spectral or
Fourier-Galerkin with numerical integration or finite difference in space are also presented and investigated.
These fully discrete schemes inherit the same desirable properties as their semi-discrete in time counterparts,
including 2nd order in time, unique solvability and unconditional energy stability. We believe that the same
methodology may be applied to more general energy functional.

Numerical experiments based on the scheme with variational structure and finite difference in space are
conducted on the model with slope selection. Our numerical results verifies the 2nd order accuracy as well
as physical coarsening rates of the system.
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t=100 t=400

t=6000 t=16000

F1G. 6.1. Time snapshots of the evolution of the model with slope selection. The parameters are e = 0.03; Ly = Ly = 12.8;
h =12.8/512; kK = 0.001, t € [0,400]; k = 0.01, ¢ € [4000,6000]; and k = 0.02, t € [6000,16000]. The left-hand-sides of the
snapshots show the filled contour plot of ¢; the right-hand-sides, the filled contour plot of A¢. The latter gives an indication
of the curvature of the surface z = ¢(z,y). The pyramid/anti-pyramid shapes of the hills and valleys are evident in the plots.
The system clearly saturates (to a one-hill-one-valley configuration) by time 16000.

It is still not clear if the scheme proposed here possesses a discrete energy law for general concave (not
just quadratic) energy density. A positive answer would be useful since there exists splitting of the Ehrlich-
Schwoebel energy with quadratic convex part and non-quadratic concave part for the case without slope
selection. If general concave part can be treated explicitly, we will have second order linear scheme that is
unconditionally energy stable for thin film epitaxy in the case without slope selection. This would be a nice
extension of a result on first order linear scheme that are unconditionally energy stable for the case without
slope selection [3].
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raw roughness data raw energy data
100 b linear fit ] linear fit
0
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F1G. 6.2. Roughness and energy evolution for the simulation depicted in Fig. 6.1. The final simulation time is T = 16000.
theoretical coarsening exponents are o = 1/3 and B = —1/3, where the roughness evolves like w(t) ~ t*, and the energy,

like E(t) ~ tP. These exponents are reasonably-well-approzimated in the simulations.

raw energy data
linear fit

raw roughness data
linear fit

. 10 10 .
Time, t Time, t

F1G. 6.3. Roughness and energy evolution for e = 0.04. The final simulation time is T = 2300. All other parameters are

the same as in Figs. 6.1 and 6.2. The theoretical coarsening exponents a = 1/3 and B = —1/3 are reasonably-well-approzimated

in the simulations.
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