
CONFORMAL TILINGS I:

FOUNDATIONS, THEORY, AND PRACTICE

PHILIP L. BOWERS AND KENNETH STEPHENSON

Abstract. This paper opens a new chapter in the study of planar tilings by introducing
conformal tilings. These are similar to traditional tilings in that they realize abstract pat-
terns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the
conformal case, however, these geometric tiles carry prescribed conformal rather than pre-
scribed euclidean structure. The authors develop the topic from the ground up: definitions
and terminology, basic theory on existence, uniqueness and properties, numerous experi-
ments and examples, comparisons to traditional tilings, patterns unique to conformal tiling,
and details on computability through circle packing. Special attention is placed on aperi-
odic hierarchical tilings and on connections between abstract combinatorics on one hand
and their geometric realizations on the other. Many of the motivations for studying tilings
remain unchanged, not least being the pure beauty and intricacy of the patterns.

Introduction

A “tiling” (or “tessellation”) of a surface is a decomposition into a pattern of disjoint open
sets whose closures, the tiles, cover the surface. Nature is rife with examples, as are various
art traditions, from Greek mosaics, to the Moorish tilings of the Alhambra, to Esher’s angels
and demons drawing, to textiles and quilts of myriad cultures. The mathematical fascination
with such patterns traces to the earliest geometers and continues unabated to this very day.

The direct line to our work begins with the famous Penrose tiling of the plane and the
interest in “aperiodic hierarchical” tilings that it spawned. We call these “traditional” to
distinguish them from the “conformal” tilings that we study here. Figure 1 displays four such
traditional tilings. In each the tiles are euclidean polygons attached along edges, sometimes
with coloring as a visual aid.

These patterns may have an immediate visual appeal, a comforting regularity. Spend some
time with them, however, and you quickly get a sense of more subtle things going on. Each
pattern has only a finite number of tile shapes: “kites” and “darts” in the Penrose, three
different rhombi for dimers, a single right triangle for the pinwheel, and a single “chair”.

Despite the modest building material, these patterns are the antithesis of regular. In point
of fact, all these examples are “aperiodic”, meaning that they have no global symmetries.
Different regions are eerily reminiscent of one another, yet on closer inspection are never
quite the same.
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(a) (b)

(c) (d)

Figure 1. Traditional tiling examples: (a) Penrose kite and dart, (b) Dimer,
(c) Pinwheel, and (d) Chair.

These patterns are also “hierarchical” in that they all arise from subdivision rules. Look
closely at the pinwheel image and you will see markings to break each tile into 5 tiles, all
similar to the original. Form a new tiling from these smaller tiles, expand by a factor of√

5 so each is congruent with the original, and you get an entirely new pinwheel pattern.
Remarkably, the pinwheel and its progeny are guaranteed to be combinatorially distinct, yet
any arbitrarily large piece of either will be found replicated infinitely many times within the
other.

The variety is quite staggering. Nonetheless, for many patterns the wealth of distinct
tilings can be organized into a tiling space, imbued with a topology and a natural dynamical
system, formed into a C∗ algebra, and so forth. Ultimately, it is not the individual tilings
— gorgeous though they may be — that are of prime interest, but tiling families. These are
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the real target in this paper, its successor [4], and future work, but we are approaching them
from a new slant.

The long history of tiling has been written in a succession of new examples, new tools,
themes, questions, links to new topics, and, of course, beautiful images. We feel that confor-
mal tiling represents the opening of an interesting new tiling chapter.

The Example: The progenitor example here is the regular pentagonal tiling of Figure 2,
introduced by the authors in [7]. This was motivated by work of Jim Cannon, Bill Floyd,
and Walter Parry and realized through circle packing. Connections to traditional tilings
emerged only recently with the doctoral dissertation and subsequent deep study of this
example by Maria Ramirez-Solano (see [32, 30, 29, 28, 31]). The image in Figure 2 uses
colors to highlight salient features, namely the boundaries of aggregates of tiles which
hint at the underlying hierarchy.

Figure 2. The regular pentagonal tiling.

Tools: Conformal geometry is the new tool being introduced; this is the geometry of
conformal (angle preserving) maps, analytic functions, and Riemann surfaces. Indeed,
just two key properties fully characterize conformal tilings:

• First, the tiles are conformally regular, meaning that each tile is the image under a
conformal homeomorphism of a regular euclidean polygon.

• Second, the tilings are reflective, meaning that whenever two tiles share an edge, they
are anticonformal reflections of one another in that edge.
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(a) (b)

(c) (d)

Figure 3. Conformal tiling examples: (a) Conformal Fibonacci, (b) Confor-
mal dimer, (c) Conformal pinwheel, (d) Conformal chair.

Figure 3 shows four conformal tilings, three of which are conformal versions of tilings
from Figure 1. Our “polygonal” tiles typically have sides that are curvilinear rather
than straight. And not only can tile shapes differ, they must differ: by the reflective
property, the shape of any single tile in a conformal tiling uniquely determines the full
tiling — its combinatorics, every tile shape, every tile location. Conformal geometry is
a rich and well studied area, and it brings a wealth of tools: analytic and meromorphic
functions, quasiconformal maps, potential theory, extremal length, harmonic measure,
Brownian motion, and the list goes on. Even for the reader not familiar with conformal
geometry, the geometric intuition may bubble up from the many images we provide.
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Themes: Tiling patterns take center stage. A pattern is called a combinatorial tiling and
is simply an abstract cell complex. Surprising as it may seem, every combinatorial tiling
can be realized as a concrete conformal tiling. Restricting ourselves largely to simply
connected patterns, we will see examples in the euclidean plane C, the hyperbolic plane
D, and on the sphere S2.

The combinatoric theme is a major departure: conjuring traditional tilings — the
Penrose, chair, pinwheel, and so forth — is akin to an art: the results are beautiful, rare,
and highly prized. The wealth of conformal tilings, in contrast, raises different issues:
Which patterns are worthy and why? Our interest is ultimately in tiling families, so we
focus largely on aperiodic hierarchical tilings generated by subdivision rules. A central
theme is always how the combinatorics and geometry are linked, whether studying
conformal versions of traditional tilings, or new patterns which have no traditional
counterpart. Among the latter are tilings generated by special conformal subdivision
rules which recapture a key traditional feature in that the subdivisions occur in situ.

Methods Conformal tiling practice is grounded firmly in the topic of circle packing.
Circle packings, configurations of circles with specified patterns of tangency, were intro-
duced by William Thurston along with a conjecture relating them to conformal mapping,
[39]. Over the intervening years they have become the basis of a comprehensive theory
of discrete conformal geometry; see [37] for an overview and [38] for details. Their as-
sociation with tiling began with the regular pentagonal pattern and casual experiments
requested by Bill Floyd to build an embedding. The experiments, images, and theory
of conformal tiling have gone hand-in-hand with circle packing since this beginning.

It must be noted that our proofs for existence and properties of conformal tilings
in this paper are formally independent of circle packing. Nonetheless, circle packing
provides all the images, circle packing experiments have inspired most of the results,
and discrete conformal tilings, the discrete parallel to the theory, often serves as a bridge
between the combinatorial and the fully conformal settings.

For our purposes there are three important observations about circle packing: (1)
Circle packings are conformal by nature: the discrete analogues of classical conformal
objects that they provide, such as analytic functions, Riemann surfaces, and now con-
formal tilings, invariably manifest classical conformal phenomena in a faithful discrete
form. (2) Under appropriate refinement, these discrete objects invariably (and provably)
converge to their classical counterparts. (3) Circle packings are computable and with
software CirclePack (see Appendix C) are easy to manipulate and render.

There are also core questions, the principal one having to do with “type”: is a given
infinite simply connected tiling parabolic or hyperbolic — that is, is it realized in the
euclidean or the hyperbolic plane? For many individual tilings we resolve this issue here
using circle packing results and quasiconformal mapping arguments. Nonetheless, for
tiling families, type remains a key issue in our second paper.

Links: Conformal tiling links tiling theory with a range of other topics: the deep
studies of subdivision rules of Cannon, Floyd, and Parry aimed at Cannon’s Conjecture,
Grothendieck’s theory of dessins d’Enfants and its algebraic implications, dimer tilings
in statistical mechanics, random triangulations and quadrangulations in probability, and
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“carpets” in metric geometry, to name a few. We comment on these in the paper as we
discuss examples. We particularly target in this and our second paper a way to define
tiling spaces and their dynamical systems. Conformal tiling brings with it an intrinsic
metric which may be the missing link in this regard.

Studies in conformal tiling naturally have a different character than those in traditional
tiling, yet much of the underlying appeal remains. Foremost perhaps — although not all will
admit to this — is the pure beauty and intricacy of the patterns. We don’t want the reader
to overlook the central role that images, experiments, pattern recognition, and outright luck
have played in this new topic. That is likely to continue, as nearly every image raises more
questions than it answers — this a fluid and target-rich area. But there is also a note of
caution: images are finite and only approximate, they can take us only so far. We try to be
careful here in describing what we have proven and cautious about conjecture.

This paper lays the foundation of conformal tiling from the ground up, establishing the
structures, terminology, and main theoretical results and illustrating them with numerous
examples. At its core, however, the topic retains an experimental character and continued
experiments will undoubtedly reveal new phenomena. The paper provides sufficient back-
ground on tiling, conformal geometry, and the practical aspects of circle packing to be broadly
accessible. Here is a brief outline:

Outline: In Section 1 we carefully lay out the successive combinatorial, conformal, metric,
and geometric structures behind conformal tilings. Section 2 describes the two key notions,
conformally regular and reflective, and proves strong rigidity, limit, and normal families
theorems. In Section 3 we move to examples, beginning with the broader landscape, but
then focusing on conformal versions of traditional aperiodic hierarchical examples: the chair,
domino, sphinx, pinwheel, and Penrose tilings of the euclidean plane and the hyperbolic pen-
tagonal tiling in the hyperbolic plane. We describe subdivision rules, and their hierarchical
natures with non-traditional lace, mixed, and snowball tilings. A new notion, that of con-
formal subdivision rules, is defined and illustrated. This is used extensively in our second
paper, [4], and seems likely to be a core theme in conformal tiling.

In Section 4 we shift to the practical side of conformal tiling. Enough background is
provided on circle packing for the reader to understand the machinery that makes the the-
ory computable. Key is a faithful parallel discrete-conformal tiling world that both mimics
and approximates the continuous. Several technical results are gathered in Section 5, in-
cluding background on piecewise affine and conformal structures, results on the important
“type” problem, and some technical lemmas needed for circle packing. The paper closes with
appendices, including one on non-planar conformal tilings.

Acknowledgment. Our thanks to Jim Cannon and Bill Floyd for fascinating conversations
about subdivision rules over many years, and also for “rules” files used in our experiments.
Thanks also to Chaim Goodman-Strauss, Natalie Frank, and Lorenzo Sadun for valuable
insights and for specific examples used here. Lastly, a special thanks to Maria Ramirez-
Solano for digging so deeply into the regular pentagonal tiling and to her and Jean Savinien
for arranging an exciting workshop on Non-standard hierarchical tilings at University of
Copenhagen, 2012, which led more-or-less directly to this paper.
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1. Structural Stages

This section lays out the basic structures behind conformal tilings. The nearly unlimited
flexibility of conformal methods requires structural discipline if one hopes for any coherent
theory. We discuss in succession the combinatorial structure, conformal structure, metric
structure, and lastly our main target, concrete geometric structure. Our interest is in confor-
mal realizations, and the final section explains the variety one encounters based on conformal
mapping theory and the conformal type of surfaces.

1.1. Combinatorial Structure. The combinatorics of a tiling refers to its abstract pattern,
which we will encode as an abstract 2-dimensional cell decomposition. Let S be an oriented
topological surface and D a connected graph embedded in S. We assume the following:

• D is allowed to have loops and/or multiple edges.
• S may be a bordered surface, in which case its border is part of D.
• Each component C of S\D is a topological disc whose closure is compact and meets

at most finitely many edges of D.
• D is locally finite in S, meaning each point of S has a neighborhood meeting at most

finitely many vertices and edges of D.

The graph D will be called a drawing in S, in deference to Grothendieck’s theory of
dessins d’Enfants, “drawings by children”, for compact surfaces, though our drawings often
have infinitely many vertices and edges. The vertices and open edges of D determine a
CW-complex, the components of S\D being its open cells. (In our second paper [4] we will
restrict to infinite drawings in the plane without loops or free edges; there we use the term
“planar polygonal complex” and denote the combinatorics by K.)

Definition. A combinatorial tiling T is an oriented topological surface S endowed with a
cell-decomposition by an embedded drawing D as described above. The components of S\D,
the 2-cells, represent the tiles.

Each tile is a combinatorial n-gon for some n ≥ 1, so it is simply connected, has n vertices
and n edges, and meets at most finitely many neighboring tiles, each in one or more shared
vertices and/or full edges. The surface S may be simply or multiply connected, compact,
bordered, or open. If S is not compact then T will have infinitely many tiles. Nevertheless,
our conditions guarantee that T is always locally finite, meaning that the closure of any cell
meets the closures of at most finitely many other cells.

The pattern of the tiling T is conveniently encoded in its tiling graph, namely the graph
D† which embeds in S as the graph dual to D. This dual has a node for each tile T ∈ T and
an edge e† for each edge e of D: if edge e ∈ D is shared by tiles T, T ′ ∈ T then edge e† ∈ D†
connects the nodes for T and T ′. Note that D† inherits an orientation from T and that in the
embeddings, edges e and e† cross at a point. We will routinely use combinatorial terminology
associated with the tiling graph. A combinatorial tiling is rooted means that a node of D†

has been designated as a root tile. A combinatorial automorphism of T is associated with a
(orientation preserving) graph automorphism of D†. Combinatorial distances are in the path
metric in D†: tiles T and T ′ are distance d apart means that d is the minimum count of
edges for edge paths in D† between the nodes for T and T ′. We will us a type of “big-ball”
metric on rooted combinatorial tilings when we later discuss convergence.
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There are two standard ways to triangulate cell complexes, and we use both. Though
defined abstractly, these can be illustrated using our embeddings of D and D† in S. Begin
with a star subdivision: Each node of D† is interior to a tile and is treated as the tile
barycenter; draw edges from this barycenter to each of the tile’s vertices. These edges along
with D itself give a triangulation of S denoted T ?. (This is the face barycenter triangulation
of [11].) A tile of T that is an n-gon is realized as a union of n triangles in T ?. Next, we
decompose further by breaking each triangle of T ? in two using the edges of D†. This defines
an edge barycenter for each edge e of T where its dual edge e† crosses. The result of these
two subdivisions is the barycentric subdivision of T , denoted βT . Using the notation of cell
complexes,

βT ≤ T ? ≤ T ,
where the “≤” indicates cellular embedding — that is, each cell on the subordinate side is
embedded in a single cell on the superior side (using the identity map on S as the embedding
map).

Figure 4 provides an example. Each vertex of T is marked with •, each edge barycenter
with ×, and each tile barycenter with 2. The black edges form the original drawing D, the
red edges are those added to get T ?, and the blue edges those added to get βT . Note that
these are abstract triangulations; the embedding of the figure is merely for purposes of display
(but will become our main concern shortly).

T

T †

Q

Figure 4. On the left is the barycentric subdivision βT for a tiling T . On
the right are the three tilings within βT : the tiling T itself, its dual tiling T †,
and its quad tiling Q.
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Since βT is the fundamental combinatorial object behind our work, some notation is in
order. The sets of vertices, edges, and faces of βT will be denoted V, E ,F , with V a disjoint
union V = V• ∪ V× ∪ V2. Each face is a combinatorial triangle with one vertex from each of
V•,V×, and V2. The faces of βT fall into two equivalence classes based on vertex marking:
triangles with {•,×,2} positively (i.e., counterclockwise) oriented will be termed white, the
others, gray. A tile of T with n edges is broken into 2n faces, alternating white and gray, as
seen in Figure 4.

The image of βT is rather busy, but also rich: in addition to T , it encodes two additional
tilings. These are parsed out on the right in the Figure 4: the black edges give us the tiling
T itself, the blue edges give the dual tiling T † (the tiling associated with the drawing D†),
and the red edges give the quad tiling Q (each of its tiles has four edges).

1.2. Conformal Structure. We choose a canonical way to represent T as a Riemann sur-
face, namely, by defining it as an equilateral surface. This is a standard technique, used for
example in [7, 8]: given a triangulated topological surface S, one identifies each triangular
face with a unit-sided euclidean equilateral triangle. From these identifications one constructs
a conformal atlas, thereby realizing S as a Riemann surface. Equilateral surfaces are special
cases of the more general piecewise affine surfaces, about which the reader will find additional
detail in §5.1.

For a combinatorial tiling T , we could choose to work with the barycentric triangulation
βT , giving it the β-equilateral structure, or with the coarser star triangulation T ?, giving
it the star equilateral structure. The resulting conformal structures on T are identical. For
both theoretical and practical reasons, we work largely with the β-equilateral structure in
this paper and with the star equilateral structure in our second paper.

Definition. For a combinatorial tiling T , the canonical conformal structure on T is the
β-equilateral structure associated with βT . With this conformal structure, T is termed
a conformal tiling. Its conformal tiles are the 2-cells, each with its inherited conformal
structure. Other regroupings of triangles of βT give the conformal tilings T † and Q.

Two properties of this conformal structure are key to our work: (1) the tiles are conformally
regular, meaning that each n-gon tile has a full dihedral symmetry group D2n of conformal
automorphisms which map corners to corners; (2) the structure is reflective, meaning that
neighboring faces of βT are anticonformal reflections of one another in their common edge.
We go into greater detail in §2.

1.3. Metric Structure. We next endow T with an intrinsic metric structure. This construc-
tion is attributed to Bely̆ı in the case that T is compact and is central to Grothendieck’s
dessins d’Enfants [16, 34]. It is also related to the construction of Klein’s j-invariant on the
upper half plane. See [19] for background.

As a preliminary, break the Riemann sphere S2 into the two hemispheres bounded by the
real axis. Each may be treated as a conformal triangle with vertices •,×,2 corresponding
to boundary points 0, 1,∞, respectively. Treat the upper hemisphere as white, the lower
hemisphere as gray. (Note: our convention is that stereographic projection of the plane
to the sphere identifies 0 with the north pole of S2, and ∞ with the south pole, so our
hemispheres might well be called front and back.)
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In the β-equilateral structure on T , each face of βT is a conformal triangle with vertices
•,×,2, white or gray depending on orientation. Classical analytic function theory tells us
that for every white (resp. gray) face f of βT there is a unique conformal mapping mf of f
onto the white (resp. gray) hemisphere of S2 for which m(•) = 0, m(×) = 1, and m(2) =∞.
If f1 and f2 share an edge •−×, ×−2, or 2−•, then mf1(f1) is, by the Schwarz Reflection
Principle, the anticonformal reflection of mf2(f2) across the real axis through the segment
(0, 1), (1,∞), or (∞, 0), respectively. In consequence, the individual maps mf for contiguous
faces stitch together analytically, and we can define a locally one-to-one analytic function
m : βT \V → S2\{0, 1,∞}. As the points of V are isolated singularities, m can be extended
to a meromorphic function M : T → S2.

This meromorphic function, in turn, allows one to lift the spherical metric on S2 to a metric
ρ on T . If p, q are in the same white or gray face of βT , then ρ(p, q) is just the spherical
distance from M(p) to M(q). For general points p, q ∈ T , consider the family Γ of all paths
γ in T which connect p to q. Define ρ(p, q) = inf{length(γ) : γ ∈ Γ}. It is straightforward to
confirm that this defines a metric on the tiling, more precisely a complete length metric, as
defined, e.g., in [9, Chp 2].

Definition. Given T , the meromorphic function constructed above is denoted MT and the
pull back of the spherical metric under MT , a piecewise spherical metric on T , is denoted
ρT . Note that every tile of T has ρT -diameter π.

We will not be using MT or ρT often in this paper. However, meromorphic functions give
a way to view tilings which may be exploited in the future, so we conclude this subsection
by giving some context.

A meromorphic function m on a Riemann surface R has an asymptotic value w ∈ S2 if there
exists a continuous path γ : [0,∞)→ R with γ(t)→ ∂R as t→∞ so that limt→∞ γ(t) = w.
The condition on γ(t)→ ∂R means that given any compact set E ⊂ R, there exists a tE so
that if t > tE , then γ(t) /∈ E.

Definition. A non-constant meromorphic function M on an open Riemann surface R will
be termed a Bely̆ı map under the following conditions:

(1) M branches only at points of R lying over {0, 1,∞};
(2) M has simple branching at all points over 1, and
(3) M has no asymptotic values.

The pair (R,M) is then termed a Bely̆ı pair.

This extends the terminology in §2.3 of [8] associated with Grothendieck dessins, since
condition (3) is satisfied automatically when R is compact and condition (2) is necessary for
the “clean” dessins of the theory. (One could also extend to allow bordered surfaces, but we
omit the rather technical added conditions.)

Theorem 1.1. Conformal tilings T without borders are in one-to-one correspondence with
Bely̆ı pairs (R,M). Namely, T ↔ (R,M) where the Riemann surface R is T with the
β-equilateral structure and M is the Bely̆ı map MT .

Proof. Given a conformal tiling T of R, the function MT defined earlier is easily seen to be
a Bely̆ı map on R. Conversely, suppose (R,M) is a Bely̆ı pair. The preimages of the white
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and gray hemispheres of S2 under M decompose R into white and gray regions. One can use
the maximum principle to see that each of these regions must be simply connected and then
use the lack of asymptotic values to see that each has compact closure. The restriction of
M to a region has no interior branch points, hence is a locally one-to-one proper map onto a
hemisphere. In particular, each region is a curvilinear triangle with corner points mapping to
{0, 1,∞} and by the Schwarz Reflection Principle is the conformal refection of a neighboring
region across each edge between these corners.

The local properties of analyticity guarantee that the set of white/gray regions is locally
finite. The preimage of [0, 1], the drawing D = M−1([0, 1]), groups these regions into compact
sets. These are the tiles that realize a conformal tiling T of R. �

1.4. Geometric Structure. Geometry enters when our abstract structures on T are real-
ized in some concrete geometric setting. That setting will be denoted G and in the simply
connected cases we consider will always be one of the sphere, the plane, or the hyperbolic
plane (S2,C, or D). Of course these spaces all lie in S2, but in specific cases the euclidean or
hyperbolic geometry will be more appropriate.

Henceforth we work under the following Assumption: We assume in the sequel that the
tilings T are simply connected. We comment in Appendix B on how to leverage our work to
handle general tilings.

Definition. Given combinatorial tiling T , a tiling map is a continuous mapping h : T → G
which is one-to-one on the interior of T . Here G is one of S2, C, or D, and we do not assume
the map is onto, though that will often be the case. The images of the combinatorial tiles
(i.e., the 2-cells) are concrete geometric tiles and their union is a geometric realization of T
in G.

In the traditional setting, tiling maps are ad hoc — they have little significance since tile
shapes are known in advance. In conformal tiling, on the other hand, the conformality of the
map comes first: the map determines the tile shapes rather than the other way around.

Definition. A conformal tiling is the image of a combinatorial tiling under a conformal tiling
map, F : T → G, where T has its β-equilateral structure and G is one of the geometric spaces
S2,C, or D. The tiles are the images F (T ) of tiles T ∈ T , that is, they are concrete geometric
regions in G.

It is here in G that we finally realize T using concrete geometric shapes in parallel with
traditional tilings. Note that with an abuse of notation we use T to denote combinatorial,
topological, β-equilateral, and geometric tilings depending on circumstances (and likewise
for T † and Q). We want to study the concrete setting, so tiles, vertices, edges, triangles, and
so forth will generally refer to their geometric realizations in G.

This brings us to the question of the existence and variety of conformal tiling maps F
available to us. Since we are considering the simply connected case, F can be obtained
directly from the Uniformization Theorem: For every simply connected Riemann surface R,
there exists a conformal homeomorphism F from R onto one of S2,C, or D. Moreover, F is
essentially unique. The term essentially unique will apply here and elsewhere when an object
is unique up to conformal automorphisms (Möbius transformations) of G. In any case, every
simply connected combinatorial tiling can be realized.
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Theorem 1.2. Given any simply connected combinatorial tiling T , there exists an essentially
unique maximal conformal tiling with the combinatorics of T in one of S2, C, or D.

The adjective “maximal” is needed only in the case G = D as we see shortly. Note that
G = S2 if and only if T is finite and has no border, i.e., is a topological sphere. Two
spherical examples are shown in Figure 5: one is a very regular tiling displaying soccerball-
like dodecahedral symmetry, while the other is at the opposite extreme, namely, a randomly
generated tiling. For display purposes (and aesthetics), tiles are color coded based on their
number of edges.

Figure 5. Tilings of the Sphere, one very regular, one random.

If T is not a sphere, then G must be one of C or D. In the former case, T is said to be
parabolic, and in the latter case, hyperbolic. If T has border edges, then T is necessarily
hyperbolic, and its uniformizing map F carries it to D with any border edges mapped con-
tinuously to ∂D. When T is infinite and without border, determining whether T is parabolic
or hyperbolic is a version of the classical problem of “type”, an important topic to come.

Four apparently parabolic conformal tilings are illustrated in Figure 3 of the Introduction;
parabolicity is established formally in Theorem 5.3. These are essentially unique (that is, up
to scalings, rotations, and/or translations).

There is much greater variety when T is hyperbolic. If Ω is any simply connected, proper,
open subset of the plane, then by the Riemann Mapping Theorem there exists a conformal
bijection G : D→ Ω. Composing with a uniformizing tiling map F , we get a new tiling map
G ◦ F which realizes T as a conformal tiling of Ω. If T has non-empty border (and ∂Ω is
sufficiently regular), G◦F extends continuously to the border, mapping it to ∂Ω (though not
necessarily one-to-one). This flexibility is particularly useful with finite hyperbolic tilings,
for by applying various “boundary conditions”, one can control the shape of the tiling’s
realization. We provide a hyperbolic example T in Figure 6. On the left is its maximal
tiling, that obtained by a uniformizaing map, while on the right it is realized as a square.
(As with all examples, Figure 6 gives approximations only. Looking near the corners of the
square, for example, and you can see that this is in fact a finite tiling.)
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Figure 6. Infinite hyperbolic conformal tilings sharing the same combina-
torial pattern: the left is the associated “maximal” tiling, the right, a tiling
filling a square.

2. The Inner Workings of Conformality

When first encountered, conformal geometry presents an odd mixture of local rigidity
within global flexibility. We must let go of the usual length and area considerations, straight
lines, and corner angles, but we have angles (in the interior) and Schwarz reflection, we have
notions such as extremal length, harmonic measure, and brownian motion as new hallmarks,
and we have the powerful methods associated with analytic functions and quasiconformal
mappings.

This section studies the workings and implications of conformality: the geometry of indi-
vidual conformal tiles, conformal reflections and the meaning of shape, ensemble geometric
effects, rigidity, and the roles played by our reflective structure. In the conformal setting,
everything depends on limiting processes, and in Theorem 2.3 we provide a tool for handling
the central geometric limit issues the topic encounters.

We assume here that T has its canonical conformal structure and that F : T → G is a
conformal tiling map. Since F is a conformal homeomorphism, most of what we say applies
equally to the abstract conformal structure on βT and the conformal structure realized in
G.

2.1. Individual Conformal Tiles. First, a little background regarding conformality: Sup-
pose ψ : Ω1 → Ω2 is a homeomorphism between open subsets of Riemann surfaces. Then
ψ is conformal if whenever smooth curves γ and σ intersect with angle θ at some point
z ∈ Ω1, then ψ ◦ γ and ψ ◦ σ necessarily intersect with that same angle θ at ψ(z) ∈ Ω2.
Likewise, ψ is anticonformal if it preserves the magnitude of such angles, but reverses their
sense. Formulated in terms of complex analytic functions, ψ is conformal if and only if it
can be represented in local coordinates as w = g(z) where g is an analytic function (see, e.g.,
Ahlfors [1]), and anticonformal if and only if it can be represented in local coordinates as the
complex conjugate w = g(z) of an analytic function.



CONFORMAL TILINGS I 15

A compact set P in a Riemann surface is termed a conformal polygon (a conformal n-
gon) if there is a continuous map f from D onto P whose restriction to D is a conformal
homeomorphism and maps finitely many points z1, · · · , zn in ∂D to the designated vertices
(i.e., corners) of P . The images in P of the arcs [zj , zj+1] ∈ ∂D define the n sides of
P . If the zj are equally spaced around ∂D, then P is said to be a conformally regular
n-gon. Conformal n-gons P1 and P2 are said to be (conformally) equivalent if there is a
homeomorphism ψ : P1 → P2 whose restriction to the interior is conformal and which maps
the vertices of P1 onto the vertices of P2. A strong cautionary note: conformal polygons
realized in G will often have well-defined corner angles where their sides meet. These boundary
angles, however, are not necessarily preserved under conformal equivalence — “conformal”
refers only to preservation of angles on the interior.

Let us now consider the β-equilateral surface T . Triangles of βT got their conformal
structures by being identifying with model unit-sided euclidean equilateral triangles. In
particular, these are conformal triangles in this structure and their images under F are
conformal triangles in G.

These triangles do not live in isolation, however, and we must consider how they are at-
tached. Suppose combinatorial triangles t1, t2 share an edge e. Placing their model euclidean
triangles together in the plane as a quadrilateral with diagonal e, the two triangles are seen
as normal euclidean reflections of one another in e. The union t1 ∪ t2 is mapped by F to the
union of conformal triangles p1, p2 in G sharing edge F (e). Applying the classical Schwarz
Reflection Principle to F , we conclude that p1 and p2 are anticonformal reflections of one
another across F (e). That is, there is a anticonformal involution of p1 ∪ p2 which has fixed
set F (e) and interchanges the corners not adjacent to e. This implies that the interior of arc
F (e) is an analytic arc, the image of a real line segment under an analytic function with non-
vanishing derivative. Henceforth, conformal triangles sharing an edge are always assumed to
be anticonformal reflections of one another across that edge.

It is a fact of conformal mapping that every conformal triangle is conformally regular and
hence any two conformal triangles are equivalent as conformal polygons. This applies as well
to conformal 1-gons or 2-gons, but fails spectacularly for n-gons when n ≥ 4, as these fall
into a continuum of conformal equivalence classes for each n.

The reader will undoubtedly anticipate that every tile T ∈ T turns out to be a conformally
regular n-gon for some n. We get additional information, however, by recognizing it as a
chain of 2n conformal triangles, t1, t2, · · · , t2n, all sharing the tile barycenter v ∈ V2 as vertex.
We can look at these in G. Any one triangle will generate the full tile by Schwarz reflection
as illustrated in Figure 7(a). Start with t1, for example. Reflections in the edges radiating
from v, gives successively t2, t3, etc. Since the triangles result in accumulated angle 2π at
v, it is clear that as the last triangle t2n is placed, it will share an edge with t1, closing the
chain. Figure 7(b) shows the analogous construction using only the 5 triangular faces for T
in T ?; the conformal structures imposed on T are identical.
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(a) (b)

Figure 7. (a) Form a conformal n-gon of βT via reflection using 2n confor-
mal triangles (10 in this case); (b) the identical conformal structure results in
T ? via reflection of n conformal triangles.

This representation of T highlights various conformal symmetries (leaving details to the
reader): The n gray triangles are conformally equivalent (respecting the vertex markings),
while the n white are anticonformally equivalent to these, hence conformally equivalent among
themselves. There is a conformal bijection γ : T → T of order n that rotates the faces by
two notches around the barycenter (and hence maps the vertices of T to themselves). Just
as with regular euclidean polygons, the existence of this n-fold rotational symmetry shows
that T is a conformally regular n-gon. The barycenter v ∈ T is fixed under the conformal
rotations and is thus the conformal center of T .

Also as in the euclidean case, there are orientation reversing symmetries. We can see
these explicitly: Given any of the triangle edges radiating from the conformal center 2,
the reflection across that edge which interchanges the neighboring triangles tj , tj+1 clearly
extends to an anticonformal bijection σ : T → T . Its fixed points are an axis of T , an analytic
arc formed by the union of two edges, either of type ×−2−• if n is odd or type ×−2−×
or • −2− • if n is even.

Under composition, γ and σ generate a dihedral group D2n of symmetries of T . Every
map in this group respects the •,×, and 2 labels: 2 is the fixed conformal center, •’s are
the tile vertices, and ×’s are the conformal midpoints of the edges.

Similar considerations apply to construction of the dual tiles in T †; these are conformal
polygons, but now with the •’s as conformal centers and the 2’s as vertices. The tiles of
the quad tiling Q are only slightly different: Consider an interior quad. It is a conformal
square (i.e., a conformally regular 4-gon) with an × as conformal center. Since it has just
four of our white/gray triangles, its symmetry group is D2·4 and contains (generically) just
two anticonformal reflections. One of these fixes the pair of edges of type •−×−•. We knew
these two were individually analytic arcs, but now see that their union is a single analytic
arc. This • − × − • axis is actually the shared edge between two tiles of T . Likewise, the
other diagonal, of type 2−×−2, is a single analytic arc and the shared edge between two
tiles of T †. In particular, each tile of T is a conformally regular n-gon having edges which
are analytic arcs. Likewise for tiles of T † and Q.
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We also note some explicit information about angles in T . If k of its conformal tiles meet
at a common interior vertex v, then 2k triangular faces of βT meet there. The conformal
structure was defined in a neighborhood of v as a power function, z 7→ z6/2k. The k tile
edges of T radiating from v are therefore evenly spaced, separated by angle 2π/k. Likewise,
the 2n triangles forming an n-gon tile will all have angle π/n where they meet at the tile’s
conformal center. Since four triangles meet at each interior vertex of V×, all have right angles
there. In other words, each edge e of T crosses its dual edge e† orthogonally. One could
hardly imagine a more pleasing simultaneous embedding of a tiling and its dual.

Conformal reflections and symmetries are not as visually intuitive as their euclidean coun-
terparts. Consider conformal “squares” for example. A Jordan region Ω in the plane
with four distinguished boundary points is called a conformal quadrilateral; we can write
Q = {Ω; v1, v2, v3, v4} where the corners vi have counterclockwise order in ∂Q. Classical
function theory provides a one-to-one conformal map g from Q to a euclidean rectangle R;
this map extends continuously to ∂Q and maps the corners to the corners of R. Then Q is a
conformal square if and only if R is a euclidean square. Recognizing conformal squares among
the conformal quadrilaterals is far from trivial. However, our construction of 4-gons in con-
formal tilings guarantees 4-fold rotational symmetry, so the quad tiles of Q are automatically
conformal squares.

2.2. Shape and Reflection. In our discussion to this point it has been largely immaterial
whether one works with tiles in the abstract Riemann surface T or in a concrete realization
of T in G. The latter will be quite striking, however, when the implications of analyticity
are pointed out in §2.4.

Conformal tiles are rarely traditional polygons. Instead they are curvilinear regions with
amazingly subtle shapes, as we shall see. Here, “shape” has a conformal meaning.

Definition. Tiles T and T ′ in G have the same shape if they are similar; that is, if there is
a conformal or anticonformal automorphism φ of G so that φ(T ) = T ′ and so that φ maps
the vertices of T to the vertices of T ′.

The term “reflection” in G refers to the usual anticonformal reflection of complex analysis.
However, it is convenient to extend the term to full tiles. As illustrated in Figure 7(a), a
conformally regular n-gon is generated by repeated reflection of a white or gray subtriangle.
We will call these “sector” triangles.

Definition. Suppose T and T ′ are conformally regular polygons with n and n′ sides, respec-
tively, which share an edge e. We will say that T ′ is a reflection of T across e if there is a
sector triangle bordering e which generates T , and whose conformal reflection across e (in
the usual sense) is a sector triangle generating T ′.

This is the usual reflection when n = n′: in this case, there is in fact a global anticonformal
homeomorphism φ : T → T ′ fixing e. However, if n 6= n′, no such global map exists. Indeed,
where the triangles of T meet at the conformal center, they form equal angles of π/n, whereas
those meeting at the conformal center of T ′ form angles π/n′ — thus angle magnitudes are
not preserved between the conformal centers.
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2.3. Tile Ensembles. As we move to tilings, we begin to see ensemble effects on tile shapes.
Start with finite collections, which may be of interest in their own right or as stages in
construction of infinite tilings. Figure 8 contrasts the traditional and conformal situations
for finite “chair” tilings: Traditional tiles have fixed shapes and this limits the resulting
global shapes. On the other hand, we can give a conformal tiling almost any global shape,
but that affects the individual tile shapes. The first row shows three stages of the traditional
construction, the second shows the corresponding maximal conformal tilings in D. The third
and fourth rows are again conformal versions: in the third the tilings fill rectangles, and in
the fourth they form euclidean chair global shapes. Conformality asserts itself: to get the
rectangles and chair shapes, we have designated the angles of boundary vertices. But having
done this, the edge lengths — the rectangle’s aspect ratio (extremal length) and the edge
proportions of the chair — were forced on us by conformality.

Euclidean

Conformal

Hyperbolic
(maximal)

Conformal

Conformal
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Figure 8. Three stages of a “chair” tiling in traditional euclidean and three
conformal versions

In conformal tiling, individual and aggregate tile shapes continue to change as more gen-
erations of tiles are added. Before discussing these shapes, we would like to point out the
importance of the “reflective” nature of our tilings, as distinct from their “conformal regu-
larity.” For instance, it might be natural to impose a RPWA-structure on T , so each com-
binatorial tile is identified with a regular, unit-sided, euclidean polygon (see Appendix A).
This structure is conformally regular, but will be reflective if and only if all tiles have the
same number of sides.

To illustrate, consider the most mundane of conformal tilings, the lattice of squares in
C with vertices on the Gaussian integer lattice. These are, of course, conformal squares
reflective across the euclidean line segments as edges. Let the tiling be denoted T and
identify a root tile T0. Now, modify the combinatorics by using the diagonals of T0 to break
it into four 3-gons — leave the rest of the combinatorics of T unchanged. Realize this new
tiling conformally, then go in and re-consolidate the four 3-gons into a single tile. Denote
this new tiling by T ′, and the reconstituted root as T ′0.

Compare T and T ′. They have identical combinatorics and the tiles of both are conformal
squares — thus they are conformally regular realizations of the same combinatorial tiling.
However, T ′ is, due to the single tile T ′0, not reflective: if T ′1 shares an edge e′ with T ′0, the
edge is an analytic arc, but T ′0 and T ′1 are not reflections of one another across e′. Figure 9
illustrates: the gray and white sector triangles that give T ′0 and T ′1 their structures are shown.
Clearly, for example, reflection across the dashed edge does not identify the conformal centers
of the two parent conformal squares.

Figure 9. An example of non-reflective but conformally square neighboring tiles.

The effect isolated in Figure 9 has global implications: not a single edge of T ′ will be a
straight line segment — not a single tile of T ′ will be a euclidean square, though they get
closer and closer to being square as one moves away from the root. The important message
here is this:

Fact. Conformal realizations of tilings must be both conformally regular and reflective
for the methods of this paper to apply.
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2.4. Rigidity. Among the key distinguishing features of conformal tilings — as we have
defined them — is their global rigidity. This results entirely from the two local features we
just discussed: (1) the individual tiles are conformally regular, and (2) tiles sharing an edge
are reflections of one another (in the sense we have attached to “reflections” of tiles).

Theorem 2.1 (Shape Rigidity). A conformal tiling T is completely determined by the shape
of any one of its individual tiles.

In other words, if you have a single concrete tile which is known to be part of some
conformal tiling T , then that tile’s shape determines the rest of T : the combinatorics, the
geometric setting G, be it C,D, or S2, the shape and location of every other tile — all of T .

Proof. Pick an arbitrary geometric tile T0 from T and suppose T1 is a tile sharing an edge
e with T0. The shape and location of T1 is determined by the fact that it is a reflection (as
a tile) of T0. Since every tile can be reached from T0 through a finite chain of tiles, each
sharing an edge with the previous, the shape and location of T0 determine the shapes and
locations of all tiles of T . All these, of course, determine the full tiling T . �

This result is in stark contrast to traditional tilings, where it is most often the case that
every tile is similar to one of a finite number of prototiles, and where a tile of a given
shape may occur in uncountably many distinct tilings. One of rigidity’s consequences is that
similarities among tiles of a conformal tiling T imply combinatorial symmetries in T . The
straightforward proof is left to the reader. A partial converse is given in Appendix B.

Corollary 2.2. Let T be a combinatorial tiling without boundary. Suppose that in some
conformal realization of T in G two of its geometric tiles, T and T ′, are similar. Then there
exists a combinatorial automorphism of T which identifies T and T ′ as combinatorial tiles.

2.5. Limits of Tilings. Every stage in conformal tiling involves notions of convergence,
from combinatorics, to tiles, to tilings, and finally to families of tilings — our long range
interest. Tilings will be assumed to have designated roots, so convergence will be rooted
convergence.

Combinatorial convergence uses a “big-ball” style metric, which is fairly standard in such
situations. Each tiling T is represented by its tiling graph D†. Write BT (η,m) ⊂ D† for
the (filled) ball of radius m centered at tile η. This is defined by starting with the subgraph
spanned by nodes with graph distance at most m from η and then filling in any islands which
this separates from the ideal boundary of D†. Because T is simply connected, each such ball
is simply connected. Fixing η, the balls {BT (η,m) : m = 1, 2, · · · } are nested, finite, and
exhaust D†.

We use these balls to define a metric ρ on the space RC of rooted tiling graphs. If T and T ′
are combinatorial tilings with roots η and η′, then BT (η,m) and BT ′(η

′,m) are isomorphic
if there exists an orientation preserving graph isomorphism between them which identifies η
and η′. Define the distance ρ from T to T ′ by

ρ(T , T ′) = e−m

where m is either the largest integer for which BT (η,m) and BT ′(η
′,m) are isomorphic or

the symbol ∞. This makes RC into a complete metric space; details may be found in [4].
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Definition. Combinatorial (rooted) tilings {T n} converge to the combinatorial tiling T if
the distance ρ(T n, T )→ 0 as n→∞. Write T n → T .

Note in particular that every combinatorial tiling T is the limit of the finite subtilings asso-
ciated with the nested balls {BT (η,m) : m = 1, 2, · · · }.

Moving now to convergence of associated conformal tilings and of individual tile shapes,
conformality may appear to have a delicacy that would complicate things. However, by
working in the setting of uniform convergence on compacta, the space of conformal tiling
maps is, in fact, remarkably robust.

Theorem 2.3. Suppose that T n → T represents rooted combinatorial convergence of simply
connected tilings to a simply connected limit tiling T and that for each n, φn is a conformal
tiling map for T n. Given any sequence of indices {nk}, there is a further subsequence {nj} =
{nkj} for which one of these holds:

(a) The subsequence {φnj} degenerates, meaning that it converges on T to a constant
function or to a function taking two values.

(b) The subsequence {φnj} converges uniformly on compacta in int(T ), the interior of T ,
to a conformal tiling map φ for T .

In the latter case, φ(T ) is a conformal realization of T in one of C,D, or S2.

Proof. Suppose first that T is a sphere. Then the T n must be identical to T for all sufficiently
large n. As Riemann surfaces, the T n may be identified with S2, meaning that the conformal
tiling maps φn are conformal self-maps of S2, that is, Möbius transformations. This is well
known to be a normal family: every subsequence has a further subsequence that converges
to a Möbius transformation or degenerates.

When T is not a sphere, we can first simplify our situation. Each subsequence T nj

converges to T in the big-ball metric, with root tiles T
nj

0 identified with the root T0 of
T . Choosing a further subsequence, if necessary, we may assume that the (filled, rooted)
balls BT nj (T

nj

0 , j) ⊂ T nj are isomorphic to balls in T . Cutting each T nj down to the ball

BT nj (T
nj

0 , j) and redefining φnj by restriction, we may therefore assume the following without
loss of generality:

Assumption. The sequence {T n} consists of nested, finite, simply connected combi-
natorial tilings with common root T0 which exhaust T as n goes to infinity.

This puts us in a normal families situation that is fairly typical. As a Riemann surface,
if T is not bordered, then it is conformally equivalent to C or D, while if it has border,
then int(T ) is conformally equivalent to D. A note on terminology: to say that a sequence
of functions {fj} on T converges (or converges uniformly) on compacta means that for any

compact set E ⊂int(T ) there exists an open neighborhood Ω with Ω ⊂int(T ) and J > 0 so
that fj is defined on Ω for all j > J and fj(z)→ f(z) for all z ∈ E (uniformly).

In preparation for later developments, we apply normal families from the quasiconformal
mapping perspective, noting that conformal maps are κ-quasiconformal with κ = 1. We may
treat the φn as maps to S2. We have a number of successive subsequences to extract, and
we will abuse notation by referring to each as {φnj}. Begin by labeling the conformal center
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of T0 as the point α and choosing subsequence {φnj} so that φnj (α) → z0 for some point

z0 ∈ S2. If ψ is a fixed Möbius transformation with ψ(z0) = 0, then because φnj (α) → z0
we may choose a family ψj of Möbius transformations which converges uniformly on S2 to
the identity and so that ψ(ψj(φnj (b))) = 0 for every j. It is clear that the conclusion of our
theorem will follow if we prove it with the φnj replaced by ψ ◦ ψj ◦ φnj . In other words, we
may assume φnj (α) = 0 for all j. It is well known in this situation that we can extract a

further subsequence {φnj} which either converges to a κ-quasiconformal map φ : T → S2 or
degenerates. If the limit does not degenerate, then since κ = 1, φ is conformal. Unwinding
the auxiliary Möbius transformations, the same conclusion follows for the original maps. �

The theory of quasiconformal mapping is crucial here. One feature may be hidden in the
terminology, namely that a non-degenerate limit function is necessarily one-to-one. Moreover,
the images φn(T n) converge to φ(T ) in a natural way a la the Carathèodory Kernel Theorem
[22]. The possibility of degeneracy is also a feature, not a bug, as these examples show.

Example 2.1. The modes of degeneracy in families of quasiconformal mappings are modeled
by these two Möbius families on the sphere: (a) Let φn : z → z + n, n = 1, 2, · · · . Each φn
fixes ∞, and φn(z)→∞ uniformly on compacta of S2\{∞}. Every orbit gets pulled into ∞
and the limit is constant, φ ≡ ∞. (b) On the other hand, let φn : z → nz. These fix both
0 and ∞, but φn(z) → ∞ uniformly on compacta of S2\{0}. Two-value degeneracy always
occurs like this: some point of the domain is mapped to one of the values, and the remaining
points are swept to the other.

We avoid degeneracy by appropriate normalization. Typical is to require (for sufficiently
large n) that the conformal center of the root tile, α, be mapped to the origin and that some
other vertex, γ, be mapped, e.g., to z = i. In the case that T is spherical, α, γ are mapped to
0 and 1, while the conformal center of a third tile is mapped to∞. In both situations, the φn
then belong to a compact quasiconformal family and any limits we extract are non-constant
and quasiconformal (conformal in our case).

Example 2.2. The “type” problem: Let T be an infinite, simply connected combinatorial
tiling without border with root T0. Define T n = BT (T0, n), n = 1, 2, · · · , so {T n} is a nested
sequence of finite simply connected combinatorial tilings, T n → T .

Let α denote the barycenter of T0, γ a designated corner. For each n let φn : T n → D be
the uniformizing tiling map of T n (i.e., the maximal realization). Applying a conformal au-
tomorphism of D we may assume that φn(α) = 0 and that φn(γ) is on the positive imaginary
axis. Since the T n are nested, observe that if m < n then the composition φm ◦φ−1n : D→ D
is analytic and fixes 0. The Schwarz Lemma from complex function theory implies that
|φn(γ)| ≤ |φm(γ)|. In other words, |φn(γ)| is decreasing in n. This gives us a fundamental
dichotomy: either (1) φn(γ)→ 0 as n grows or (2) there exists η > 0 so |φn(γ)| > η for all n.
We know by the Riemann Mapping Theorem that there is a conformal tiling map ψ to one
of C or D.

Case (1), T is parabolic: Suppose ψ were to map to D. We may assume ψ(α) =
0. Defining ψn as the restriction of ψ to BT (T0, n), we can apply Schwarz lemma to
ψn ◦φ−1n : D→ D and conclude as above that |ψ(γ)| ≤ φn(γ). Letting n grow, condition
(1) implies ψ(γ) = ψn(γ) = 0, contradicting the one-to-one property of ψ. We conclude
that T is parabolic.
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We can exploit the maps φn, further, however, by rescaling. Let λn = 1/|φn(γ)|,
noting that λn →∞. Replace each φn by λnφn. Since these maps now omit∞ and map
α to 0 and γ to z = i, standard quasiconformal arguments imply that no subsequence can
degenerate. The limit ψ of any convergent subsequence is conformal and, by Hurwitz’s
theorem, one-to-one, so ψ is a conformal tiling map with ψ(α) = 0, ψ(γ) = i. There is
only one such map, so the full sequence of (rescaled) maps φn converges to ψ. This is,
in fact, the standard approach to computing ψ.

Case (2), T is hyperbolic: In this case, φn(γ) → w for some w 6= 0 in D. Again, no
subsequence φnj can degenerate. Any limit is one-to-one by Hurwitz’s theorem and
maps onto D by the Schwarz lemma. Therefore the full sequence {φn} converges to a
maximal conformal tiling map ψ. In particular, T is hyperbolic and we have an approach
for computing ψ. Note that the finite and bordered cases will always fall into case (2).

2.6. Observations. Creation of infinite tilings inevitably depends on some notion of con-
vergence. In fact, absent symmetries, it is debatable whether one can actually conceive of
infinite patterns — our minds must work through finite pieces and limits. Nevertheless,
infinite traditional tilings have a feeling of concreteness. One may add tiles generation-by-
generation, or apply successive stages of substitution and expansion, for example, but the
growing finite patches are perceived as finished parts of a final infinite whole. Of course, this
concreteness is illusory: generically, each finite patch belongs to uncountably many distinct
final configurations — not matter how big a patch you look at, you can’t be sure which global
configuration you live in.

In conformal tiling, the situation is a bit reversed. A tile in T doesn’t even know its final
shape until all of T is in place. Yet by Theorem 2.1, the shape is not only (essentially)
unique, but determines the rest of the tiles of T as well. In practice, the shape evolves as
finite subtilings of T are realized (as in the previous example), and though it may seem less
substantial during the process, convergence is surprisingly robust and fast. Even artificial
boundary conditions along the way — as were illustrated, for example, with the chair in
Figure 31 — fade quickly as a tile is surrounded and isolated from that boundary by more
generations of tiles. Its “true” shape simply must emerge.

Ultimately, it is perhaps a matter of opinion if a traditional tiling or its conformal realiza-
tion is more “concrete”.

3. Conformal Tiling Examples

As conformal tilings are determined entirely by their combinatorics, the supply of examples
is inexhaustible. We begin this section with broad examples, an eclectic mix from extremely
regular to completely random. We then turn to the main topic, tiling families parallel to those
that have attracted so much interest in traditional tiling and in the work of Cannon, Floyd,
and Parry. After recasting terminology and reviewing “subdivision rules”, we illustrate the
conformal versions of six well known traditional tilings. Particular attention is paid to the
connections between the combinatorics and the geometry of conformal realizations and we
summarized some of our observations.
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This sets the stage for the examples of the most interest, subdivision tilings unique to the
conformal setting. Key among these are tilings arising from “conformal subdivision rules”,
rules under which conformal structures are invariant and which play a key role in [4].

3.1. Broad Examples. These examples range from regular tilings which were known to the
ancients to tilings appearing in recent research on dimers and random configurations.

Example 3.1. (n,m)-Tilings: We start by demonstrating that conformal tilings reproduce
classical tilings in highly symmetric situations. The (n,m)-tilings are a convenient class
of examples. An (n,m) tiling T has regular n-gons as tiles, with m tiles meeting at each
vertex. Figure 10 shows various spherical, euclidean, and hyperbolic examples. Each tile
is a grouping of triangles from the 〈n,m, 2〉 triangle group. These are traditional tilings in
that the tiles are regular polygons with geodesic edges. In our approach, they are generated
directly from their combinatorics.

(a) (b) (c)

(d) (e) (f)

Figure 10. (a) The spherical dodecahedron, the (5, 3)-tiling; (b) The spher-
ical icosahedron, dual to (a); (c) The square or (4, 4)-tiling in C; (d) The
hexagon or (6, 3)-tiling in C; (e) The octagonal or (8, 3)-tiling in D; (f) The
dual to (e).

We will be introducing discrete conformal tilings associated with circle packings in §4.3,
but wish to note here that the (n,m)-tilings have so much symmetry that their coarse discrete
conformal versions are already identical to the classical regular tilings.

Example 3.2. Fusion Tiling: We will shortly study subdivision tilings, but a related and
powerful method for generating combinatorics is the notion of fusion tilings (see [13]). We
illustrate with the Fibonacci tiling. Its fusion rule is illustrated in the transition from stage 0
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to stage 1 in Figure 11; successive stage transitions take the same form. See [14, Figures
18/19].

Figure 11. The Fibonacci tiling fusion rule, along with discrete versions of
the four tile types using parameters 3/1 and 2/1.

In the classical construction, side length compatibility in the pastings gives two degrees
of freedom. We, of course, work only with combinatorics, and analogous parameters are
available as ratios n/k and m/k of edge counts. The four tiles have dimensions: a : n ×m;
b : n × k; c : k ×m; and d : k × k. Setting n = 3, m = 2, and k = 1 leads to the conformal
Fibonacci tiling shown in Figure 3(a).

Example 3.3. Dessins d’Enfants: Alexander Grothendieck created the theory of dessins
d’Enfants, drawings by children, to study algebraic number fields. The geometrically parallel
discrete theory was developed by the authors in [8], initiating many of the themes we pursue
here. In the theory of dessins, however, one works with finite drawingsD on compact surfaces,
and the surfaces may have positive genus. Two examples are illustrated in Figure 12. The
left shows the tiling (and white/gray decomposition) for a genus 0 dessin, while the right
shows the fundamental domain in D for a genus 3 dessin. Each tiling is defined by dark
lines in the figure; these are preimages M−1T [0, 1] under the meromorphic tiling map MT , as
described in §1.3.

Figure 12. The left is a genus zero dessin on S2, the right is a fundamental
domain in D for a dessin on a genus 3 surface.

The most remarkable feature of dessins d’Enfants is the algebraic nature of the surfaces
involved. When tiling a compact surface of positive genus, for example, the β-equilateral
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structure picks out a particular Riemann surface — that is, a particular point in its moduli
space. For this Riemann surface, there exists a defining polynomial P (z, w) whose coefficients
belong to some algebraic number field F (a finite field extension of the rationals Q). The
converse also holds. Our genus 3 example in Figure 12 is a little anticlimactic: Shabat and
Voevodsky [35, p217] have shown that this is the curve y3 = x4 − 1, a Picard surface, so
F is just Q. Though the topic of conformal tiling subsumes dessins d’Enfants, whether the
all-important algebraic implications can be generalized beyond the compact case has yet to
be investigated.

Example 3.4. Dimer Tilings: In chemistry, a “dimer” is a polymer whose units consist of
just two atoms. Mathematical models are typically parallelograms, dominoes, or lozenges; a
sample dimer tiling is shown in Figure 1(b). It may take a moment to appreciate the subtleties
of this pattern, but dimers turn out to be an impressively rich topic. (This particular example,
due to Edmund Harriss, is dual to the 1D tiling a → ab, b → c, c → a.) Dimer and related
tilings are studied as polymer models in statistical mechanics, as perfect matchings in graph
theory, as discrete integrable systems in differential geometry, and the list goes on. (See
[20, 21]).

Conformally, dimers are simply quadrilaterals. As euclidean shapes, however, they come
together in only a limited number of ways, so the local combinatorics are restricted. Con-
formal tiling perhaps suggests a new view of those combinatorics. As every tiling T has its
associated quad tiling Q, so goes the converse: that is, every conformal tiling by quadrilat-
erals is the “quad tiling” for some T . Figure 13 displays a fragment of a euclidean dimer
tiling, its conformal version, and the dual tiling. Note that the dual tiling contains n-gons
for n = 3, 4, 5, and 6 only.

Figure 13. A euclidean dimer tiling, its conformal realization (colors corre-
spond), and the dual tiling (colors based on degree).

Random tilings are a central theme in the study of dimers. Randomization is via “moves”
which are a mixture of “fusion” and “subdivision”. Figure 14 illustrates a single dimer move:
with the coloring, one naturally sees the tiling as a pile of blocks, and the move essentially
takes one block off the pile. Below is the change in the dual tiling, where the move is more
reminiscent of a move in the theory of braids.
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Figure 14. A dimer “move” and its effect on the dual conformal tiling.

Example 3.5. Random Tilings: Random combinatorial constructs are now common in
a range of pure and applied areas and they often have geometric associations. Though
random tilings have not been studied explicitly, some active topics would qualify: random
triangulations [2, 15], quadrangulations [], and dimers [21], for example. In these and others,
conformality is already a key feature. In [15] it is shown that a random triangulation of the
plane is almost surely conformally equivalent to C when given its equilateral structure, while
in [17] it is shown that the associated circle packing is almost surely parabolic as well. (The
possibility that these types were different is due to the lack of an upper bound on complexity
in random situations.)

Random tilings, like that of Figure 5(b), may be created by mere aggregation in ran-
dom triangulations. More interesting in the tiling world, however, might be some notion of
randomized subdivision processes. Since all these tilings can be realized conformally, they
suggest a probabilistic approach to tiling spaces.

3.2. The Main Examples. A key motivation for conformal tiling has been pursuit of paral-
lels to traditional tiling, in particular, to families of hierarchical aperiodic tilings and to their
tiling spaces. We henceforth adhere largely to the framework in the traditional literature,
namely, to simply connected infinite tilings of finite local complexity generated by subdivision
rules. We begin by recasting terminology.

• Tile Types: In traditional tiling, each tile has a “type”, referring to its model
prototile, perhaps with some distinguishing marks. In place of marks we use the general
term “label”, which can be anything from a designated interior point, to boundary
marks for enforcing attachment rules, to colors or abstract labels.

In the conformal setting the type of a tile is the number n of its sides and perhaps
an optional label. As part of its label, each tile has one corner designated as its
principal corner.

Labels are embellishments that do not directly affect tile geometry. They may be
useful for normalization or pattern analysis, and necessary in some situations. For
certain subdivision rules we investigate, “type” labels distinguish among tiles having
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the same number of sides (e.g., the “mixed” rule of Figure 24), and principal corners
may be needed to orient the subdivision (e.g., the “domino” rule of Figure 15). Labels
don’t affect shapes for a given tiling, but may make all the difference under subdivision.

• The big-ball metric: Traditional tilings typically have designated “root” tiles, and
part of the task of comparing two tilings involves drawing discs of some radius about
their roots and comparing the patterns of tiles inside. Conformal tilings don’t respect
geometric distances, so the big-ball metric ρ, described in §2.5, is explicitly combina-
torial. One consequence is that forming a ball about the root, BT (η,m), may require
filling in islands — there may be tiles enclosed by tiles which are combinatorially closer
to the root. More subtly, there is no a priori isoperimetric inequality, even assuming
finite local complexity: the number of tiles in a ball, though finite, is not necessarily
bounded by some function of the number on the boundary. This will not affect our work
here, but isoperimetric conditions play a role in [4].

• Finite local complexity: In traditional tilings, finite local complexity means not
only that tiles have only finitely many types, but that tiles can be attached in only
finitely many ways.

Conformal tiles intersect only at isolated vertices or along full edges or unions of
full edges. So in the conformal setting, finite local complexity means simply that
there is a uniform bound on the number of sides of any tile, on the number of tiles
coming together at any vertex, and on the number of possible labels.

Finite local complexity is needed for compactness arguments and extends to larger
ensembles of tiles. A finite set P of tiles taken from a tiling T whose union has connected
interior will be called a patch. Thus, finite local complexity would imply, for example,
there are only finitely many patches having, say, one thousand tiles.

• Repetitive: A frequent hypothesis in traditional tiling is that any patch is repeated
uniformly throughout the tiling. We phrase this in combinatorial form:

A conformal tiling T is repetitive if given any finite patch P from T there exists
an m so that for every tile η the ball BT (η,m) contains an isomorphic copy of P .

• Aperiodic: Maps between one tiling and another are generally intended as tiling
isomorphisms; that is, as one-to-one maps that map full tiles onto full tiles, preserving
type, and with corners going to corners. In the context of congruent shapes, a tiling is
aperiodic if it has no translational symmetries, though other restrictions may be defined.
In light of Theorem 2.2, however, automorphisms are the key now:

A conformal tiling T is aperiodic if there are no infinite order conformal automor-
phisms of G which define tiling isomorphisms of T onto itself.

There is an additional nuance: a set of traditional prototiles is termed aperiodic if
there do, in fact, exist tilings T of the plane by tiles of these types, but that such tilings
are necessarily aperiodic. Among our traditional aperiodic examples, both possibilities
are represented: tilings whose prototiles are aperiodic and others whose prototiles are
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not aperiodic (though the tilings are). This nuance carries over to the conformal case;
conformal realization of a periodic tiling will, by an easy application of our uniqueness
results, be periodic as well. Existence of an aperiodic prototile set having a single
(simply connected) prototile remains a major open question in traditional tiling, but is
not relevant in conformal tiling.

• Normalization: In traditional tiling, normalization is via rigid motions, placing a
designated tile in a standard position and orientation. In the conformal setting compli-
cations of scale, shape, and geometry enter.

A conformal tiling is normalized in a geometry G by applying a conformal auto-
morphism to place the conformal center of a designated tile at the origin and its
principal corner on the positive imaginary axis.

Additional normalizations are typical in C and S2:
(a) If G = C, then one scales by t > 0 so that the principal corner is at z = i.
(b) If G = S2, then one applies a Möbius transformation to S2 that puts the centroid of

the conformal centers of the (necessarily finitely many) tiles at the origin in R3. This
tends to be visually pleasing.

From the normalized position, a conformal isometry of G can move a specified point to
the origin. In C we will limit ourselves to translations. In D and S2, however, there
are infinitely many conformal isometries moving that given point to the origin, so some
further normalization may be needed. On the sphere there is also the possibility that
T has only one tile: this occurs when the associated drawing D ∈ S2 is a tree. In this
case, one might, e.g., arrange so the centroid of the vertices (there must be at least two)
is at the origin in R3.

Various other terminology carries over from the traditional setting in a straightforward
way, though one must recall that combinatorics takes precedence over geometry and shape.

3.3. Finite Subdivision Rules. Tiling theory is largely about families of tilings, and these
are typically generated via subdivision operators. The basic notion of subdivision is straight-
forward: one tiling is obtained from another by subdividing its tiles. The process is purely
combinatorial, but it is convenient to use cell complexes:

Definition. Let T and Ts be combinatorial tilings of the same surface S. We say Ts is a
subdivision of T if the identity map of S is a cellular map from Ts to T and we write Ts ≤ T
or T ≥ Ts. Tiles of Ts are known as subtiles of the tiles of T ; tiles of T are aggregates of the
tiles of Ts.

In traditional tiling, subdivision tilings (also termed substitution tilings) involve rigid ge-
ometry: each tile is similar to one of a given set of prototiles and is broken into subtiles, each
again similar to one of these prototiles. Typically, there are only finitely many prototiles and
subdivision rules, ensuring finite local complexity. Even in this setting, however, building
subdivision tilings is an art — examples are prized. Conformal tiling, on the other hand, is
driven by combinatorics, where subdivisions are (comparatively) easy to generate and tilings
can always be realized.
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Definition. A finite subdivision rule τ is, in fact, a finite collection of rules, one associated
with each of a finite collection T of tile types. Each rule describes how its associated tile is
to be subdivided into a finite pattern of subtiles, each again of a type in T.

Applying τ as an operator to an appropriate initial tiling T breaks each tile into its subtiles,
forming the new tiling τT , T ≥ τT . Repeated application leads to an infinite sequence

T ≥ τT ≥ τ2T ≥ · · · τnT ≥ · · ·
One now chooses root tiles in each combinatorial tiling and via the big-ball metric and
diagonalization, extracts convergent subsequences. This generally leads to whole tiling spaces,
and is the basis for many classical tiling families. We illustrate conformal versions of some
familiar traditional examples here; natural issues about the rules and their tiling spaces are
the topics of [4], and we will not go into detail now.

3.4. Traditional Subdivision Rules. We consider conformal tilings associated with six
traditional subdivision rules. Our attention attaches, in particular, to the shapes of individual
and aggregate tiles, and ultimately to the emergence of geometric features which are somehow
intrinsic to the subdivision rule. After the examples, We gather observations in §3.5.4 and
later in §4.5.1.

We start with the well-known traditional subdivision rules shown in Figures 15 and 17.
Tile vertices are the red and yellow dots, the principal corner being red; small yellow dots
and thinner lines are vertices and edges introduced upon subdivision, red marks pointing to
principal corners of the subtiles.

Chair Domino

Figure 15. The “chair” and “domino” subdivision rules, each having only
one tile type.

Example 3.6. Conformal “chair”: The single prototile is nominally a six-sided polygon.
During subdivision, however, the corners of neighboring subtiles will meet two of those sides,
and since tiles must meet in full edges, this forces introduction of two additional vertices. In
combinatorics, then, the single tile type is a combinatorial octagon.
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A traditional chair tiling is shown in Figure 1(d), and its conformal tiling version in
Figure 3(d). One may stare at the latter for some time before realizing that it is not the
typical ceramic tiling one might buy for a counter top: some tiles appear to be square, others
have 5 or 6 sides. In fact, none of the tiles is precisely square, there are no straight lines. None
of the tiles appears to be octagons; that is because every tile shares contiguous edges with at
least one neighbor, and these edges blend as parts of a common analytic arc, obscuring one
or more “corners”.

Figure 16(a) shows detail of the tiling and sets the pattern of later illustrations: an in-
dividual tile is highlighted along with aggregate tiles one and two levels above it. Optional
additional vertices could be added to the chair subdivision rule. Edge compatibility issues
force identical subdivision of each of the 8 edges, so for example one could add a vertex to
each of the chairs 8 sides, making them combinatorial 16-gons. However this combinatorial
flexibility makes no difference in the conformal structure — 16-gons or 8-gons result in the
same geometric tiles.

Chair Domino

Figure 16. Tiles and aggregates in conformal “chair” and “domino” tilings.

Example 3.7. Conformal “domino”: The domino rule of Figure 15 is one of many domino-
type subdivision rules. Euclidean versions are regular square lattices with a pattern of hori-
zontal and vertical cell unions. Each cell union is conformally a rectangle of aspect ratio 2:1,
and the combinatorics of the cell unions affects the global shape.

We note that the domino prototile is not aperiodic (note the double negative) in tiling
terminology, as it can be used to create an infinite tiling which is periodic. However, any
tiling extracted by repeated subdivision is an aperiodic tiling. The same is true of the chair.
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Sphinx

Pinwheel

Penrose

type 4 type 5

type 4 type 5

type 4

type 5

type 6

type 7

Figure 17. The “sphinx” and “pinwheel” subdivision rules, with two tile
types each, and the “Penrose” subdivision rule with four tile types.
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We next consider the subdivision rules of Figure 17 having multiple tile types, the most
famous being that associated with the celebrated Penrose tiling. (The tile types are indicated;
for historical reasons, type numbering starts at “4”.)

Example 3.8. Conformal “sphinx”: The sphinx tiling involves two tile types, one the reflec-
tion of the other. This example is instructive for those wishing to define their own subdivision
rules, since ensuring consistency is a challenge. The prototiles have six (6) vertices; the need
for the vertex on the base can be seen in Figure 17, where subtile #1 has a vertex falling
in the base of subtile #3. It is very tempting (from personal experience!) to place that
base vertex where the three subtiles come together. However, that leads to an inconsistency
when a second subdivision is attempted. The placement chosen for the vertex (below the
principal (red) vertex) leads to consistency, meaning one can subdivide ad infinitum. A tile
and aggregates are shown in Figure 18.

Sphinx Pinwheel

Figure 18. Tiles and aggregates in conformal “sphinx” and “pinwheel” tilings.

Example 3.9. Conformal “pinwheel”: The pinwheel is based on a triangle decomposition
attributed to John H. Conway and is notable in traditional tiling for being the first to realize
infinitely many tile orientations [27]. The subdivision requires a fourth vertex on the triangle’s
longer leg, making these quadrangle tilings. A tile and it aggregates are shown in Figure 18.

One finds interesting new patterns in the conformal pinwheel. Extended smooth arcs might
arise on those occasions when (aggregate) tiles of types 4 and 5 attach via reflection across
their “longer” legs. One sees also, however, web-like filaments of smaller tiles. These seem to
start when two type 4’s (or type 5’s) meet in the subdivision along their hypotenuses, attach-
ing not by reflection but rather by rotation. You see a jaggedness in the chains of analytic
arcs, which seems to grow with subdivision. Patterns within patterns within patterns.

Example 3.10. Conformal “Penrose”: A common form of the famous Penrose tiling was
shown in Figure 1: this involves two prototiles, the so-called “kite” and “dart”. To formulate
it as a subdivision tiling, however, we use the four “Robinson” tiles of Figure 17: kite and
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dart are each broken into two halves, mirror images of one another. In illustrating the
conformal version in Figure 19, the halves were combined in pairs to reconstitute kites and
darts, and though the darts are not very dart-like, the overall pattern is easily reminiscent
of Figure 1(a). We will have more to say about shapes in a moment.

(a) (b)

Figure 19. For the conformal “Penrose” tiling, (a) shows a tiling with nested
aggregates shown as usual. In (b), however, pairs of tiles forming kites are
shaded blue, pairs forming darts are shaded red.

Our last example puts us in hyperbolic geometry. Certainly the most familiar, even famous,
hyperbolic tilings are those in M. C. Esher’s “Circle Limit” prints, including his “Angels and
Devils”, [23]. These get their hyperbolic character due to underlying symmetry, but more
general combinatorial tilings can easily turn out to be hyperbolic as well, meaning their
maximal conformal tilings lie in the hyperbolic rather than the euclidean plane.

Talking about tilings obtained via subdivision, however, is another matter. The next
example will be called the “hyperbolic pentagonal” tiling — in some sense, all traditional
hyperbolic examples trace to the “doubling” feature of this rule.

type 4

type 5

Figure 20. The “hyperbolic pentagonal” subdivision rule.
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Example 3.11. Conformal “hyperbolic pentagonal”: The subdivision rule for this tiling is
given in Figure 20. Two conformal realizations are shown in Figure 21; on the left is one
employing the minimal number of vertices, on the right, one using the added (green) vertices.

Though the subdivision rule has two tile types, a type 5 tile is its own subdivision. This
can make it a challenge to understand the diagonalization argument that leads to the infinite
example shown; all the tiles remaining in the limit are type 5, the type 4’s having receded to
the ideal boundary (along the real axis). The tiling is unchanged under subdivision, and we
don’t show aggregates because each tile is it’s own aggregate.

(a) (b)

Figure 21. Two “hyperbolic pentagonal” tilings with identical combina-
torics: (a) is realized when both tile types are pentagons and (b) when type 4
is a 10-gon and type 5 is a 14-gon (using the added green vertices of Figure 20).

The tilings of Figure 20 lie in the upper half plane, but could equally well be realized in
the unit disc. Traditional versions of this tiling can be realized using isometric copies of a
single hyperbolic pentagonal prototile (see, e.g., [26, 25]), and this may appear to be such a
tiling. However, as usual, in the true conformal version, every single tile has a unique shape
determined by its place in the global pattern. There are no combinatorial symmetries here.

We point out that the 1-skeleton of this tiling appears as a “slice” within the Cayley
graph for the Baumslag-Solitar group B(1, 2). Its fascinating and subtle combinatorics are
investigated further in [4] and [24].

3.5. Observations. Each of the traditional cases above has its own character — one of the
attractions in studying tilings. Here are some observations:

3.5.1. A Cautionary Note. A warning is in order regarding experimental images: All ours
have been created as described in §4, so they represent computational approximations to finite
portions of infinite tilings. Though they stimulate the intuition, many features have yet to
be proven. Take for example the kites or darts of the conformal Penrose tiling. Figure 19
may suggest that they have comparable area as one moves around the tiling. But this is not
known, they may well grow, shrink, or oscillate in size as one moves away from the root.
There are, in fact, uncountably many conformal Penrose tilings, and it is not even clear
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that the tiles would share the same behavior in this regard in all cases. Even the conformal
chairs of Figure 16, visually so regular, may yet hold surprises. These are not issues one
encounters with the traditional versions of these tilings but must now be taken into account.
Note that for the “conformal” subdivision rules we introduce in the next subsection, there is
some chance of provable regularity, as was found in analysis of the regular pentagonal tiling
in [7, 32].

3.5.2. Combinatoric Choice. Conformal versions of tilings depend crucially on combinatorics,
so the first task in mimicking a traditional tiling involves combinatoric choices. In the chair
tiling, for instance, one could introduce an additional vertex in each edge, making the tiles
16-gons. In this case, the conformal structure is unchanged. In some of our rules we have
illustrated optional vertices in green. It is natural, for example, to take the Robinson tiles
used for the Penrose tiling in Figure 17 as 3-gons. However, a fourth vertex can be added
to the type 4 and 5 tiles (the large green vertices and the small green ones that come with
subdivision). Using these optional vertices gives a different tiling in this case, though the
effects are nearly invisible. In contrast, for the hyperbolic pentagonal tilings in Figure 21,
the optional vertices make a notable geometric difference.

3.5.3. Type: For all but the last of our traditional subdivision rules, the traditional realiza-
tions fill the euclidean plane. Our images suggest that the conformal versions do the same,
that is, that they are parabolic. This is in fact the case as confirmed in Theorem 5.3: if a
traditional tiling of finite local complexity fills the euclidean plane, then a conformal version
will necessarily be parabolic. Type is a particularly important issue in conformal tiling. It
is paramount in the seminal work on subdivision rules by Cannon, Floyd, and Perry, for
example (see [11, 12]). We discuss it further below and as a central theme in [4].

3.5.4. Aggregates. The aggregate tilings in the examples we derived from traditional tilings
are not themselves conformal tilings. This is clear from the various aggregate images we
have displayed: That is, if you look at any of the aggregate tiles you can see that its sides
(aggregated from sides of its subtiles) are not analytic arcs: neighboring aggregate tiles will
not be reflections of one another. This is in sharp contrast with what we will see shortly in
§3.7.

3.6. Aggregate Shapes. Unlike with traditional tilings, conformal tiles take innumerable
shapes — indeed, nearly every one in a tiling takes a different shape. The experiments
described above have enabled us to look at samples of aggregate tiles, and one might speculate
about the existence of limit shapes, though keeping in mind the experimental limitations that
exist.

We have gathered a few examples in Figure 22. Every tile resulted from some subdivision
operator τ applied to its parent tile. The reverse operation, aggregation, may be denoted
τ−1. Though existence of global aggregations is a subtlety we put off until our second paper,
we may use the notation τ−nT for n stages of aggregation when they exist. In Figure 22 we
show isolated tiles from our examples at varying levels of aggregation.
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(a) (b) (c)

(d) (e)

Figure 22. Aggregate tiles: (a) the “chair”, 4 levels; (b) the “domino”, 3
levels; (c) the “sphinx”, 4 levels; (d) A Penrose dart, 3 levels (union of two
aggregate tiles); and (e) the “pinwheel”, 5 levels.

Let’s start with the Penrose “dart”, a union of two aggregate Robinson tiles. In the tiling
itself, the darts are hardly dart-like — in fact, they seem to be convex. But already by
the third aggregation shown here, the traditional euclidean shape seems to be emerging; the
angle is measured at 2.545459 compared to (4/5)π ∼ 2.5133 in the traditional prototile.

Likewise, conformal chair tiles are not chair-like, but by the level-5 aggregation, their only
flaws appear to be corner cutoffs, which seem to get relatively smaller in each successive
aggregation. The domino is looking more regular and closer in aspect to 2.0, the sphinx is
looking more sphinx-like, with the jaggedness becoming finer as we aggregate.

The pinwheel tiling is another interesting case. Its prototiles are right triangles with
side lengths in proportion [1 : 2 :

√
5]. A conformal pinwheel tiling, on the other hand,

knows nothing of
√

5, it only knows combinatorics. Nevertheless, in the nested aggregates in
Figure 22(e), the triples of tile corners form triangles with the side length proportions shown
in this table, starting with level-7 (the base tile) and ending with the level-4 aggregate. One
must ask: Is

√
5 emerging from the combinatorics?
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Tiling Ratios
Original Tile 1 : 0.90914 : 1.54389
Aggregate level-1 1 : 1.66243 : 1.86103
Aggregate level-2 1 : 2.20217 : 1.95415
Aggregate level-3 1 : 2.00517 : 2.23236
Traditional 1 : 2 : 2.23607

Table 1. Edge proportions of triangular pinwheel tiles.

Question. Is it the case that in any of the conformal versions of subdivision tilings
we have considered — or perhaps more generally — the aggregate conformal tiles will
converge in shape to their traditional prototiles?

Here we would appropriately normalize the aggregate tiles and look for convergence, for
example, in terms of the Hausdorff metric as the aggregation level n grows. If the answer
were yes, then for that subdivision rule τ the combinatorics would have somehow encoded all
the traditional geometric information, and one could likely extract a convergent subsequence
from {τ−nT } whose limit is the traditional tiling. This would be a most pleasant surprise.

3.7. Conformal Subdivision Rules. We now leave traditional tiling examples to explore
the wider landscape available in the conformal category. On one hand the combinatorial
flexibility is liberating, while on the other, rather daunting. However, conformal methods
originated in [7] and [8] to address concrete issues and new tiling themes are already emerging.

In departing from the classical motifs, we forego the seminal “dodecahedral” tiling rule
which set Cannon, Floyd, and Parry on their deep study of finite subdivision rules — and
hence led to this paper. (For beautiful images, see [11, 12] and for the connection to Cannon’s
Conjecture see [10].) Instead we start with two examples, the “lace” and “mixed” rules,
intended to bring out a key distinction.

Example 3.12. Conformal “lace”: The lace rule is shown in Figure 23. A tile and its
aggregates are shown in Figure 25. Though we give three tile types, these share an underlying
elementary sub-fragment that could apply to any n-gon; this appears with others in Figure 27.

type 4 type 5 type 6

Figure 23. The “lace” subdivision rule with multiple tile types.

Example 3.13. Conformal “mixed”: The mixed finite subdivision rule of Figure 24 (see
[12]) is a bit more complicated than we have encounter previously. Note, especially that
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there are multiple types having the same numbers of edges, so the principal vertices, marked
with red, and the types must be taken into account for subdivision consistency. A tiling with
a highlighted tile and its aggregates is shown in Figure 25.

This tiling has been a particular interest to Cannon, Floyd, and Parry and is one we
hope to address in future work on tiling spaces. The fragment in Figure 25 gives a sense of
competition between the rule’s hyperbolic/parabolic tendencies: in some regions a “tripling”
behavior, similar to the doubling in the hyperbolic pentagonal example, has a hyperbolic
feel, yet in others there is an appearance of pseudo-regular grids which suggests parabolic.

type 4

type 5

type 6

type 7

type 8

type 9

Figure 24. The “mixed” subdivision rule (due to Cannon, Floyd, and Perry)
with multiple tile types.

We draw the reader’s attention to a fundamental contrast in behavior between the lace
and mixed tilings of Figure 25. Notice the aggregates of the lace tile on the left in Figure 25:
the conformal structure a tile gets as an aggregate appears to be precisely what it would get
in its own tiling. In particular, for example, the aggregate edges are analytic arcs. Compare
this to the aggregates of the mixed tile on the right: these aggregates clearly have edges which
are not analytic (though, of course, they are piecewise analytic): the conformal structure a
tile gets as an aggregate is not what it would get as a tile within its own generation. You see
this as well in all the aggregates of Figure 22.
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Mixed Lace

Figure 25. Tiles and aggregates in the conformal “lace” and “mixed” tilings.

To codify this compatibility, suppose that T is a combinatorial tiling and T ′ is a combi-
natorial subdivision, T ′ ≤ T (obtained, for example, by applying a subdivision operator).
Both T and T ′ are cell decompositions of a common topological surface S. We may define
the forgetful homeomorphism, π : T ′ → T , which is just the identity map from S to itself
which forgets the subdivision. Each of T ′ and T impose a β-equilateral structure on S. Are
these the same?

Definition. A subdivision T ′ ≤ T is said to be a conformal subdivision if the forgetful
map π : T ′ → T is a conformal homeomorphism when T ′ and T are given their β-equilateral
structures. A subdivision rule τ is said to be a conformal subdivision rule if τT is a conformal
subdivision of T whenever τ can be applied to T .

Observation. With conformal subdivision operators τ we recapture a key feature of
traditional tiling: namely, the subdivision τT is obtained by subdividing the conformal
tiles of T in situ.

Figure 26 may bring home this point (besides suggesting why we called this rule “lace”). It
shows four levels of lace subdivision starting with a conformal square parent tile. If we were
to subdivide yet again and impose the global conformal structure from this new tiling, the
shapes of the aggregates at the first four levels would not change in the slightest. Indeed,
one can conceive of an infinite succession of subdivisions, every point of the square being
uniquely associated with some nested sequence of ever-smaller tiles.

(Note that Cannon’s Conjecture, [10], involves a combinatorial notion for “conformal sub-
division”. This and our notion are conceptually related, but distinct; for example, the
“twisted pentagonal” tiling illustrated in [7] is conformal in Cannon’s terminology but not
in ours.)
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Figure 26. Four levels of the “lace” subdivision.

We conclude this section by accumulating some sample conformal subdivision rules in
Figure 27. All are dihedrally symmetric. They may be applied to arbitrary n-gons, so we
show each rule applied to a sector and then to a representative n-gon. Those on the left are
common in studying triangulations and the proof of their conformality is routine (see, e.g.,
[7]). The “barycentric” rule, denoted β as an operator, and the “hexagonal” rule, denoted
h, are part of the standard machinery of conformal tiling. We used β in §1.1, converting T
into βT ; we use β again along with repeated applications of h in the coming discrete theory.

Regarding the rules on the right side of Figure 27, the proof that they are conformal and
the study of associated tiling hierarchies are among the central topics of [4]. The first rule
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on the right generates the regular pentagonal tiling of Figure 2, the second is the lace rule,
see Figure 26, and the last is the rule behind the snowball, our final example.

Figure 27. Conformal subdivision rules: each applies to any n-gon, n =
1, 2, 3, · · · , so we apply it to a sector first, then to a representative n-gon.

Example 3.14. Conformal “snowball”: The snowball has been much studied for reasons
unrelated to tiling. It began in metric geometry as an analogue in space of the von Koch
snowflake in the plane. Start with a unit-sided cube: (1) break every square face into 9
equal square faces, (2) bump out the middle square to a cube, then repeat steps 1 and 2 ad
infinitum.

The conformal version is shown in Figure 28 with four levels of subdivision from an initial
spherical cube. As a consequence of conformality of this rule, these four subdivisions and the
infinitely many that can follow all occur in situ. As a thought experiment, fix a point p of the
sphere and zoom in. As you pass through the various subdivision levels you see a sequence
of nested tilings. Extracting a subsequential limit leads to an infinite planar snowball tiling.
You may think of this as living in the tangent plane at p. The various limit tilings as p ranges
over the sphere exemplifies the hierarchical tiling families that we study in our second paper.

A final note and image regarding the snowball connects our work to that of the metric
geometers. Figure 29 shows 4 levels of snowball subdivision of the unit square U = [0, 1] ×
[0, 1]. On the right, the (interiors of) the center tiles at each level (those associated with the
bumped out cube) have been omitted. Continuing to subdivide and discard the center tiles,
one is left with a closed nowhere dense residual set Λs. For those familiar with it, this quickly
evokes the classical Sierpinski “carpet” Λ, the two dimensional version of the middle-thirds
Cantor set, see [36].
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Figure 28. A tiling of S2: the conformal “snowball” of Example 3.14

The snow carpet Λs is a well-behaved example of more general situations studied by Mario
Bonk in [3]. To put things in his terms, let S = {Si : i ∈ I} denote the collection of
Jordan curves bounding the omitted central tiles. (1) The curves Si bound Jordan domains
with mutually disjoint interiors, (2) they are k-quasicircles for a uniform constant k, and (3)
they are uniformly relatively separated according to the definition of Bonk. These properties
are easily established by the conformal regularity of our construction and standard tools,
such as Koebe distortion. Details are left to the interested reader. Using Theorem 1.1, its
Corollary 1.2, and §12 of [3], there exists a quasisymmetic homeomorphism f : Λs → Λ.
Moreover, aside from its evident 4-fold rotational symmetry about the center of U , f is
unique. A final comment: apropos of our coming discussion, it is interesting to note that
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in defining the map f , the intermediary in Bonk’s Theorem 1.1 is a carpet whose defining
Jordan curves are all round circles.

Figure 29. Define the conformal snow carpet Λs by omitting the middle tiles
at every stage under the “snowball” subdivision.

4. Discretization and Approximation

In this section we discuss the mechanics of the creation, manipulation, analysis, and display
of conformal tilings through a parallel and computable discrete theory, namely, the theory of
discrete conformal tilings. The practical matters are not merely subordinate considerations:
circle packing technology lies at the heart of this new topic, from motivation, theory, and
computation, to visualization and, perhaps most important, experimentation. We use the
adjective continuous for conformal notions when we need to distinguish them from their
discrete incarnations.

Discrete conformal tilings were introduced by the authors in [7]; see also, [8]. They are
based on circle packings, with many of their key features being direct analogues of known
results in circle packing theory. We develop or recall the necessary machinery in the next
subsection.

It is important to point out that due to the nature of circle packing, discrete tilings
both mimic and approximate their continuous counterparts, giving us two key approaches to
proving theorems: First, discrete mimicry is often so faithful that one can use simple quasi-
conformal maps between continuous tilings and their discrete versions to transfer important
properties. Second, one can often prove results for continuous tilings by showing first that
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they hold for the discrete versions and then taking limits. We will see both these approaches.
We begin by establishing the discrete machinery and reviewing the basics of circle packing.

4.1. Tiling Complexes. Discretization starts by generating refined triangulations. Let T
be a combinatorial tiling of a topological surface S and let βT denote its barycentric subdi-
vision, as described in §1. For technical reasons involving possible 1-gons and 2-gons in T ,
the barycentric subdivision operator β is applied once more, breaking each triangle of βT
into 6 triangles. Successive applications of the hexagonal subdivision operator h (termed hex
refinement) may then follow. (Subdivision operators β and h are described on the left in
Figure 27.)

Definition. A tiling complex for T is a triangulation of its surface S obtained by barycen-
trically subdividing βT and then applying some number j ≥ 0 of stages of hex refinement.
The complex KT0 = β(βT ) is the coarse tiling complex and the j-stage tiling complex KTj is

defined recursively by hex refinement: KTj = h(KTj−1), j = 1, 2, · · · .

Note that tiling complexes KTj are purely combinatorial objects, as is T itself initially.
However, they are essential to our work because there is a canonical way to impose geometry
on triangulations, namely via circle packing. Figure 30 illustrates the white/gray triangles
for the tiling T behind Figures 4. We highlight the subcomplex LTj ⊂ KTj associated with a

single tile T , a 5-gon. The coarse level, LT0 ⊂ KT0 , is on the left, while the stage-2 refinement,
LT2 ⊂ KT2 , is on the right. The geometric differences are almost imperceptible. We also
reveal in each image the circles which are clandestinely giving shape to this tile as part of
the full circle packing for KT0 and KT2 . We review the circle packing machinery in the next
subsection.

(a) (b)

Figure 30. Triangulated subcomplexes for a discretely regular pentagonal
tile T within a tiling: (a) the coarse level, LT0 ⊂ KT0 , and (b) the stage-2
refinement, LT2 ⊂ KT2 .

Subcomplexes LTj which are associated with individual tiles, as highlighted in Figure 30(a)

and (b), will be called discretely regular polygons (n-gons). These are precise combinatorial
analogues (at varying refinement levels) of conformally regular polygons. Comparing Fig-
ures 30 and 7, we recognize the conformal properties in combinatorial form — the reflective
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structures, the dihedral symmetries, corners, the tile barycenter, edge barycenters, the 2n
white/gray triangles. (Note: one could equally well work in bottom-up fashion: A tiling
complex is formed by a union of discretely regular polygons {LTj } (all of the same refinement

level j) identified along tile edges.)

4.2. Circle Packing. Geometry is imposed on tiling complexes via circles. A circle packing
P is a configuration of circles realizing some prescribed pattern of tangencies, in our case,
the pattern encoded in a particular tiling complex. We refer the reader to the literature
for full details [38]. Manipulations of circle packings for this paper and its companion [4]
have been carried out via the second author’s open software, CirclePack, see Appendix C.
In particular, the CirclePack “scripts” for recreating many of the experiments behind this
paper are available from the second author.

Each of our (circle) packings P will lie in one of the standard geometries G = S2,C, or D.
The pattern of tangencies behind P is encoded in a (simplicial) complex K, which triangulates
an oriented topological surface. The circles Cv in P are in one-to-one correspondence with
the vertices v of K; circles Cv and Cw are tangent if 〈v, w〉 is an edge of K, and {Cu, Cv, Cw}
form a positively oriented triple of mutually tangent circles if 〈u, v, w〉 is a positively oriented
face of K. The geometric triangulation in G formed by connecting the centers of Cu, Cv, Cw
for every face 〈u, v, w〉 of K is called the carrier of P , carr(P ). All our circle packings P
will be univalent, meaning that the circles of P have mutually disjoint interiors, and thus
carr(P ) provides an embedding of K. This complex K may be finite or infinite, with border
or without border; the K we encounter here are all simply connected.

Every complex K has an essentially unique canonical univalent circle packing PK known as
its maximal circle packing. Since K is simply connected, this packing lies in G, one of S2,C,
or D as usual, and K is said to be spherical, parabolic, or hyperbolic, respectively. Essentially
unique means that it is unique up to Möbius transformations of G.

Suppose K is finite. If ∂K = ∅, then K is spherical and carr(PK) = S2. On the other
hand, if ∂K 6= ∅, then K triangulates a topological closed disc. In this case, K is hyperbolic:
PK lies in D and the circles associated with boundary vertices of K are horocycles, meaning
circles of D which are internally tangent to ∂D. Horocycles may be treated as circles having
infinite hyperbolic radius and centers at their points of tangency with the unit circle.

Suppose, on the other hand, that K is infinite. If ∂K 6= ∅, then K is hyperbolic and again
the circles of PK associated with boundary vertices are horocycles. If ∂K is empty, however,
we encounter a fundamental dichotomy of circle packing: K will be either hyperbolic or
parabolic. If K is parabolic, then PK fills the euclidean plane, carr(PK) = C, whereas if
K is hyperbolic, then carr(PK) = D. Given K, the determination of whether PK fills the
euclidean or the hyperbolic plane is the circle packing type problem.

Key notions in our formulation of conformal tiling are motivated by circle packing. The
type problem for tilings mirrors the circle packing type problem, and we will have much to
say about the connection shortly. The term “maximal” for tilings derives from maximal circle
packings and the implications are parallel. For instance, if K is hyperbolic then there are
many circle packings P for K in addition to the maximal packings. In this paper, these other
packings are obtained by treating them as euclidean and applying some type of boundary
conditions. This is the case, for example, for the circle packings behind Figure 8 below, as
is evident in the detail of Figure 31. In practice, nearly all images in the paper are based on
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finite euclidean circle packings realizing prescribed angle sums along their boundaries (even
when those boundaries lie outside the displayed images).

4.3. Discrete Conformal Tilings. By realizing tiling complexes through circle packing,
we get discretized versions of T . Suppose Pj is a univalent circle packing for Kj = KTj . For

each tile T ∈ T there is a discretely regular polygon LTj ⊂ Kj . The carrier of Pj restricted to

LTj is termed a discrete conformal tile; its shape is imposed by the associated circles of the

packing (as in Figure 30). Generically the tile is not “conformal” in the continuous sense:
“discrete conformal” is the relevant notion here, acknowledging the intrinsically conformal
nature of circle packing objects.

Definition. If P is a univalent circle packing for a tiling complex K for T , then carr(P )
is a union of the discrete conformal tiles. The resulting tiling is called a discrete conformal
tiling. We may designate it by TP , but typically we write Tj , indicating that its packing is
associated with some j-stage tiling complex K = KTj .

Note that every tiling complex K for T has at least one univalent circle packing P , namely,
its maximal packing PK . If K is hyperbolic, there may be others as well. Each gives rise to
a discrete conformal realization of T .

Example 4.1. We illustrate the technology with creation of the “chair” tiling image of Fig-
ure 8. Each tile is a combinatorial octagon and neighboring tiles share one or two contiguous
edges. In this example, T represents two stages of the chair subdivision (see Figure 15) of a
single initial chair tile. We describe the panels in turn:

• Figure 31(a) is a free-hand drawing of T , emphasizing that we start with nothing but
combinatorics.

• Figure 31(b) shows the coarse discrete tiling T0. The underlying circle packing P0

(833 circles) is shown and the edges and vertices of the discrete conformal tiles are
highlighted. Here and in (c) and (d) we impose boundary conditions and a normal-
ization so that the carrier of the packing takes a chair shape, reminiscent of (but not
precisely equal to) the classical chair.

• Figure 31(c) shows T0 without the underlying circles, but rather with shading of the
white/gray faces of βT ; the {0, 1,∞} points are marked with {•,×,2}.
• Figure 31(d) is the stage-3 discrete tiling T3, involving nearly 50,000 circles.

• Figure 31(e) and (f) zoom in on corresponding details in (c) and (d), respectively,
to show the shape evolution under refinement. Note that each white/gray face is a
6-flower in (e), a circle for the barycenter vertex and its 6 petal flowers defining the
boundary of the face; each is hex refined 3 times for the finer packing in (f).

The discrete conformal tilings in Figure 31 suggest the fundamentals of the convergence
of discrete tilings Tj to their continuous counterparts: for all intents and purposes, panel
(d) shows the tiling and its 16 tiles with their true conformal shapes. Formalities of this
convergence are the next issue.
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(a) (b)

(c) (d)

(e) (f)

Figure 31. Two stages of the discrete conformal chair tiling.
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4.4. Limit Tilings. We face three parallel tiling worlds: combinatorial, discrete (at various
refinement levels), and conformal. There are internal convergence issues in each along with
transition issues from one to another.

At the combinatorial level, convergence of (rooted) tilings is in terms of the big-ball metric
described in §2.5. With a combinatorial tiling in hand, transition to the discrete conformal
world is via circle packing; this involves a web of convergence issues of its own, for which
we defer to the circle packing literature. For our purposes, the result is the sequence of
discrete conformal tilings Tj associated with univalent packings at various refinement levels.
The final transition, from discrete conformal to conformal involves the convergence Tj → T .
This could be formulated as the shape convergence seen in Figure 31, using, for example, the
Hausdorff metric on sets. Instead, we will define discrete tiling maps φj : T → Tj and prove
a stronger result, namely, that the discrete tiling maps φj converge uniformly on compacta
to the conformal tiling map φ.

Example 4.2 (Preview). An early example focusing on the mechanics may help. Suppose
T is an infinite, simply connected combinatorial tiling. Here is a computationally effective
means for computing its maximal conformal tiling:

(1) Choose a root tile T0. For each j > 1, let T (j) ⊂ T be the subtiling associated with
the combinatorial ball BT (T0, j) (see §2.5).

(2) Let Kj denote KT
(j)

j , the j-stage tiling complex for T (j). For purposes of normaliza-

tion, α and γ will be designated vertices of Kj , α being the center (i.e., barycenter)
vertex of T0 and γ the center for some other designated tile.

(3) There are computer algorithms proven to effectively compute the maximal circle
packing Pj = PKj ⊂ D and to put α at the origin and γ on the positive imaginary
axis. (These are standard normalizations implemented in CirclePack.) This circle
packing defines a discrete conformal tiling T (j).

(4) A normal families theorem will show that discrete tiling maps φj : T (j) → T (j) will
(perhaps after normalization, see Example 2.2) converge uniformly on compacta of
int(T ) to a conformal tiling map φ : T → G, where G is either D or C.

(5) The image under the limit tiling map φ gives us a conformal realization T with
concrete tile shapes. In other words, the discrete conformal tilings T (j) converge
uniformly on compacta to the conformal tiling T ; we will indicate this by T (j)→ T .

To consistently define discrete tiling maps on T , we need a common domain; we use the
β-equilateral structure on the barycentric subdivision βT , described in §1.2 and §5.1. For
each discrete tiling T (j) we now show how to define φj : T → T (j).

Fix refinement stage j ≥ 0, let Kj = KTj be the j-stage tiling complex, and let Pj be
a univalent circle packing for Kj in G. In the RPWA-structure, each face f of βT is a
unit-sided euclidean equilateral triangle with euclidean metric. In Kj , on the other hand,

f is associated with a subcomplex Lfj which is a j-stage hex refinement of a 6-flower. We

can circle pack Lfj as in Figure 32 so its carrier is a unit-sided euclidean equilateral triangle

and then identify this carrier isometrically with f in βT . If we lift such packings (at the
same refinement stage j) to every face of βT , one can see that the circular arcs match up
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across edges and around vertices where the faces attach, yielding an honest-to-goodness circle
packing Qj for K in the ρT metric on βT .

Lf0 Lf1 Lf3

Figure 32. Coarse and refined tilings for triangle f , levels j = 0, 1, and 3.

The mapping φj is a homeomorphism, φj : carr(Qj) → carr(Pj), defined face-by-face.
We consider the planar and spherical settings separately:

First, suppose Pj lies in C or D. Treat Pj as euclidean. For each vertex v ∈ Kj , map the
center of its circle in Qj to the center of its circle in Pj . Each face of Kj is associated with a
triple 〈u, v, w〉 of vertices, so the map defined on the centers can be extended via barycentric
coordinates to map each face of carr(Qj) onto the corresponding face in carr(Pj). In other
words, φj is the piecewise affine map between the carriers.

If Pj lies in S2, defining φj is slightly more complicated, as we need a normalization: we
move the centers of three designated tiles (i.e., the centers of the circles associated with their
barycenter vertices) via a Möbius transformation to lie at 0, 1,∞, respectively. Let C denote
the set of centers of circles of Pj . We get φj started as before by mapping circle centers in
carr(Qj) to the corresponding centers in C. Let H be the convex hull of C in R3. Each face in
carr(Qj) corresponds to a planar triangular facet in ∂H, and we extend the map on centers
to faces in two steps: First, extend via barycentric coordinates so that φj maps each face
of carr(Qj) affinely onto the corresponding facet of the hull H. Second, project each facet
radially to S2. Our normalization of Pj ensures that the origin is an interior point of the hull,
so φj will be our homeomorphism in the spherical case.

Definition. Given a combinatorial tiling T , non-negative integer j, and univalent circle
packing Pj for KTj , the homeomorphism φj : carr(Qj)→ carr(Pj) as defined above is called

a (j-stage) discrete tiling map. We write φj : T → T (j) for brevity (though T (j) depends
on Pj).

Note that as maps between circle packing carriers, the φj would be termed discrete con-
formal mappings in the lingo of circle packing; see [38, Chp. 17]. With these mappings in
hand, we next formulate a discrete convergence result parallel to Theorem 2.3 which can be
tailored to handle the many convergence situations that arise in practice.

With inclusion of the intermediary discrete objects, the notation becomes a bit more
difficult. We are assuming the combinatorial convergence T n → T . Associated with each
T n is a discrete conformal tiling denoted T (n). In particular, this presumes we have: (1)
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a refinement level j = `(n); (2) a univalent packing P (n) for the j-stage tiling complex
K(n) = KT

n

j ; and (3) the associated discrete tiling map φ(n) : T n → T (n) (i.e., φ(n) : T n →
carr(P (n))). It is convenient to view P (n) as lying in S2, though limits may end up in C or
D.

Theorem 4.1. Suppose that T is a simply connected combinatorial tiling and that T n → T
represents rooted convergence of a sequence of simply connected combinatorial tilings to T .
Suppose that for each n we have a discrete conformal tiling T (n) in S2 and its associated
tiling map φn : T n → T (n). Given any sequence of indices {nk} with the property that
`(nk) → ∞ as k → ∞, there is a further subsequence {nj} = {nkj} for which one of these
conclusions holds:

(a) The subsequence {φnj} degenerates, meaning that it converges on T to a constant
function or to a function taking two values, or

(b) The subsequence {φnj} converges uniformly on compacta of int(T ) to a conformal
tiling map φ for T .

In the latter case, φ(T ) gives a conformal realization of T .

Proof. This proof involves the usual concatenation of subsequence extractions and diago-
nalizations. We may start with an initial subsequence T nk) for which `(nk) ↑ ∞. (By the
standard abuse of notation we reuse the same subsequence indices {nk} after each extraction.)

Note first that the maps φ(nk) are defined on T nk , not on T , so the uniform convergence
in (b) will need some explanation. Let Ω ⊂ T be an open set whose closure is compact and
lies in int(T ). There exists M > 0 so large that for k ≥ M , the tilings T and T nk agree on
some combinatorial ball B containing Ω; thus all φ(nk) are well defined on Ω for sufficiently
large k.

Since the refinement levels of the T nk go to infinity as k grows, we can apply Proposition 4.2
below to extract from {φ(nk)} a further subsequence so that φ(nk) either converges uniformly
on Ω to a conformal map or degenerates.

To grow the domains, choose {Ωm} to be a sequence of simply connected open subsets of T
having nested compact closures which exhaust int(T ). Apply the above argument to extract
convergent subsequences successively from the Ωm. Diagonalization yields a subsequence
{φ(nk)} which converges uniformly on compacts on int(T ). Degenerating on any Ωm would
imply degeneration throughout T by uniqueness of analytic functions. Thus, if the limit φ
is not degenerate, it must be a conformal map φ : T → S2 (where, of course, we are treating
the domain T as a Riemann surface under its β-equilateral structure). This gives the limit
conformal realization of T and completes the proof, modulo the crucial proposition. �

Proposition 4.2. Let T be a simply connected tiling with its β-equilateral structure and let
Ω be an open subset of T whose closure Ω is compact and lies in the interior of T . Suppose
{φn} is a sequence of discrete tiling maps for T with refinement levels `(n) going to infinity.
Then {φn} contains a subsequence that converges uniformly on Ω to a (one-to-one) conformal
mapping φ : Ω→ G or a subsequence that degenerates on Ω to a constant or two constants.

Proof. This concerns convergence of circle packings and is a standard line of argument in
the packing literature. It is based on two early results of Rodin and Sullivan [33]. We use
their Ring Lemma to show that the maps φn are uniformly κ-quasiconformal on Ω for some



52 PHILIP L. BOWERS AND KENNETH STEPHENSON

dilatation κ ∈ [1,∞). We then use their Hexagonal Packing Lemma to show that on compact
subsets of faces of T , the dilatations κ go to 1 as n → ∞. The conclusion then follows by
the normal families arguments traditional in quasiconformal mapping theory along with the
fact that 1-quasiconformal maps are conformal.

Non-spherical Case: Assume first that T is not the sphere. Let Kn denote the complex
KT`n. Recall that φn maps the circle packing Qn for Kn in the ρT metric on T to a circle
packing Pn for Kn in S2. If T has a boundary we might encounter some minor issues with
the associated boundary circles in our later arguments. Since our interest lies with Ω and
since Ω ⊂int(T ), the easiest fix is to simply disregard the boundary circles. That is, we
will assume henceforth that the packings Qn and Pn are modified by removing the circles
associated with any boundary vertices that Kn might have. In particular, this ensures that
the circles of Pn have mutually disjoint interiors.

For full generality, we have assumed the Pn lie in S2, but we would prefer they be in C.
Since each Pn is univalent, there is some point zn ∈ S2 omitted by Pn (that is, which is
neither in carr(Pn) nor in any circle of Pn). We may choose a rigid motion ψn of S2 that
moves zn to ∞. The circle packing ψn(Pn) now omits ∞, so we project it stereographically
to a circle packing in C. The sequence ψn has some subsequence converging uniformly to a
Möbius transformation ψ, so at the expense this additional subsequence extraction, the fates
of subsequences of φn and ψn ◦ φn will be the same. In other words: In the non-spherical
case, we may assume without loss of generality that the packings Pn are euclidean.

By compactness of Ω, at most finitely many vertices and barycenters of T will lie in Ω,
and all the other vertices of Kn have degree at most 6, so there is a uniform upper bound d
on the degrees of the circles of Pn, independent of n. Note that in the full βT , absent locally
finite complexity, one may lose this bound on d; it is precisely here that the restriction Ω ⊂
int(T ) is needed.

A uniform bound on quasiconformal dilatation of φn now follows via the Rodin/Sullivan
Ring Lemma, which says that the radii of neighboring interior circles in univalent euclidean
circle packings are comparable, with constant depending only on degree. Apply this to Qn
first. Refinements of faces of βT are shown in Figure 32: there are boundary circles involved,
but it is clear that each such face could be embedded in a univalent euclidean packing with
degrees bounded by 12. The Ring Lemma thus provides lower bound α12 > 0 on all angles
of all faces in carr(Qn). In Pn the circles of interest are also interior but now have degrees
bounded by d. The Ring Lemma gives lower bound αd > 0 on the angles in the associated
faces of carr(Pn). Since φn carries faces of carr(Qn) to faces in carr(Pn) affinely, the fact that
the angles in domain and range are bounded away from zero by min{α12, αd} easily gives
a uniform upper bound κ < ∞ on the quasiconformal dilatations of φn on the interior of
each triangular face of βT ∩ Ω. The union of edges of these faces forms a removable set for
quasiconformal maps on Ω. That is: φn is κ-quasiconformal on Ω for all sufficiently large n.

We may now apply standard normal families arguments from the theory of quasiconformal
mapping to extract a subsequence φnk

that converges uniformly on Ω to a κ-quasiconformal
mapping φ : Ω → C or that degenerates. In the latter case we are done, so assume the
subsequence does not degenerate.

We are now in position to improve our dilatation bound κ. Fix any face f ∈ βT . The
combinatorics of Kn restricted to f are purely hexagonal (degree 6) on the interior, and as



CONFORMAL TILINGS I 53

nk grows, the refinement level grows and the number of hex generations grows. In particular,
fix any compact E ⊂int(f). The number of hex generations separating E from ∂f goes to
∞ as nk grows. The Rodin/Sullivan Hexagonal Packing Lemma now applies: The faces of
carr(Qnk

) intersecting E have angles going to π/3 — that is, they look more and more like
euclidean equilateral triangles as nk grows. The same holds for the corresponding faces in
carr(Pnk

), so the affine maps φnk
have dilatation on E which converges to 1. We conclude

that the limit mapping φ is 1-quasiconformal at all points of int(f). Restricting attention to
Ω, we see that the limit function φ is 1-quasiconformal on the interiors of faces f intersecting
Ω. Since the edges of these faces form a removable set for quasiconformal maps, φ is 1-
quasiconformal on all of Ω. But 1-quasiconformal maps are conformal. That is, the limit
map φ is conformal on Ω and we are finished in the non-spherical case.

Spherical Case: The arguments change little when T is a topological sphere. We may
assume Ω = T . The circle packings Qn in T remain piecewise euclidean as before, but the
image packings Pn are now spherical. We start by assuming that T has at least 3 tiles and
we use the standard normalization on each Pn: the barycenter circles of three designated
tiles are centered at 0, 1,∞, respectively. We comment on the general case at the end.

Recall that the maps φn were defined in two steps: first mapping each face of Qn affinely
onto its facet of the convex hull of Pn’s centers, followed by radial projection to S2. In light of
Lemma 5.6, the circles of Pn go to zero in radius as n grows, so the spherical versions of the
Ring and Hexagonal Packing Lemmas apply in Pn. Facets associated with some compact set
E in a face of βT are increasingly equilateral and go to zero in area. In particular, the affine
maps to facets converges to 1-quasiconformal as before. Also, on nearly equilateral facets
with vertices in S2, the radial projection clearly converges to conformal as the facet area
goes to zero. Due to our standard normalizations, no subsequence can degenerate. Every
subsequence φnk

has a further subsequence that converges to a conformal map and appealing
again to the normalization, there is a unique limit. We conclude that the full sequence
{φn} converges uniformly on all of T to the unique conformal tiling map φ satisfying our
normalization.

There are some last comments to make in the spherical case. First, if T has only one or
two tiles, then our arguments go through after adjusting the normalization — for example,
normalizing so three vertices of T map to 0, 1,∞. As for the normalization itself, how do we
argue for general maps? Certainly something is needed in order to define reasonable discrete
tilings maps. We can’t rely on Möbius transformations: they map circles to circles, but do
not respect circle centers, and therefore do not respect our definition of discrete tiling maps.
One can look instead to centroids. For each Pn, let cn ∈ R3 be the centroid of its circle
centers. If some subsequence cnk

converges to a point of the sphere, then using any sensible
definition of discrete tiling maps φnk

, the subsequence {φnk
} would necessarily degenerate.

On the other hand, if all cn remain within some distance r < 1 of the origin in R3, then one
can adjust our arguments to extract a subsequence converging to a conformal tiling map φ.
By the essential uniqueness of conformal tilings in the spherical case, any limit conformal
tilings, φ(T ), will necessarily be Möbius images of one another, so in hindsight one might as
well normalize at the beginning. �
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4.5. Observations. In these comments we assume the tilings are simply connected and of
finite local complexity.

4.5.1. Theoretical. Various technical results established in §5 highlight the comprehensive
nature of the discrete tiling world. A tiling T is parabolic if it has a conformal realization
filling the plane. According to Theorem 5.5, this is the case if and only if discrete confor-
mal tilings for T fill the plane as well. In other words, “parabolic” is an attribute of the
combinatorics, regardless of whether you are working in the conformal tiling or discrete con-
formal tiling setting. Furthermore, Theorem 5.3 links the type in these settings to the type
of traditional tilings. Numerous results on type are available in the theory of circle packing,
connected with degree, random walks, vertex extremal length, and isoperimetric inequalities,
for example. These now apply to tilings.

This paper lays the foundation for the future study of families of conformal tilings, and
for that Theorem 2.3 on limits will be of particular importance. But, by Proposition 5.7, any
conformal tiling is the limit under refinement of the analogous discrete conformal tilings (even
without finite local complexity). Therefore, we see that Theorem 4.1 implies Theorem 2.3.
Whereas Theorem 2.3 stays within the category of conformal tilings, the discrete version
is about conformal tiling in practice — it confirms the validity of the constructions and
behaviors one sees directly in experiments.

4.5.2. Practical. Being able to transfer questions to the discrete tiling world has very real
and practical implications. We observed in the proof of Theorem 2.3, for example, that in
the combinatorial convergence T n → T , one may assume the T n are nested finite tilings
exhausting T . Since each T n is finite, its associated discrete conformal realizations are
effectively computable. This is important in practice, since all experiments are necessarily
finite (and, of course, only approximate), and it is the experiments that first motivated and
continue to inform conformal tiling. We know, now, that we can effectively approximate tile
shapes and visualize significant portions of global tiling patterns.

There remain practical issues, of course. Among these is “type”, particularly in regard
to limits in families of tilings, as we discuss in [4]. We note that although one cannot
reliably deduce type from finite stage experiments, those experiments can nevertheless be
very suggestive. Borders are also an issue. We point the reader to the last part of the proof
of the technical Lemma 5.7 below. This nicely illustrates the subtiles of theory and practice:
In the practical approximation of the 16-tile chair Λ illustrated in Figure 31, discrete chair
shapes Λj were created using boundary conditions on their packings Pj . None of these
individual carriers is precisely equal to Λ. In this regard, the packings we appealed to in that
proof lie in Λ itself and so might seem preferable. However, those packings are provided by a
theorem of Z-X. He and Schramm which is non-constructive. We can use the more practical
approach because boundary issues largely resolve themselves under refinement. Nonetheless,
care must be taken.

5. Technical Results

Several background technical results are gathered here. We first define piecewise affine
structures generalizing the equilateral structures we have used earlier. We then use these to
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address type conditions. Lastly, we establish certain new results in circle packing that our
tiling studies have required.

5.1. Piecewise Affine Structures. Suppose C is a polygonal cell decomposition of a topo-
logical surface S. We impose a piecewise affine structure (PWA) on S by identifying each
n-sided cell of C with some (non-degenerate) euclidean n-sided polygon. These cells are then
identified at shared vertices or isometrically along shared full edges to build the surface. (In
particular, note that edges shared by two cells must have the same length in each cell.)

With the PWA structure, S becomes a metric space, with rectifiability and length of paths
defined piecewise using their intersections with the euclidean polygonal faces. The distance
between points p and q is the infimum of the lengths of paths in S between p and q. This is
always attained, though not necessarily uniquely.

Our interest is directed more to the associated conformal structure, which requires a con-
formal atlas on S. Identification of cells with model euclidean polygons provides charts for
the interior points of the cells. If two cells share an edge, then their model polygons may be
moved rigidly in the plane and attached along that edge, thereby providing a chart for the
interior points of the edge. Lastly, charts can be defined at vertices via power maps: A vertex
v of C will be shared by some finite number of cells, and their model polygons contribute
angles resulting in some cone angle θ at v. The map z 7→ zα, where α = 2π/θ, flattens the
cone angle to 2π, and provides a chart in a small neighborhood of v. This completes the
atlas, and the web of relationships mediated by the transition maps among its charts defines
a conformal structure on S. This is inherited by C, making it into a Riemann surface.

Definition. This construction defines a PWA-structure and C is termed a PWA-surface.
In particular, C is both a Riemann surface and a metric surface with a piecewise euclidean
metric. In case the model euclidean polygon for each cell of C is a unit-sided regular polygon,
then the structure is a RPWA-structure (’R’ for regular). Furthermore, if all cells of C are
triangular, then the RPWA-structure is termed an equilateral structure and C is an equilateral
surface.

Equilateral structures on tilings — that is, our β-equilateral structures — are, of course,
fundamental to conformal tiling. However, in working with associated discrete tilings and in
studying properties such as “type”, more general piecewise structures enter. In particular,
for use in the next subsection we establish the following quasiconformal mapping lemmas.

Lemma 5.1. Let K and K ′ be combinatorially isomorphic triangulations of a surface S,
each with a PWA-structure. Suppose that there is a uniform lower bound a > 0 on all angles
of all model triangles for both K and K ′. Then the homeomorphism φ : K → K ′ which maps
each face of K affinely onto the corresponding face of K ′ is κ-quasiconformal for some κ ≥ 1
depending only on a.

Proof. The affine map between individual triangles t and t′, φ : t → t′, may be defined via
barycentric coordinates, and it is elementary to show that φ is κ-quasiconformal for some
κ = κ(a) on the interior of t. Barycentric maps stitch together continuously at vertices
and edges where triangles meets, so φ is a homeomorphism. Finally, edges and vertices of
triangles of K have Lebesgue area zero (in local coordinates) and hence are removable for
quasiconformal maps. Therefore φ is κ-quasiconformal on all of K. �
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Suppose T is a tiling of finite local complexity with the RPWA-structure described earlier,
so each tile is identified with a unit-sided regular euclidean polygon. Break each n-gon tile
into 2n congruent euclidean triangles meeting at its center. Doing this for all tiles leads to
a triangulation with the combinatorics of βT ; the inherited PWA-structure makes it into a
PWA-surface which we denote by K. On the other hand, let K ′ denote βT with its equilateral
structure (i.e., RPWA-structure). Applying the previous lemma, we get

Lemma 5.2. Suppose T has finite local complexity. Let K and K ′ denote βT with the two
PWA-structures as noted above. Then the homeomorphism φ : K → K ′ which maps each
face of K affinely onto the corresponding face of K ′ is κ-quasiconformal for some κ ≥ 1 that
depends only on the complexity of T .

Note that in both these lemmas the map φ is just the identity map on the common
underlying topological surface S. Quasiconformality enters because S has distinct structures
when treated as domain and as range.

5.2. Type Problems. An infinite simply connected combinatorial tiling T without bound-
ary is either parabolic or hyperbolic. Which is it? That is, does a conformal realization of T
necessarily fill C or can it live in D?

Traditional tilings have generally been euclidean (though the hyperbolic pentagonal tiling
is a much studied departure). Since we have illustrated several conformal versions with
suggestive images, it is incumbent upon us to ask if their type can be proven. This question
will be taken up further in [4]. For comparisons in this paper to traditional examples, we
establish the following result.

Theorem 5.3. Suppose E is a tiling of C composed of euclidean polygonal tiles and displaying
finite local complexity. Then the conformal tiling sharing the combinatorics of E is parabolic,
so it fills C as well.

Proof. Suppose that T denotes the combinatorial tiling associated with E and that C denotes
a conformal realization of T . Assume C lies in G. We establish existence of a quasiconformal
homeomorphism ψ : C → G. Then by the quasiconformal version of Liouville’s theorem, G
cannot be a proper subset of the plane, implying that G = C.

The map ψ is represented as a composition, ψ = φ3◦φ2◦φ1 of successive homeomorphisms.
It suffices to show that φj is κj-quasiconformal for some κj , j = 1, 2, 3,, for then ψ will be
κ-quasiconformal for κ = κ3κ2κ1.

Finite local complexity of E implies that there are finitely many euclidean polygonal pro-
totiles and that copies of these attach to one another in at most finitely many ways. In
particular, by adding at most finitely many designated points on prototile boundaries as new
corners, we may assume that any two tiles of E that intersect will share isolated vertices
and/or one or more full closed edges. (See, for example, the chair prototile in Figure 15; two
of the chair’s original 6 sides were split in half to accommodate the subdivisions, and the
tiles became octagons.)

Any (non-degenerate) euclidean polygon can be decomposed into a finite number of (non-
degenerate) euclidean triangles in such a way that every edge of the polygon is an edge of
one of the triangles. In particular, applying this to each of the prototiles we obtain a finite
collection C1 of model euclidean triangles. Imprinting each tile of E with the decomposition
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for its prototile leads to a triangulation K1 of C by triangles, each congruent to one of the
triangles of C1.

Our first map φ1 carries E to Trpwa, a copy of T endowed with an RPWA-structure. Each
tile T of Trpwa is a regular unit-sided euclidean n-gon P for some n and is identified with one of
the euclidean prototiles p, vertices mapping to vertices. Let graph G be the 1-skeleton for the
decomposition of p. Applying Tutte’s Embedding Theorem ([40]) we may realize a straight
line embedding of G in P with the corner vertices from p positioned at the corresponding
corners of P . This decomposes P into a certain set of euclidean triangles. Doing this for all
prototiles leads to a second finite collection C2 of model euclidean triangles. Imprinting each
tile of Trpwa with the decomposition transferred from its prototile leads to a triangulation
K2 of Trpwa, each tile congruent to one of the triangles of C2.

Triangulations K1 and K2 are isomorphic, and since all triangles belong to the finite
collection C1 ∪ C2, there is a positive lower bound on all their angles. Lemma 5.1 now
provides a κ1-quasiconformal map φ1 : K1 → K2 which identifies corresponding triangles.
By grouping these back into tiles we get φ1 : C→ Trpwa.

Of course, the conformal surface of interest is not Trpwa but rather the β-equilateral surface,
which we may denote Teq. Lemma 5.2 provides a κ2-quasiconformal map φ2 : Trpwa → Teq.

Our final map is φ3 = F , the conformal map F : Teq → G. Being analytic, φ3 is κ3-
quasiconformal for κ3 = 1, completing our construction. The composition

C→ Trpwa → Teq → G
is κ1κ2κ3-quasiconformal, implying by Liouville’s Theorem that G is the euclidean plane. �

Certainly other conditions on the euclidean tiling E might give the same conclusion with
similar arguments, but we will not pursue that here. Another situation of interest follows
with essentially the same arguments. Recall the notions associated with finite subdivision
rules τ as described in §3.3. To apply τ to a tiling T , it must have a rule for partitioning each
tile type of T into finitely many tiles. Though we have not gone into detail on the various
properties and consistency requirements for building rules, this basic fact is all we want to
point out here. The proof of the following is then left to the reader.

Theorem 5.4. Let T be a simply connected combinatorial tiling of finite local complexity
and suppose τ is a finite subdivision rule which can be applied to T . Then the tilings T and
τT are of the same type, be that spherical, parabolic, or hyperbolic.

Of great practical interest is the role of our intermediaries, the discrete conformal tilings.
The following result addresses their type.

Theorem 5.5. Suppose T is a simply connected combinatorial tiling with finite local com-
plexity. Then T and its associated discrete conformal tilings all have the same type.

Proof. This is clear if T is a topological sphere. Assume T is not compact. Let P0 ⊂ G
be a univalent circle packing defining a discrete conformal tiling for the tiling complex KT0 .
Treating P0 as an euclidean packing (whether G is C or D), the triangles of its carrier define
a PWA-structure on βT ; denote this PWA-surface by Tpwa. Finite local complexity implies
that there is an upper bound d on the degree of the circles forming P0, i.e., on the number
of circles tangent to any one circle. The Rodin/Sullivan Ring Lemma ([33]) implies that the
angles of the triangles of Tpwa are all greater than some lower bound a > 0. The angles
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are constantly π/3 in Teq, of course, so by Lemma 5.1 there is a quasiconformal mapping
φ : Tpwa → Teq. Follow φ with the uniformizing conformal map F : Teq → G′, where G′ is
either C or D. Then F ◦φ : G→ G′ is quasiconformal. By Liouville’s theorem, G = C if and
only if G′ = C. So P0 is parabolic if and only if T is parabolic.

To finish, recall that circle packings Pj for hex refinements KTj provide additional discrete

conformal tilings for T . It has been shown by Bill Wood [41] that hex refinement does not
change type, so any two Pj have the same type as one another, hence the same type as P0

and T . �

Finally, note that we speak of the Pj as though they were concrete, yet as infinite objects
they are also theoretical constructs. The computable packings one must actually work with
are associated with finite portions of tilings.

5.3. Circle Packing Lemmas. Möbius transformations of the sphere map circle packings
to circle packings, but do not respect the circle centers. One could, for example, force all but
one of the centers to cluster in an arbitrarily small neighborhood of some point. This lemma
shows that the standard normalizations for circle packings of the sphere avoid this, and that
as we refine, the convex hull of circle centers converges to the sphere.

Lemma 5.6. Suppose L is a triangulation of the sphere with distinguished vertices v0, v1, v∞.
For j ≥ 0, let Pj be the univalent circle packing on S2 for the j-stage hex refinement of L
normalized so the circles for v0, v1, v∞ are centered at 0, 1,∞, respectively, and let rj be the
maximal spherical radius among circles of Pj. Then rj → 0 as j →∞.

Proof. This is a rather technical result, so we will only give the key idea. If LJ denotes
the j-stage hex refinement of L, then as j grows, Lj is increasingly dominated by hexagonal
combinatorics. In particular, for large enough j, every vertex v of Lj has a ring domain Rvj
(an annulus) of a certain type which separates v from some pair of the vertices v0, v1, v∞.
Let n = bj/3c. If v is (combinatorial) distance more than

√
n from the vertices of L, then

choose Rvj to be the annulus of vertices of distance 1 to
√
n from v. Otherwise, if w is the

closest vertex of L, choose Rvj to be the annulus of vertices of distance
√
n to n from w (and

thus encircling v). The property they share is that their combinatorial moduli (thickness
over circumference) grow like

√
n ∼

√
j uniformly in v as j grows. This along with their

hexagonal combinatorics implies that univalent circle packings of the Rvj have carriers whose
conformal moduli go to infinity uniformly in v as j grows. This has to do with asymptotic
parabolicity: any infinite subsequential combinatorial limit of such hex rings can be shown to
be parabolic (see [38, page 152]).

Now fix v and assume without loss of generality that Rvj separates v from v0 and v∞.

The circles of Pj associated with Rvj have carrier in S2 separating the circle Cv from 0 and
∞. When the modulus of this carrier is large, that forces the radius of Cv to be small. By
increasing j we can make the modulus of the ring arbitrarily large uniformly in v, and thus
we can make the radius of Cv arbitrarily small uniformly in v. �

The next lemma shows the comprehensive nature of the discrete tiling theory: any con-
formal tiling is the limit under refinement of analogous discrete versions.
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Lemma 5.7. Let T be a simply connected combinatorial tiling, and φ : T → G a conformal
tiling map. There exist j-stage discrete tiling maps φj : T → G, j = 0, 1, · · · , so that φj → φ
uniformly on compacta of int(T ).

Proof. We first dispense with the two cases in which φ is essentially unique: namely, when
T is the sphere or is of parabolic type. Here the discrete tiling maps φj are canonical, being
associated with the maximal packings Pj of the tiling complexes Kj = KTj . We may assume,
without loss of generality, that φ and the φj satisfies our standard normalization, which for
the plane assumes designated tile conformal centers α and γ are mapped to 0 and 1, and
for the sphere that α, γ are mapped to 0, 1 while a third vertex is mapped to ∞. Under
these conditions, φ is the unique conformal tiling map for T . According to Proposition 4.2,
any subsequence {φjn} will have a further subsequence which converges to a conformal tiling
map of T or will degenerate to one or two constants. The normalizations prevent degeneracy,
so the limit must be φ. Since this applies to any subsequences, we conclude that the full
sequence {φj} converges to φ. Note that in the parabolic case we do not need to know
whether the circle packings Pj individually fill the plane, but at least in the case of finite
local complexity, Theorem 5.5 shows that is indeed the case.

This brings us to the case that T is of hyperbolic type. For now, put aside the finite and
bordered tilings, and assume T is infinite without border. The hurdle in building discrete
analogues of φ is the lack of essential uniqueness in φ itself: its image, which we denote
Λ = φ(T ), could be absolutely any simply connected proper open subset of the plane. This
is where beautiful and deep circle packing results of Z-X. He and Oded Schramm come into
play.

For normalization purposes, assume that the conformal centers α and γ of designated
tiles of T are mapped by φ to zα, zγ ∈ Λ, respectively. Each tiling complex Kj has vertices
associated with these centers, and abusing notation we refer to these as α and γ as well.
Given Kj = KTj , Theorem 1.2 of [18] implies existence of a univalent circle packing Pj with

the circle for α centered at zα and carr(Pj) = Λ. We define φj : T → carr(Pj). There is a
second normalization available in choosing Pj , but we will address that in a moment.

The maps φj : T → carr(Pj) are κ-quasiconformal for some common κ <∞. This follows
as before from the Ring Lemma. Thus {φj} is a normal family. We further claim that no
subsequence can converge to a constant. As a Riemann surface, T is conformally equivalent
to the unit disc. In particular, for any continuum E ⊂ T containing α and γ, the ring domain
RE = T \E has conformal modulus bounded by some M < ∞, so mod(RE) < M . Fix j
and consider the images φj(α) and φj(γ). By construction, φj(α) = zα ∈ Λ. Let Ej be any

continuum in Λ containing zα and φj(γ) and let E = φ−1j (Ej) ⊂ T . Since mod(RE) < M

and φj is κ-quasiconformal, mod(Λ\Ej) < κ ·M . Well known facts on extremal ring domains
immediately imply that |φj(α)− φj(γ)| is bounded below independent of j. In other words,
a subsequence {φjn} cannot converge to a constant.

Our last task is to show that if {φjn} is a convergent subsequence, say φjn → φ̂, then φ̂ = φ.
Before we can conclude this, however, we may need some adjustment to the normalizations

chosen for the φj , i.e., normalizations of the Pj . Note that the limit φ̂ will necessarily give
a conformal tiling of Λ, as φ does, and by our conformal rigidity results, there will be some

conformal self-map g : Λ→ Λ so that g(φ̂) ≡ φ. Moreover, g(zα) = zα. We therefore consider
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the group G of conformal self-maps of Λ fixing zα; this is isomorphic to a subgroup of the
rotation group of D fixing the origin, and we proceed by considering cases.

Case: G is trivial: This is the generic situation: Λ has no symmetries fixing zα. We

conclude that g is the identity, so φ̂ ≡ φ.

Case: G is infinite: One can show that Λ is necessarily rotationally symmetric, hence a
disc centered at zα. The packings Pj are necessarily maximal packings, translated and
scaled. If we apply a rotation to each so that φj(γ) is in the same direction from zα as

zγ , then our subsequential limit φ̂ must map γ to zγ . In other words, having adjusted

our maps φj , we conclude again that φ̂ ≡ φ.

Case: G is finite: Here, too, we may adjust our φj : for each k, there is a gk ∈ G which
minimizes the distance |gk(φj(γ))− zγ |. Replace Pj by its image under gk; since gk is a
self map of Λ, this is again a packing of Λ. It is clear now, after adjusting our maps φj ,

that φ̂(γ) = zγ , and hence φ̂ ≡ φ.

In summary, when T is of hyperbolic type, infinite without border, and φ is a given conformal
tiling map, we are able to define discrete tiling maps {φj} so that φj → φ uniformly on
compact subsets of T .

The final situation to consider is T with border. The given φ maps int(T ) to a simply
connected open set Λ and extends continuously to its border, φ : ∂T → ∂Λ. Our previous
arguments require adjustments due to the presence of boundary vertices in the tiling com-
plexes Kj . We consider the finite case, as it highlights a pretty interplay between the discrete
and conformal worlds. Consider the conformal tiling T with 16 tiles we purport to show in
Figure 31. Here is the clear target mapping:

Target Mapping: A conformal tiling map φ : T → Λ, where Λ is a euclidean chair-
shaped polygonal region with designated corners of T mapping to the corners of Λ.

In fact, φ exists, and conditions on the corners will completely determine it image, Λ (up to
similarity). The difficulty is that it is essentially impossible to know the side lengths of Λ
ahead of time. Instead, the process behind Figure 31 effectively teased out the shape of Λ
through the process of discrete approximation. That turns our current proof on its head —
at least in any practical sense.

Nonetheless, pretending we know Λ is our game here. This brings a new difficulty: the dis-
crete approximations shown in Figure 31 have circles centered at points around the boundary.
These are not the packings our argument is using: the packings created via the He/Schramm
result have circles interior to Λ, even the boundary circles. This implies that carr(Pj) will
be a proper (in fact, compact in this finite case) subset of Λ. This introduces another feature
in the convergence: as j increases, the Ring Lemma will guarantee that the boundary circles
go to zero in radius, so carr(Pj) exhausts int(Λ) as j grows. (Note one subtlety: because
the circle packings Pj are univalent, the Ring Lemma applies to boundary as well as interior
circles.) It is clear that we still get subsequential convergence to limit conformal tiling maps

φ̂ which map int(T ) onto int(Λ). The reader can confirm that, as earlier, we can adjust
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normalizations to get φ̂ ≡ φ. These arguments extend with little additional effort to the case
that T is infinite with border as well. Therefore, our proof is complete. �

In closing, note that the CirclePack methods behind Figure 31 are limited in practice to
tiling maps whose ranges are D or polygonal regions. Despite this limitation, they have the
advantage of being computable. In the chair case, for example, the conformal limit map φ
carries designated boundary vertices of T to the corners of Λ; the map φ, the shape of Λ, and
the location of zα are all computable. The He/Schramm approach is much more flexible, but
is not at all practical. Even were we to have the requisite a priori information on the shape
of Λ and the location of zα, no one yet knows how to compute the packings guaranteed by
their theorem.

Appendix A. Alternate Conformal Structures

Let T be a combinatorial tiling of a surface S. For both practical and aesthetic reasons,
we have chosen the canonical conformal structure on S to be the conformally regular and
reflective β-equilateral structure associated with βT . A natural competing choice would be
the RPWA-structure on S as described in §5.2. We refer to these tilings as “equilateral” and
“RPWA” and take a moment to compare them. Unless all tiles have the same number of
sides, these are distinct — there is no conformal homeomorphism between them that maps
tiles to tiles. In both tilings the tile edges are analytic arcs. In the equilateral tiling, if m tiles
come together at a common corner, each tile has corner angle 2π/m. In the RPWA tiling,
the corner angles may differ, but we are assuming finite local complexity, so these angles
are bounded away from zero. The upshot is that there is a quasiconformal homeomorphism
between these two structures that maps tiles to tiles. In particular, they have the same type,
parabolic or hyperbolic. When type is the key concern, either structure could be used.

On the practical side, however, the RPWA-structure face severe difficulties (see [38, §22.4]).
The equilateral structure has a very strong upper hand: associated circle packings are easily
defined, refined, computed and displayed. As evidence, we might point to packings created
using CirclePack by Bill Floyd and containing several million of circles. Also appealing
with the equilateral approach is the fact that the tilings T , T ?, T †, and Q are realized
simultaneously. Moreover, all of these move seamlessly into the discrete conformal world,
a la §4.3. As with other uses of circle packing in function theory and conformal geometry,
this discrete world is remarkably faithful to its continuous counterpart, so even at coarse
refinement stages one can see the mathematics in action.

Appendix B. Multiply Connected Tilings

Though we have concentrated on simply connected examples in this paper, combinatorial
tilings T , as defined in 1.1, make sense for arbitrary surfaces: the barycentric subdivision βT ,
its β-equilateral structure, the tiling function M : T → S2, the piecewise spherical metric,
the realizations via conformal mappings — these are all perfectly well defined.

There are some things to note, of course, and perhaps the most challenging is new subtlety
in the “type” problem. When S is multiply connected, there is generically a moduli space,
denoted Mod(S), parameterizing the uncountably many distinct conformal structures that
can be defined on S. A conformal tiling T of S picks out precisely one point of Mod(S); that
is, there is precisely one Riemann surface R in which one can realize a conformal tiling of
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T . To illustrate, we have chosen a combinatorial tiling T having 11 tiles that form a torus.
The conformal realization is shown in Figure 33. A fundamental domain is displayed on
the left with the usual edge-gluing conventions (i.e., like-colored edges are identified). The
side-pairing translations are λ1 : z → z + w1 and λ2 : z → z + w2 (the third side-pairing
being a linear combination of these).

w2

w1

Figure 33. A combinatorial tiling T of a topological torus S converts it to
a conformal torus of conformal modulus τ = w2/w1.

On the right in Figure 33 is the lifting of T to a tiling of C, the universal covering space of

the torus. The lifted tiling, call it T̂ , is a geometric tiling like others we have considered, the
only difference being that it is invariant under the covering group Λ = 〈λ1, λ2〉. The moduli
space for the torus, Mod(S), is the strip {τ ∈ C : |τ | ≥ 1,−1/2 ≤ <(τ) ≤ 1/2} with sides
identified under the maps z 7→ z+1 and z 7→ −1/z. For our example, the conformal modulus
is the ratio w2/w1 ∼ .1874 + 1.396 i.

Through the use of covering theory, the theory of tilings for general surfaces is quite
straightforward. A Riemann surface R may is represented as R = G/Λ where G is one of
D,C, or S2 and Λ is a properly discontinuous group of automorphism of G. (Note that Λ
must be trivial if G = S2, so we get nothing new in this case.)

Definition. A conformal tiling T of a Riemann surface R represented as R = G/Λ may be

define geometrically as T̃ /Λ, where T̂ is a conformal tiling of G which is invariant under Λ.
T (and the corresponding combinatorial tiling) is said to be hyperbolic, parabolic, or spherical
as G is D,C or S2.

Development of this theory follows that in circle packing, which the reader will find in [38,
Chp 9]. Circle packing, in turn, provides discrete conformal tilings (see §4.3) along with all
the usual machinery for computations, approximations, and visualization (such as Figure 33).
There is one restriction in the hyperbolic setting, as noted already in the simply connected
case: the canonical hyperbolic tiling must be maximal, meaning that its interior fills R. The
complete story, then, is this, extending Theorem 1.2 and Corollary 2.2:

Theorem B.1. Given a combinatorial tiling T of a topological surface S, there exists a
unique point of Mod(S) whose associated Riemann surface R supports a maximal conformal
realization of T . Moreover, this realization is unique up to conformal automorphisms of R.
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Corollary B.2. Suppose T is a maximal conformal tiling in a Riemann surface R. Then
T contains two tiles T and T ′ which are similar in R if and only if there is a combinatorial
automorphism (perhaps orientation reversing) of the tiling T mapping T to T ′.

We close by observing that we face a new “type” problem, in the spirit of Theorem 5.4,
but even more challenging. Let S be a multiply connected topological surface, T the set of all
combinatorial tilings of S. By the previous theorem we have a map π : T→ Mod(S). There
is some information about this map. For compact S, the range of π is countable. Indeed, by
the Grothendieck’s theory of dessins d’Enfants a Riemann surface of genus g > 0 is realized
if and only if it has a defining polynomial P (z, w) = 0 with coefficients in some algebraic
number field (see [34, 8]). Arguments paralleling those of [5, 6] should show the range of π
is dense in standard metrics.

Regarding our subdivision theme, this may bridge the issues at the the heart of Cannon’s
Conjecture and Bonk’s work on carpets, [3]. Thus, suppose τ is a subdivision rule which can
be applied to a tiling T ∈ T. Then τn(T ) ∈ T, n = 0, 1, 2, · · · . If τ is a conformal subdivision
rule, then subdivision occurs in situ — it does not change the conformal structure, so τ
commutes with π, τ(π(T )) = π(τ(T )). In general, however, τ will be an action on the
moduli space. What are the possibilities when τ is not conformal?

Appendix C. CirclePack Software

The experiments leading to this paper and all the paper’s computations, experiments, and
images have been carried out using CirclePack, a software package developed by the second
author. The software is available through his web site under a GNU General Public License.
In addition, scripts are available from the second author which allow the user to replicate
and extend many of the experiments discussed in this paper.
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