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ABSTRACT. In this paper we show that bending a finite volume hyperbolic
d-manifold M along a totally geodesic hypersurface Σ results in a properly
convex projective structure on M with finite volume. We also discuss vari-
ous geometric properties of bent manifolds and algebraic properties of their
fundamental groups. We then use this result to show in each dimension
d Ê 3 there are examples finite volume, but non-compact, properly convex
d-manifolds. Furthermore, we show that the examples can be chosen to be
either strictly convex or non-strictly convex.
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1. INTRODUCTION

Let RPd denote d-dimensional real projective space and PGLd+1(R) denote
the projective general linear group. A subset Ω of RPd is called properly
convex if its closure is a convex set that is disjoint from some projective hy-
perplane. A properly convex set Ω is called strictly convex if ∂Ω contains no
non-trivial line segments.

Given two properly convex domains Ω1 and Ω2 it is possible to construct
a new properly convex domain Ω1 ⊗Ω2 via an obvious product construction.
A properly convex domain Ω is called irreducible if the only way Ω can be
written as such a product is if one of the factors is trivial.

To each properly convex Ω we can associate an automorphism group

PGL(Ω)= {A ∈PGLd+1(R) | A(Ω)=Ω}

and we say that Ω is homogeneous if PGL(Ω) acts transitively on Ω. The
Klein model, Hd, of hyperbolic space provides a quintessential example of a
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homogenous, irreducible, strictly convex domain, with automorphism group
equal to the group, Isom(Hd) of hyperbolic isometries.

If Γ ⊂ PGL(Ω) is a discrete group then Ω/Γ is a properly convex orbifold.
The domain Ω admits a PGL(Ω)-invariant metric, called the Hilbert metric,
which gives rise to a PGL(Ω)-invariant measure and so it makes sense to ask
if Ω/Γ has finite volume. A domain Ω is called divisible (resp. quasi-divisible)
if there is a discrete group Γ⊂ PGL(Ω) such that Ω/Γ is compact (resp. finite
volume). In this case, the group Γ is said to divide (resp. quasi-divide) Ω.
The group Isom(Hd) is well known to contain both uniform and non-uniform
lattices and as such we see that hyperbolic space is both divisible and quasi-
divisible.

In this context, there are several natural questions concerning the exis-
tence of divisible and quasi-divisible convex sets in each dimension. The main
result of this paper is the following, which answer one such question in the
affirmative:

Theorem 1.1. For each d Ê 3 there exists an irreducible, non-homogenous,
quasi-divisibleΩ⊂RPd. Furthermore, the domainΩ can be chosen to be either
strictly convex or non-strictly convex.

There is a similar result, initially observed by Benoist [Ben04], which
shows that by combining work of Johnson–Millson [JM87] and Koszul [Kos68],
one can construct for all d Ê 2 irreducible, non-homogeneous, divisible prop-
erly convex Ω⊂RPd . However, in these examples the groups Γ are Gromov-
hyperbolic which forces Ω to be strictly convex [Ben04].

The study of lattices in semisimple Lie groups provides natural context
and motivation for the study of divisible and quasi-divisible convex sets. A
discrete subgroup Γ of a semisimple Lie group G is a lattice (resp. uniform
lattice) if the quotient G/Γ has finite Haar measure (resp. is compact). Lat-
tices play a role in many disparate areas of mathematics including geometric
structures on manifolds, algebraic groups, and number theory, to name a few.

Historically, much work has been dedicated to constructing and under-
standing lattices in semisimple Lie groups. In the late 1880’s, Poincaré [Poi82]
developed a technique for constructing lattices in SL2(R). His method is geo-
metric and involves constructing tilings of the hyperbolic plane H2 using iso-
metric copies of a finite volume tile. The hyperbolic plane can be realized
as the quotient of SL2(R) by the compact group SO2(R) and the isometry
group of the tiling is the desired lattice. Poincaré’s tiling techniques were
subsequently generalized by himself and others to construct concrete exam-
ples of lattices in various “low dimensional” Lie groups. However, explicitly
constructing the required tilings in high dimensional spaces turns out to be
difficult.

It was not until 60 years later that Borel and Harish-Chandra [BHC62]
developed a general technique for constructing explicit lattices in semisim-
ple Lie groups using “arithmetic techniques.” Roughly speaking they showed
that a semisimple Lie group G could be realized as a subgroup of matrices
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whose entries satisfied certain integral polynomial constraints and that the
subgroup Γ consisting of elements of G with integer entries is a lattice. In
the following decade Margulis proved his seminal “super-rigidity” and “super-
arithmeticity” results. One consequence of his work is that for most semisim-
ple Lie groups, all of its lattices arise (up to finite index subgroups) via the
previously mentioned arithmetic construction.

As alluded to in the description of Poincaré’s techniques, there is a strong
connection between lattices and geometry. Given a Lie group G we can form
the associated symmetric space G/K , where K is a maximal compact sub-
group of G. The group G acts on X by isometries and if Γ is lattice in G
then X /Γ is a finite volume orbifold. However, because of super-rigidity, the
geometry of these manifolds is quite rigid and does not admit deformations.

On the other hand, the situation for properly convex manifolds (and orb-
ifolds) is similar, but as we shall see, much more flexible. Suppose we are
given a divisible (or quasi-divisible) properly convex domain Ω and a group Γ
dividing (resp. quasi-dividing) Ω. In this situation, we can think of Ω as be-
ing an analogue of the symmetric space G/K and Γ as an analogue of a lattice
in G. In this setting there is a PGL(Ω)-invariant metric on Ω and so we can
regard Ω/Γ as a metric object. However, despite this compelling analogy the
deformation theories of lattices in semisimple Lie groups and properly con-
vex projective manifolds have very distinct flavors. This is primarily a result
of the fact that the group Γ (quasi-)dividing Ω is only a discrete subgroup of
PGLd+1(R) and not, in general, a lattice in any Lie subgroup of PGLd+1(R).
Thus Γ is typically not forced to satisfy super rigidity. As a result, much re-
cent work has been focused on producing and understanding deformations of
such manifold [Gol77, Gol90, CG05, FG07, Mar10b, CLT06, CLT07, Mar10a,
CL15, Bal14, Bal15] or the survey [CLM16].

In fact, the proof of Theorem 1.1 relies on a deformation theoretic argu-
ment, which we briefly outline. We start with a finite volume hyperbolic
d-manifold M that contains an embedded finite volume totally geodesic hy-
persurface Σ. We can realize Hd as a strictly convex subset of RPd and thus
we can realize M as Hd/Γ where Γ is a discrete subgroup of PSO(d,1) ⊂
PGLd+1(R). Using the bending construction of Johnson and Millson [JM87]
we can produce a family Γt ⊂ PGLd+1(R) of subgroups such that Γ0 = Γ. We
can then apply arguments of [Mar12a] to conclude that for each t the group
Γt preserves a properly convex domain Ωt. Finally, a detailed analysis of the
geometry of the cusps of Ωt/Γt allows us to conclude that Γt quasi-divides Ωt
and can be either strictly convex or non-strictly convex (for different choices
of M and Σ).

Remark 1.2. The paper [Mar12a] by the second author contains a Theorem
(Prop 6.9), a corollary of which is that the above bending construction always
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results in strictly convex projective manifolds. However, the proof of this the-
orem contains a gap and the results of this paper show that there are non-
strictly convex manifolds obtained by bending, and so Prop 6.9 of [Mar12a] is
actually false.

In the process of proving Theorem 1.1 we are able to prove the following
result.

Theorem 1.3. The groups Γt obtained by bending M along Σ are Zariski
dense for t 6= 0.

This result may be of independent interest because of its possible connec-
tion to thin groups. A group G ⊂ GLd+1(R) is thin if it is Zariski dense and
is also an infinite index subgroup of a lattice in GLd+1(R). Thin groups have
been the object of much recent research because of their connections to num-
ber theory and a variety of Diophantine problems (see the following survey
for much more detail [Sar14]). Theorem 1.3 provides an infinite number of
families, Γt, of Zariski dense subgroups and it would be interesting to un-
derstand whether certain specializations of the parameter t give rise to thin
groups.

As previously mentioned, one of the steps in the proof of Theorem 1.1 is
to analyze the geometry of the ends that arise when bending a hyperbolic
manifold along a totally geodesic surface. As a result of this analysis we
are able to conclude that each end of the resulting projective manifold is of
one of two types which we call standard cusps and bent cusps, respectively
(see Theorem 5.4). Bent cusps were introduced by the first author in [Bal15]
where it was shown that the complete hyperbolic structure on the figure-
eight knot complement can be deformed to a properly, but not strictly, convex
projective structure whose end is a bent cusp. However, these deformations
of the figure-eight knot complement do not arise via the bending construction
since the figure-eight knot complement contains no embedded totally geodesic
hypersurfaces.

Both standard and bent cusps are examples of generalized cusps, intro-
duced by Cooper–Long–Tillmann [CLT15a]. Loosely speaking, a generalized
cusp is a properly convex projective manifold that can be foliated by nice
strictly convex hypersurface that are analogous to horospheres in hyperbolic
geometry. Work of the first author, D. Cooper, and A. Leitner [BCL16] pro-
vides a classification of generalized cusp and their main result shows that
d-dimensional generalized cusps fall into d+1 families. In this classification,
standard and bent cusps form two of these families.

Given a cusp C in one of these d+1 families it is currently an open problem
to produce a properly convex manifold M with non-virtually abelian funda-
mental group with an end that is projectively equivalent to C. First note
that, finite volume non-compact hyperbolic manifolds give examples in each
dimension of properly convex manifolds with cusp ends that are standard
cusps. In dimension 2, there are examples of properly convex manifold with
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cusps from each family, see [Cho94, Mar10b]. In dimension 3, there are exam-
ples of properly convex manifolds with cusp groups that are R-diagonalizable
in [Ben06, Mar10a, BDL15]. Examples of properly convex manifolds with
bent cusp ends in [Bal15]. Properly convex 3-manifolds with cusp ends of the
fourth type are under construction by the authors and Gye-Seon Lee. Theo-
rem 7.1 shows that there are examples in each dimension of properly convex
manifolds with bent cusp ends. However, to the best of the authors’ knowl-
edge, these are the only examples in dimension d Ê 4 of manifolds containing
generalized cusps that are not standard.

The paper is organized as follows: Section 2 provides necessary back-
ground material concerning properly convex geometry, introduces the parabo-
loid model of hyperbolic geometry, and concludes with a description of certain
centralizers that are relevant throughout the paper. Section 3 discusses the
bending construction of Johnson–Millson [JM87] at the level of representa-
tions and the level of projective structures. Section 4 introduces standard and
bent cusps as well as discussing some of their geometric properties. Section
5 is dedicated to understanding what types of ends are possible for projec-
tive manifolds obtained from bending. The main results of this section are
that standard and bent cusps are the only types of ends that arise when
bending hyperbolic manifolds along totally geodesic hypersurfaces (Corollary
5.10) and that the projective manifolds arising from bending have finite vol-
ume (Theorem 5.11). Section 6 describes how the topology of the pair (M,Σ)
determines the geometry of the ends of the manifolds resulting from bending.
Finally, Section 7 is dedicated to constructing the examples needed to prove
Theorem 1.1.
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2. PRELIMINARIES

2.1. Properly convex geometry. Let RPd be the space of lines through
the origin in Rd+1. More concretely, RPd = (Rd+1\{0})/(x ∼ λx), where λ ∈ R×.
There is a natural projection map P :Rd+1\{0}→RPd taking each point to the
unique line through the origin in which it is contained. This map is called
projectivization. The projectivization of a hyperplane through the origin in
Rd+1 gives rise to a hyperplane in RPd. Given a hyperplane H ⊂ RPd the set
A =RPd\H is called an affine patch as it can be naturally identified with an
affine d-space.
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A subset X of the real projective space RPd is said to be convex (resp. prop-
erly convex) if there exists an affine patch A of RPd such that X ⊂ A (resp.
X ⊂A where X is the closure of X ) and X (resp. X ) is a convex subset of A

in the usual sense. A simple, but useful property of properly convex domains
is that they do not contain complete affine lines. A properly convex open set
Ω is strictly convex if its boundary, ∂Ω, does not contain any non-trivial line
segments.

To each open properly convex set Ω⊂RPd we can associate a dual properly
convex set Ω∗ ⊂RPd∗ as follows: consider the cone

C ∗
Ω = {φ ∈R(d+1)∗ |φ(x)> 0, ∀ [x] ∈Ω},

and let Ω∗ = P(C ∗
Ω). If [φ] ∈Ω∗ then the kernel of φ gives rise to a hyperplane

disjoint fromΩ and thus to an affine patch containingΩ. The points [φ] ∈ ∂Ω∗
correspond to hyperplanes that intersect ∂Ω, but are disjoint from Ω. Such
a hyperplane is called a supporting hyperplane to Ω, A point of ∂Ω is of class
C 1 if it is contained in a unique supporting hyperplane to Ω. The boundary
∂Ω is then said to be of class C 1 if all of its points are of class C 1.

It is easy to see that the dual of an open properly convex set is also open
and properly convex. Furthermore, it is also easy to see that the notions of
strict convexity and having C 1 boundary are dual to one another, in the sense
that if Ω is strictly convex (resp. has C 1 boundary) then Ω∗ has C 1 boundary
(resp. is strictly convex).

Let Sd be the space of half lines through the origin in Rd+1, which we
refer to as the projective d-sphere. More explicitly, Sd = (Rd+1\{0})/(x ∼ λx),
where λ ∈ R+. It is easy to see that Sd is topologically a sphere. The group
of automorphisms of Sd can be identified with the group SL±

d+1(R) of real
(d+1)× (d+1) matrices with determinant equal to ±1.

There is an obvious two-fold covering from π : Sd → RPd. If H is a hyper-
plane in RPd then the π-preimage of H is double covered by an equatorial hy-
persphere in Sd. Each such hypersphere partitions Sd into two d-balls each
of which is diffeomorphic (via π) to the affine patch determined by H. For this
reason we call the complementary regions of a hypersphere affine patches.
Given a properly convex domain Ω ⊂ RPd its preimage under π consists of
two components, each diffeomorphic to Ω. Furthermore, the group PGL(Ω)
can be identified with a subgroup SL±(Ω) ⊂ SL±

d+1(R). One convenience of
the above identification is that it allows us to identify elements of PGL(Ω)
(which are equivalence classes of matrices) with elements of SL±(Ω) (which
are actual matrices). We will use this identification implicitly throughout
the paper. Another is that it allows us to regard Ω as a subset of a simply
connected space.

Every properly convex open set Ω of RPd is equipped with a natural metric
dΩ called the Hilbert metric defined using the cross-ratio in the following
way: take any two points x 6= y ∈ Ω and draw the line between them. This
line intersects the boundary ∂Ω of Ω in two points p and q. We assume that x
is between p and y. Then the following formula defines a metric (see Figure
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1):

dΩ(x, y)= 1
2

ln
(
[p : x : y : q]

)
The topology onΩ induced by this metric coincides with the subspace topol-

ogy coming from RPd. The metric space (Ω,dΩ) is complete, geodesic and the
closed balls are compact. Furthermore, the group PGL(Ω) acts properly by
isometries on Ω.

x
y

p

qv

p−

p+

Ω

FIGURE 1. Hilbert distance

The Hilbert metric gives rise to a Finsler structure on Ω defined by a very
simple formula. Let x be a point of Ω and v a vector of the tangent space TxΩ

of Ω at x. The quantity d
dt

∣∣∣
t=0

dΩ(x, x+ tv) defines a Finsler structure FΩ(x,v)
on Ω. Moreover, if we choose an affine chart A containing Ω and a euclidean
norm | · | on A , we get:

(2.1) FΩ(x,v)= d
dt

∣∣∣∣
t=0

dΩ(x, x+ tv)= |v|
2

(
1

|xp−| +
1

|xp+|
)

Where p− and p+ are the intersection points of the line through x spanned
by v with ∂Ω and |ab| is the distance between points a,b of A for the eu-
clidean norm | · | (see Figure 1). The regularity of this Finsler metric is deter-
mined by the regularity of the boundary ∂Ω of Ω, and the Finsler structure
gives rise to a Hausdorff measure µΩ on Ω which is absolutely continuous
with respect to Lebesgue measure, called the Busemann volume.

More concretely, if A ⊂Ω is a Borel subset, then the Busemann volume of
A, denoted µΩ(A), is computed as∫

A

αd

µL(BΩ
z (1))

dµL(z),

where µL is the Lebesgue measure on (A , | · |), αn is the Lebesgue volume of
a unit d-ball, and BΩ

z (1) is the unit ball for the Hilbert norm on the tangent
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space TzΩ. It is easy to see that the measure defined by this formula does
not depend on the choice of the affine patch containing Ω or on the euclidean
norm | · | on A since µΩ is a Hausdorff measure of (Ω,dΩ). Furthermore, if
Γ is a discrete subgroup of PGL(Ω) we see that µΩ is Γ-invariant and thus
descends to a measure µΩ/Γ on Ω/Γ.

We close this section by mentioning some useful “contravariance” proper-
ties of the Hilbert metric and Busemann volume of different domains.

Proposition 2.1. Let Ω1 ⊂Ω2 be two properly convex open sets, and let x, y ∈
Ω1. Then dΩ2(x, y)É dΩ1(x, y).

Proof. The proposition is a consequence of the following inequality whose ver-
ification is a straightforward computation. If a, x, y,b ∈RP1 and t > 0 then

[a : x : y : b+ t]É [a : x : y : b]

�

Proposition 2.2. (see Colbois-Verovic-Vernicos [CVV04, Proposition 5]) Let
Ω1 ⊂Ω2 be two properly convex open sets; then for any Borel set D of Ω1, we
have µΩ2(D)ÉµΩ1(D).

2.2. The paraboloid model of Hd. In this section we discuss a projective
model of hyperbolic space that can be viewed as a projective analogue of the
upper half space model. Specifically, there is a distinguished point, ∞, in the
boundary of this model and automorphisms fixing ∞ have a particularly nice
form.

Let Qd be the quadratic form on Rd+1 given by

(2.2) x2
2 + . . . x2

d −2x1xd+1

It is easily verified that Qd has signature (d,1) and so the projectivization of
its negative cone gives a projective model of Hd with isometry group PO(Qd).
More explicitly, if we let {e i}d+1

i=1 be the standard basis for Rd+1 and {e∗i }d+1
i=1 the

corresponding dual basis, then we see that the negative cone of Qd is disjoint
from the hyperplane dual to e∗d+1 and so we can realize this model for Hd as
a paraboloid whose homogeneous coordinates are

(2.3) {[x1 : . . . : xd : 1] | x1 > (x2
2 + . . .+ x2

d)/2}

Furthermore, the boundary of Hd can be identified with the space of isotropic
lines for the form Qd. Again, we can explicitly realize ∂Hd in homogeneous
coordinates as

(2.4) {[x1 : . . . : xd : 1] | x1 = (x2
1 + . . .+ x2

d)/2}∪ {[1 : 0 : . . . : 0]}

We henceforth use these identifications implicitly and will refer to the point
[1 : 0 : . . . : 0] ∈ ∂Hd as ∞.

Let so(Qd) be the Lie algebra of PSO(Qd) and let pd be the Lie algebra
of the group Pd of parabolic translations fixing ∞. This Lie algebra can be
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described explicitly as

pd =




0 u1 . . . ud−1 0
0 0 . . . 0 u1
...

...
. . .

...
...

0 0 . . . 0 ud−1
0 0 . . . 0 0

 | (u1, . . . ,ud−1) ∈Rd−1


As a Lie algebra, pd is isomorphic to Rd−1 and the exponential map provides
an isomorphism between pd and Pd. We will often write elements of Pd in
the following block form

(2.5)

1 vt |v|2
2

0 I v
0 0 1


where v is a (column) vector in Rd−1, I is the (d−1)× (d−1) identity matrix,
and the zeros represent zero vectors of the appropriate size and shape. If
g ∈ Pd then the vector v in (2.5) is called the translation vector of g.

Let H be a hyperplane in Hd. All such hyperplanes are isometric and so
after conjugating by an element of PSO(Qd) we can assume that H is given by
the intersection of Hd and the projective hyperplane defined by the equation
x2 = 0. We will refer to this hyperbolic hyperplane as Hd−1

0 . Let PSO(Qd;d−
1,1) be the index two subgroup of the stabilizer in PSO(Qd) of Hd−1

0 that
preserves both components of the complement of Hd−1

0 in Hd. The subgroup
of parabolic translations of PSO(Qd;d−1,1), which we denote by P0

d−1, can be
identified with the image under the exponential map of the subalgebra p0

d−1
of pd of elements whose translation vector has zero as its first component.

2.3. Centralizers. In order to define bending and later to understand the
geometry of the ends of manifolds arising from bending it will be necessary
to describe the centralizers in PGLd+1(R) of several of the groups described
in the previous section.

The identity component of the centralizer of PSO(Qd;d−1,1) in PSO(Qd) is
trivial, however when regarded as a subgroup of PGLd+1(R) it has 1-dimensional
centralizer which is described in the following lemma (similar lemmas appear
in [JM87], [Bal13, Lem 3.2.3] and [Mar12a, Lem 3.3])

Lemma 2.3. The identity component Cd−1 of the centralizer of PSO(Qd;d −
1,1) in PGLd+1(R) is one dimensional and is equal to the one parameter group
with infinitesimal generator

(2.6) C =


−1

d
−1

. . .
−1


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Specifically, Cd−1 = {ct | t ∈R}, where ct = exp(tC).

The next lemma describes the centralizer of Pd in PGLd+1(R).

Lemma 2.4. The centralizer Z (Pd) of Pd in PGLd+1(R) consists of matrices
of the following block form

(2.7)

1 ut b
0 I u
0 0 1


where u ∈Rd−1 and b ∈R.

Proof. First, a simple computation using block matrices shows that any el-
ement of the form (2.7) commutes with every element of Pd. Next, suppose
that B is in the centralizer. The point [e1] (resp. [e∗d+1]) is the unique point in
RPd (resp. RPd∗) preserved by Pd. As B commutes with all elements of Pd,
the group B must also fix [e1] and [e∗d+1]. Therefore B has the following block
form a u′ t b

0 C w′
0 0 f


where a, f ∈R×, b′ ∈R, u′,w′ ∈Rd−1, and C ∈ GLd−1(R). Thus B preserves the
d-dimensional affine patch A in RPd corresponding to [e∗d+1] as well as the
(d−1)-dimensional quotient affine space A ′ =A /[e1]. Specifically, the action
of B on A ′ is given by x 7→ f −1(Cx+w′). The group Pd acts on A ′ via affine
translations and since B is in the centralizer, the group B must commute with
all possible affine translations and we conclude that B must be of the forma u′ t b′

0 f I w′
0 0 f


Using a similar argument we see that B also preserves the affine patch, A ∗

in RPd∗ corresponding to [e1] as well as the affine quotient A ′∗ =A ∗/[e∗d+1].
The group Pd again acts via affine translations on A ′∗ and since B commutes
with all such affine translations we conclude that B is of the form f u′ t b′

0 f I w′
0 0 f

∼
1 ut b

0 I w
0 0 1

 ,

where u = u′/ f , b = b′/ f , and w = w′/ f . Finally, if A ∈ Pd we can write A as

A =
1 vt |v|2 /2

0 I v
0 0 1


Examining the commutator we find that

[B, A]=
0 0 v · (u−w)

0 0 0
0 0 0


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where · indicates the euclidean dot product. Thus B commutes with all A ∈ Pd
if and only if u = w. �

We conclude this subsection by identifying the centralizer of P0
d−1 in PGLd+1(R).

The group P0
d−1 preserves a unique line, C, in RPd and a unique line, C∗,

in RPd∗ (a line in RPd∗ corresponds to a pencil of hyperplanes). Namely it
preserves the line spanned by [e1] and [e2] and the pencil of hyperplanes cor-
responding to the line in RPd∗ spanned by [e∗2] and [e∗d+1]. The action of P0

d−1
on both of these 1-dimensional subspaces is trivial. Furthermore, any point
in RPd (resp. hyperplane in RPd∗) that is invariant under P0

d−1 is contained
in this line (resp. pencil). Consequently, any element of PGLd+1(R) that cen-
tralizes P0

d−1 must also preserve this line (resp. pencil). See Figure 2. We
repeatedly use this fact in the proof of the following lemma:

Lemma 2.5. The centralizer Z (P0
d−1) of P0

d−1 in PGLd+1(R) consists of ele-
ments with block form

(2.8)


1 a ut z
0 b 0 c
0 0 I u
0 0 0 1


where a, c, z ∈R, b ∈R×, u ∈Rd−2, and I is the (d−2)× (d−2) identity matrix.

Proof. First, a simple computation using block matrices shows that any ele-
ment of the form (2.8) commutes with every element of P0

d−1. Next, let B be
an element in the centralizer. As previously mentioned, every hyperplane in
RPd invariant under P0

d−1 is contained in C∗. Furthermore, the hyperplane
corresponding to [e∗d+1] is the unique P0

d−1-invariant hyperplane on which
the action of every element of P∗

d−1 has a Jordan block of size 2 (for all other
hyperplanes the Jordan blocks are of size 1 or size 3).

Since B commutes with all the elements of P0
d−1, the group B must pre-

serve the hyperplane dual to [e∗d+1]. The group P0
d−1 also preserves a unique

projective line, C, which is spanned by the points [e1] and [e2]. The intersec-
tion of this line with the core of the pencil C∗ is the point [e1]. Thus B must
also preserve this point. From this we conclude that B is of the forme vt z

0 A w
0 0 1


where v,w ∈Rd−1, e, z ∈R, and A ∈GLd−1(R).

Let A ′ and A ′∗ be the affine quotients from the proof of Lemma 2.4. By
observing that the affine affine action of B on A ′ and A ′∗ commutes with the
respective affine actions of the elements of P0

d−1 we see that e = 1 and that A
is an element with block form (

b 0
0 I

)
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[e1]=∞

[ed+1]

→ [e2]

↗
[e3], . . . , [ed ]

T[e1]∂Ω=P({e∗d+1 = 0})

C

Hd−1
0

FIGURE 2. This picture illustrastes our choice of coordinates.
Some cross sections of the pencil C∗ with Hd are colored in
red.

where b ∈ R× and I is the (d −2)× (d −2) identity matrix. Furthermore, an
argument similar to that of Lemma 2.4 shows that the vectors v and w can
differ only in the first component.

Thus B is of the form 
1 a ut z
0 b 0 c
0 0 I u
0 0 0 1


where a, c ∈R, b ∈R×, and u ∈Rd−2. �
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3. BENDING

Let M be a finite volume hyperbolic d-manifold and Σ an embedded finite-
volume totally geodesic hypersurface. We denote the fundamental groups
of M and Σ by Γ and ∆, respectively. In this section we will show how to
construct a family of properly convex projective structure on M by “bending”
along Σ. More informations about bending and its relationship to projective
structure can be found in [JM87] and [Mar12a]. By Mostow rigidity there
is a unique (up to isometry) hyperbolic structure on M and so we get a dis-
crete and faithful representation ρ0 : Γ→ PSO(Qd) (unique up to conjugacy)
from the holonomy of this structure. We will henceforth use this structure
to identify M̃ with Hd and Γ with a subgroup of PSO(Qd). Furthermore, by
assuming that we have choosen a base point x̃ ∈Hd whose projection to M is
contained in Σ and that the lift of Σ containing x̃ is Hd−1

0 we may assume that
∆ is a subgroup of PSO(Qd;d−1,1).

3.1. Bending at the level of representations. We first describe the bend-
ing construction at the level of representations. The construction depends on
whether or not the hypersurface Σ is separating.

If Σ is separating then M\Σ has two components M1 and M2 with funda-
mental groups Γ1 and Γ2. Furthermore, we can decompose Γ as the amalga-
mated free product

(3.1) Γ∼=Γ1 ∗∆Γ2

The representation ρ0 gives rise to two representations ρ i
0 : Γi → PSO(Qd)

given by restricting ρ0 to Γi for i = 1,2. We define two families of representa-
tions of Γ1 and Γ2, respectively, as follows. Let ρ1

t = ρ1
0 and let ρ2

t = ctρ
2
0c−1

t ,
where ct is the element defined in (2.6). Since ct belong to Cd−1 the identity
component of the centralizer Z (PSO(Qd;d−1,1)) of PSO(Qd;d−1,1), these
two families of representations agree on ∆ and thus give a family of repre-
sentations ρt :Γ→PGLd+1(R).

If Σ is non-separating then M\Σ has a single component MΣ with funda-
mental group ΓΣ and we can write Γ as the following HNN extension:

(3.2) Γ∼=ΓΣ∗s

where s is the stable letter. We can define a family of representations ρt :
Γ→PGLd+1(R) as follows. We define ρt to be equal to ρ0 when restricted to ΓΣ
and equal to ctρ0(s) when restricted to the stable letter. Since ct centralizes
ρ0(∆) this gives a well defined family of representations ρt :Γ→PGLd+1(R).

3.2. Bending at the level of projective structures. In this section we
show, these two families of deformations defined by bending are both holonomies
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of projective structures on M arising from a certain type of projective defor-
mation. Let Σ̃ be the union of all the lifts of Σ to Hd. Recall that the hyper-
plane Hd−1

0 is one such lift
We begin with the case where Σ separates M into M1 and M2. For i ∈ {1,2}

let Ni = Mi ∪Σ. Let Ñi be the copy of the respective universal cover of Ni in
Hd that contains Hd−1

0 in its boundary. Combinatorially, M̃ can be described

M̃ = (Γ× Ñ1)/Γ1 t (Γ× Ñ2)/Γ2,

where α ∈ Γi acts on Γ× Ñi by α · (γ, p)= (γα−1,α · p). Additionally, if p ∈ Ñ1 ∩
Ñ2 =Hd−1

0 then we identify the point (γ, p) ∈Γ× Ñ1 with the point (γ, p) ∈ Ñ2.
The action of Γ on M̃ is given by

(3.3) γ · [(γ′, p)]= [(γγ′, p)] for γ ∈Γ and [(γ′, p)] ∈ M̃

With this description of the universal cover, the developing map is easy to de-
scribe. Let D0 :Hd →RPd be the developing map for the complete hyperbolic
structure on M and let ct ∈ PGLd+1(R) be the element from (2.6). Define a
new developing map Dt :Hd →RPd by

(3.4) Dt([(γ, p)])=
{
ρt(γ)D0(p) if p ∈ Ñ1
ρt(γ)ctD0(p) if p ∈ Ñ2

It is a simple exercise to verify that Dt is well defined and ρt-equivariant.
The case where Σ is non-separating can be treated similarly. Let N = MΣ

and observe that there are two components of the universal cover of N in Hd

that contain Hd−1
0 and we can order these lifts so that ρ0(s) takes the first lift

to the second lift. With this convention we let Ñ be the first of the two lifts.
The universal cover of M can again be described combinatorially as

M̃ = (Γ× Ñ)/ΓΣ,

where α ∈ΓΣ acts by α · (γ, p)= (γα−1,α · p). The action of Γ on M̃ is given by

(3.5) γ · [(γ′, p)]= [(γγ′, p)] for γ ∈Γ and [(γ′, p)] ∈ M̃.

The new developing map Dt :Hd →RPd is given by

(3.6) Dt([(γ, p)])= ρt(γ)D0(p).

It is again easily verified that Dt is well defined and ρt-equivariant.
As a result, we have constructed a family of projective structures with

developing/holonomy pair Mt = (Dt,ρt) which we call bending of M along Σ.
By work of [JM87, Lem. 5.4 and Lem. 5.5] it is known that for t 6= 0 these
projective structures are not hyperbolic, but thanks to the following theorem
it is known that they remain properly convex.

Theorem 3.1. [Mar12a, Theorem 3.7] Let (Mt)t∈R be the bending of M along
Σ. The projective structure Mt on M is properly convex.
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4. GEOMETRY OF THE ENDS

In this section we give a detailed description of the ends of the manifolds
obtained by bending. The section begins by describing the geometry of two
different types of ends. We then proceeds to show that (up to passing to a
finite sheeted cover) these are the only two types of ends that can arise in
manifolds obtained by bending. The main component of this is Theorem 5.4.

4.1. Standard and bent cusps. In this section we describe in detail the
geometry of two different types of ends. It should be noted that these types
of ends are specific instances of generalized cusps, which were introduced by
Cooper–Long–Tillmann in [CLT15a].

Standard cusps. We begin by letting Λ be a lattice in the (d−1)-dimensional
Lie group Pd. Let A be the affine patch corresponding to [e∗d+1], A is dif-
feomorphic to Rd ∼= R×Rd−1 with affine coordinate (x,v), where x ∈ R and
v ∈Rd−1. For c ∈R we can define the function fc :Rd−1 →R by v 7→ 1

2 |v|2 + c.
In these coordinates the paraboloid model of Hd can be realized as the epi-

graph of f0. Furthermore, each hyperbolic horosphere (resp. horoball) cen-
tered at ∞ is given by the graph (resp. epigraph) of fc for some c > 0. These
horospheres give us a foliation of Hd by convex hypersurfaces. This foliation
is preserved leafwise by the action of Λ (each leaf is the Pd orbit of some
point). The first factor in this product structure gives another foliation of A

by lines passing through ∞. The group Λ also preserves this foliation.
These two foliations are transverse to one another and the space of these

lines can be identified with the second factor of the product structure. The
action of Λ on the space of lines is by euclidean translations. Projection onto
the second factor also endows each of the horospheres with a euclidean struc-
ture. Thus Hd/Λ∼= Td−1×(0,∞) and the torus fibers Td−1 are euclidean. This
is nothing but a projective version of a familiar construction from hyperbolic
geometry. We call a manifold of the form Hd/Λ a standard torus cusp and
a manifold of the form Hd/Λ′, where Λ′ contains Λ as a finite index normal
subgroup, a standard cusp.

Bent cusps. Next, let Λ be a lattice in the (d−1)-dimensional Lie group Bd ⊂
PGLd+1(R) consisting of elements of the form

(4.1)


1 0 vt |v|2

2 −b
0 eb 0 0
0 0 I v
0 0 0 1


where b ∈ R and v ∈ Rd−2. The group Bd preserves A , which we now realize
as R×R×Rd−2 with affine coordinated (x, y,v), where x, y ∈ R and v ∈ Rd−2.
Let c ∈R and define gc :R+×Rd−2 →R by (y,v) 7→ 1

2 |v|2− log(y)+ c. Let Bd be
the epigraph of g0. The graphs of gc for c > 0 give a foliation of Bd by strictly
convex hypersurfaces. The Hessian of gc is positive definite at each point in
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FIGURE 3. The domain B3

its domain and so we get that Bd is convex. It is not hard to see that Bd

is properly, but not strictly convex. In particular, the domain Bd contains a
unique segment in its boundary, which in these coordinates is the segment
[e1, e2]. We henceforth refer to [e1] as p+∞, [e2] as p−∞, and [e1, e2] as s∞.

We call the graphs (resp. epigraphs) of the gc horospheres centered at s∞
(resp. horoballs centered at s∞). Again, the leaves of this foliation are Bd
orbits and thus this foliation is preserved leafwise by Λ. The lines coming
from the first factor of the product structure are concurrent to p+∞ and give
a foliation of Bd which is preserved by Λ and this foliation by lines is again
transverse to the foliation by horospheres.

The space of lines can be identified with a subset of the product of the
second and third factors, the action of Λ on the space of lines is by affine
transformations, but is no longer by euclidean isometries. More precisely,
the action on the third factor is by euclidean translations and the action on
the second factor is by homothety. Projection to the space of lines endows
the horospheres with an affine structure. The quotient Bd/Λ is still diffeo-
morphic to Td−1 × (0,∞), but now the torus sections Td−1 are affine, but no
longer euclidean. We call a manifold of the form Bd/Λ a bent torus cusp and
a manifold of the form Bd/Λ′, where Λ′ contains Λ as a finite index normal
subgroup, a bent cusp. Next, we discuss some interesting Lie subgroups of Bd
as well as their orbits. First, let Hdi be 1-dimensional subgroup of Bd con-
sisting of elements such that v = 0 (see (4.1)). We refer to Hdi as the group
of pure dilations and to its non-trivial elements as pure dilations. Let γ be
a pure dilation such that b < 0 (see (4.1)), then p−∞ is a repulsive fixed point
of γ and p+∞ is an attractive fixed point of γ. If x ∈ ∂Bd\s∞, then the curve
(γt(x))t∈R∪s∞ is the boundary of a two dimensional convex subset, ωx, of Bd,
see Figure 4.1.

Next, let Htr be the (d −2)-dimensional subgroup of Bd consisting of ele-
ments such that b = 0. We refer to Htr as the group of pure translations and to
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FIGURE 4. The domain ωx.

its non-trivial elements as pure translations. The group of pure translations
acts trivially on s∞. Furthermore, for any point x ∈ ∂Bd\s∞, the Htr · x∪ p+∞
is the boundary of a totally geodesic copy of Hd−1 in Bd.

To summarize, we see that every cross section of Bd with a 2-plane con-
taining s∞ is of the form ωx for some x ∈ Bd. Furthermore, every cross sec-
tion of Bd with an hyperplane that contains p+∞ and transverse to s∞ is a
(d−1)-dimensional ellipsoid (provided the cross section is non-empty).

4.2. Volumes of cusp neighborhoods. In this section we show that the
cusp neighborhoods defined in the previous section have finite Busemann
volume. The precise statement is as follows:

Theorem 4.1. Let Ω be either Hd or Bd, let G be either Pd or Bd and let
H ⊂Ω be a horoball (i.e. the convex hull of an orbit of G). If Λ⊂G is a lattice
then Λ preserves H and H /Λ is a properly convex submanifold of Ω/Λ. If
d Ê 3 then H /Λ is a finite volume submanifold of Ω/Λ.

Proof. With the exception of the claim about H /Λ having finite volume when
d Ê 3 the rest of the theorem follows from the discussion in the previous
subsection. Furthermore, when Ω = Hd the Hilbert metric on Ω is equal to
the hyperbolic metric and so in this case the Busemann volume coincides
with the hyperbolic volume. In this case the fact that H /Λ is finite volume in
Ω/Λ is a well known fact from hyperbolic geometry that follows from a simple
computation.

Assume now that Ω=Bd and, as above, view Bd ⊂A ∼= R×R×Rd−2 with
coordinates (x, y,v) and recall that Ω is the epigraph of a function whose do-
main is R+×Rd−2. The proof of this case is similar to [Bal15, Prop 3] and pro-
ceeds by showing that when z0 = (x0, y0,v0) with x0 large that BΩ

z0
(1) contains

a simplex of Lebesgue volume comparable to xd/2
0 . Let D be a fundamental

domain for the action of Λ on Ω. We can assume that D is the intersection of
Ω with the cone over a compact set C ⊂ R+×Rd−2 with cone point p+∞. The
compact set C can be taken to be a fundamental domain for the affine action
of Λ on R+×Rd−2.
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Let z0 ∈D and identify Tz0Ω with R×R×Rd−2 again using the coordinates
(x, y,v) (where we take z0 to be the origin). Consider the point w1 = (x0,0,0) ∈
Tz0Ω. A simple computation using (2.1) shows that

(4.2) ||w1|| = x0

2x0 −|v0|2 +2log y0
.

Since (y0,v0) ∈ C which is compact, we see from (4.2) that ||w1|| < 1 for suffi-
ciently large x0 and so in this case w1 ∈ BΩ

z0
(1).

Next, let w2 = (0,ε,0), where ε> 0. Another simple computation shows that

(4.3) ||w2|| = ε

2

(
y0 − e

(
|v0|2

2 −x0

)) .

Since (y0,v0) is confined to a compact set in R+×Rd−2 we see that for suffi-
ciently small ε and sufficiently large x0 that w2 ∈ BΩ

z0
(1).

Next, perform the Gram-Schmidt process on the set {v0} to obtain an or-
thonormal basis {v′0, . . .v′d−3} of Rd−2 and let wi =

(
0,0,

p
x0v′i−3

)
for 3 É i É d.

Another computation shows that

(4.4) ||w3|| =
√

2(x2
0 + x0 log y0)

2(x0 + log y0)−|v0|2
and

(4.5) ||wi|| =
p

x0√
2(x0 + log y0 − 1

2 |v0|2)

for 4É i É d. Again, since (y0,v0) is constrained to a compact set, we see that
for large values of x0 that wi ∈ BΩ

z0
(1) for 3É i É d.

We now see that for sufficiently large x0 that {(0,0,0),w1, . . . ,wd} ⊂ BΩ
z0

(1).
Let S be the simplex formed by taking the convex hull of this set. Since
BΩ

z0
(1) is the unit ball of a norm it is convex and thus contains the simplex,

S. The Lebesgue measure of S is easily computed as Cd,εxd/2
0 , where Cd,ε is

a constant depending only on d and ε

As a result we see that there is a compact set K ⊂D such that for z0 ∈D\K
there is a simplex in BΩ

z0
(1) of volume at least Cd,εxd/2

0 . Therefore

µΩ/Λ(H /Λ)=µΩ(D)=
∫

K

αd

µL(BΩ
z (1))

dµL(z)+
∫
D\K

αd

µL(BΩ
z (1))

dµL(z)

É
∫

K

αd

µL(BΩ
z (1))

dµL(z)+
∫
D\K

αd

Cd xd/2 dµL(z)<∞
�

Remark 4.2. If d = 2 and Ω = H2 then H /Λ is a finite area submanifold of
H2/Λ. Conversely, if d = 2 and Ω=B2 then H /Λ is an infinite area submani-
fold of B2/Λ (See [Mar12b]).
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5. CLASSIFICATION OF THE ENDS

This section is dedicated to understanding the ends of manifolds that arise
by bending. Specifically, we show that the ends of a properly convex mani-
fold obtained from bending a finite volume hyperbolic manifold along a finite
volume totally geodesic hypersurface are finitely covered by either a stan-
dard torus cusp or a bent torus cusp (Theorem 5.4). We close this section
by showing that the manifolds obtained by bending will always have finite
Busemann volume (Theorem 5.11). Recall that Mt = (Ωt,Γt) is the family of
properly convex projective structures obtained by bending M along Σ.

5.1. Classification of the ends. The goal of this subsection is to show that
each end of a manifold obtained by bending is (up to passing to a finite
sheeted cover) either a standard torus cusp or a bent torus cusp. We be-
gin by describing the topology of the ends of M as well as their intersection
with the totally geodesic hypersurface Σ.

We recall that a manifold without boundary M is topologically tame when
it is the interior of a compact manifold M. In that case, the union P of all
the conjugates of the fundamental groups of the connected components of the
boundary of M is called the family of the peripheral subgroups of M.

It is well known that finite volume hyperbolic manifolds are topologically
tame. We let {Ti}k

i=1 denote the boundary components of M, which we refer to
as cusp cross sections. Each of them is a flat (d−1)-manifold, i.e a manifold
that admit a metric with constant sectional curvature equal to zero, see the
first paragraph of 4.1.

Let T be one such cusp cross section and let Γ∞ be a fixed peripheral
subgroup for T, i.e. a fixed representative of the conjugacy class of π1(T) in
Γ= π1(M). After conjugating by an element of PSO(Qd) we can assume that
Γ∞ fixes ∞∈ ∂Hd.

Since Σ is also a finite volume hyperbolic manifold it is also tame and has
a finite set {D i}l

i=1, of cusp cross sections which are (d −2)-dimensional flat
manifolds. Suppose one of the cusp cross sections of Σ intersects T. Without
loss of generality assume that it is D1 and let ∆∞ be a fixed peripheral sub-
group for D1. By choosing ∆∞ appropriately we can assume that ∆∞ ⊂Γ∞.

It is possible for another cusp cross section, say D2, of Σ to intersect T.
Since Σ is embedded in M we see that D1 and D2 are parallel in the sense that
the universal covers of D1 and D2 are parallel hyperplanes in the universal
cover of T which is Rd−1 with the usual euclidean structure. Thus we see
that D1 and D2 are freely homotopic in M and thus have fundamental groups
which are conjugate in Γ (but not in ∆=π1(Σ)).

In order to understand the structure of the ends we first show that (up to
conjugacy) the group ρt(Γ∞) is highly constrained. Specifically, we show that
ρt(Γ∞) is virtually a lattice in one of the two (d−1)-dimensional abelian Lie
groups Pd or Bd.
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Specifically, if we let ΓTr∞ be the finite index subgroup consisting of para-
bolic translations of Γ∞ we show that a conjugate of ρt(ΓTr∞ ) is contained in
one of the aforementioned abelian Lie groups.

In the proof of Theorem 5.4 we encounter two additional Lie groups

(5.1) P ′
d =




1 a ut −a2+|u|2
2

1 0 −a
I u

1

 : a ∈R, u ∈Rd−2


and

(5.2) B′
d =




1 0 ut |u|2
2 + t

et 0 0
I u

1

 : t ∈R, u ∈Rd−2


Note that both P ′

d and B′
d contain P0

d−1 as a codimension 1 Lie subgroup.

Remark 5.1. We stress a difference between Pd and P ′
d. We recall that Pd

preserves the quadratic form Qd of signature (d,1) defined in 2.2. Further-
more, a simple computation shows that P ′

d also preserves a quadratic form
Q′

d defined on Rd+1, of signature (d−1,2) given by:

(5.3) − x2
2 + x2

3 + . . . x2
d −2x1xd+1

Recall that A is the affine patch corresponding to [e∗d+1]. If we look first
at the orbit of a point x in A under P ′

d in the inhomogeneous coordinates
obtained by setting xd+1 = 1, we get that the orbit of p = (p1, · · · , pd) ∈ A is
the (d−1)-quadric hypersurface

S = { x = (x1, · · · , xd) ∈A | − x2
2 + x2

3 + . . . x2
d −2x1 =Q′

d(p) }

This quadric hypersurface S is a hyperbolic paraboloid and hence its convex
hull in A is all of A .

Using the following two Lemmas we can rule out the possibility that ρt(ΓTr∞ )
is a lattice in either of these Lie groups by showing that neither of P ′

d nor B′
d

contains a lattice that preserves a convex domain.

Lemma 5.2. Let Λ be a lattice in P ′
d. If Ω is an open convex set then Ω con-

tains an affine line. Consequently, such a lattice does not preserve a properly
convex open subset of RPd.

Proof. Since Ω is open it must contain a point p ∈ A . For the present time
we will regard Ω as a subset of Sd. From (5.1) we see that each γ ∈ P ′

d is
determined by a pair (a,u) ∈ R×Rd−2, and we denote the corresponding ele-
ment γ(a,u). Since Λ is a lattice we can find a sequence (αn :=α(an,un))n∈N such
that the sequence (an)n∈N is bounded and (|un|)n∈N diverges to ∞. A simple
computation shows that (αn · p)n∈N converges to [e1], and so [e1] ∈ ∂Ω. On the
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other hand, we can also find a sequence of elements (βn := β(an,un))n∈N in Λ
such that (|un|)n∈N is bounded and (|an|)n∈N diverges to ∞. Again, it is easy
to see that (βn · p)n∈N converges to [−e1], and so [−e1] ∈ ∂Ω. By convexity, we
see that Ω must contain the entire affine line connecting [e1] and [−e1]. This
contradicts the fact that Ω is properly convex. �

Lemma 5.3. Let Λ be a lattice in B′
d. If Ω is an open convex set then Ω con-

tains an affine line. Consequently, such a lattice does not preserve a properly
convex open subset of RPd.

Proof. Again it is better to work in the projective sphere Sd. Since Ω is open
it contains a point p ∈ A à [ker e∗2]. From (5.2) we see that each γ ∈ B′

d is
determined by a pair (t,u) ∈ R×Rd−2, and we denote the corresponding ele-
ment γ(t,u). Since Λ is a lattice we can find a sequence (αn :=α(tn,un))n∈N such
that the sequence (tn)n∈N is bounded and (|un|)n∈N diverges to ∞. A simple
computation shows that (αn · p)n∈N converges to [e1], and so [e1] ∈ ∂Ω. On the
other hand, we can also find a sequence of elements (βn := β(tn,un))n∈N in Λ
such that (|un|)n∈N is bounded and (tn)n∈N diverges to −∞. Again, it is easy
to see that (βn · p)n∈N converges to [−e1], and so [−e1] ∈ ∂Ω. By convexity,
we see that Ω must contain the entire affine line connecting [e1] and [−e1].
Again this contradicts proper convexity of Ω. �

Theorem 5.4. Let (Mt)t∈R be the bending of M along Σ. Let Γ∞ be a periph-
eral subgroup of Γ. The holonomy ρt(Γ∞) is virtually a lattice in a conjugate
of Pd or Bd.

Proof. Let T be a cusp cross section of M. We begin by analysing the follow-
ing simple case. Suppose that no cusp cross section of Σ intersects T then
Γ∞ is contained in the fundamental group of a component of M àΣ thus by
construction ρt(Γ∞)= ρ0(Γ∞), and so ρt(ΓTr∞ ) is a lattice in Pd.

Next, suppose that the cusp cross section of Σ intersects T. Let ∆∞ and
Γ∞ be as before and let ∆Tr∞ be the subgroup of parabolic translations in ∆∞.
By construction of ρt, the group ρt(∆Tr∞ ) is a lattice of P0

d−1. Furthermore, the
quotient ΓTr∞ /∆Tr∞ ∼= Z. Let γ be any element of ΓTr∞ that projects to a gener-
ator, γ, in this cyclic quotient. The group P0

d−1 preserves a unique pencil of
hyperplanes C∗. Namely it preserves the pencil of hyperplanes correspond-
ing to the line in RPd∗ spanned by e∗2 and e∗d+1, and in fact P0

d−1 acts trivially
on this pencil. Since ΓTr∞ is abelian we get that ρt(γ) also preserves C∗.

The next lemma describes how the abelian Lie group in which ρt(ΓTr∞ ) is
contained depends only on the dynamics of ρt(γ) on C∗ and thus concludes
the proof. �

Lemma 5.5. The action of ρt(γ) on C∗ is orientation preserving and either
parabolic or hyperbolic. Furthermore, if the action of ρt(γ) is parabolic then
ρt(ΓTr∞ ) is conjugate to a lattice in Pd and if ρt(γ) is hyperbolic then ρt(ΓTr∞ ) is
conjugate to a lattice in Bd
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Proof. The matrix ρt(γ) commutes with every element of ∆Tr∞ and thus cen-
tralizes P0

d−1. Thus by Lemma 2.5 we see that

(5.4) ρt(γ)=


1 α vt z
0 β 0 δ

0 0 I v
0 0 0 1


We first show that the action of ρt(γ) on C∗ is non-trivial and orientation

preserving. The action of ρt(γ) on the universal cover Ωt of Ωt/Γt send every
lift of Σ to a different lift of Σ, each lift of Σ gives a point of C∗, hence the
action on C∗ is non-trivial. Moreover, from the action of ρt(γ) on the universal
cover Ωt, we see that the action of ρt(γ) on C∗ is topologically conjugated to
an increasing homeomorphism, thus the action of ρt(γ) on C∗ is orientation
preserving. Furthermore, the action of ρt(γ) on C∗ fixes [e∗d+1], and is thus
not elliptic. It remains to prove that if ρt(γ) is parabolic (resp. hyperbolic)
then ρt(ΓTr∞ ) is conjugate into Pd (resp. Bd).

The action of ρt(γ) on C∗ is given (in appropriate projective coordinates) by(
β δ

0 1

)
Since the action of ρt(γ) is orientation preserving we get that β> 0. Hence-

forth we will write β = eb and we see that the action of ρt(γ) is parabolic if
and only if b = 0.

Next, we assume that b = 0 and prove that ρt(γ) can be conjugated into Pd
by an element that centralizes P0

d−1. By assumption we have

ρt(γ)=


1 α vt z
0 1 0 δ

0 0 I v
0 0 0 1


Since the actions of ρt(γ) on both C∗ and on the unique P0

d−1-invariant line
C of RPd are non-trivial, we get that neither α or δ can be zero. Furthermore,
by conjugating by an element of the form

(5.5)


1 0 0 0
0 e 0 f
0 0 I 0
0 0 0 1


we can assume that α = ±δ and that z = (|v|2 ±α2)/2. Note that the element
in (5.5) centralizes P0

d−1 by Lemma 2.5
Thus this case will be complete if we can show that α = δ. Suppose for

contradiction that α = −δ, then we see that ρt(γ) ∈ P ′
d and thus ρt(ΓTr∞ ) is

a lattice in P ′
d. Thus by Lemma 5.2 we get that ρt(Γ) cannot preserve an

open properly convex set, which contradicts Theorem 3.1. We conclude that
ρt(γ) ∈ Pd and hence that ρt(ΓTr∞ ) is a lattice in Pd.
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Assume now that the action of ρt(γ) on C∗ is hyperbolic. We complete the
proof by showing that ρt(γ) is conjugate into Bd by an element normalizing
P0

d−1. Since the action of ρt(γ) is hyperbolic we can assume that

ρt(γ)=


1 α vt z
0 eb 0 δ

0 0 I v
0 0 0 1


such that b 6= 0. By replacing γ with its inverse we can assume without loss
of generality that b > 0. Furthermore, by conjugating by an element in the
normalizer of P0

d−1 of the form
e2 f 0 0
0 1 0 g
0 0 e · I 0
0 0 0 1


we can assume that α = δ = 0 and that z = 1/2 |v|2 ± b. The case where z =
1/2 |v|2 +b cannot occur, since if it did, ρt(ΓTr∞ ) would be conjugate to a lattice
in B′

d. This gives rise to a contradiction similar to that of the parabolic case,
thanks to Lemma 5.3. �

Remark 5.6. As we have seen ρt(ΓTr∞ ) preserves C∗ ∼= RP1 and this repre-
sentation descends to give an action of the cyclic group ΓTr∞ /∆Tr∞ on C∗. We
denote by ω∗

t the convex open subset of C∗ consisting of the hyperplanes of
C∗ that intersect Ωt. The set ω∗

t is a domain of discontinuity for the action of
the cyclic group ΓTr∞ /∆Tr∞ on C∗. If we identify R with RP1\{∞}, where ∞ is a
fixed point of ρt(γ) in C∗ then we can projectively identify ω∗

t with a subset of
R and ρt(γ) with a element of the affine group Aff(R). Hence we get an affine
structure on S1.

As a consequence of Lemma 5.5 we see that the holonomy of this affine
structure is either parabolic or hyperbolic, depending on how ρt(γ) acts on
C∗. In this way we can associate an affine structure on S1 to each cusp of M
and we see that whether or not this affine structure is euclidean determines
whether or not the cusp is standard.

5.2. Horoballs in manifolds arising from bending. In this section we
discuss some existence and configuration results that will be used to prove
that manifolds obtained by bending have finite volume. For t 6= 0 the domains
∂Ωt will not have strong regularity properties. For example, their boundaries
are never C 2. However, the following lemma shows that these domains can
be approximated by the horoballs introduced in section 4.1, which are smooth
almost everywhere.

Lemma 5.7. Let M be a finite volume hyperbolic manifold and let Σ be a finite
volume totally geodesic hypersurface. Let Mt =Ωt/Γt be a projective manifold
obtained by bending M along Σ. Let Γp be a peripheral subgroup of Γt. Then
there exist horoballs H int and H ext centered at a face sp ⊂ ∂Ωt such that:
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(1) H int and H ext are Γp-invariant.
(2) H int ⊂Ωt ⊂H ext and,

The face sp will be called the peripheral face of Γp.

Proof. By Theorem 5.4, we know that Γp contains a finite index normal sub-
group Γ′p that is conjugate to a lattice in either Pd or Bd, and we will hence-
forth assume that we have conjugated Γ′p into either Pd or Bd. The horoballs
H int and H ext that we construct will be epigraphs of the functions fc and
gc that we defined in section 4.1. Thus H int and H ext will easily seen to be
invariant under Γ′p and hence (1) is satisfied since Γ′p is a discrete normal
subgroup.

Let us first treat the case where Γ′p is a lattice in Pd. In this case Γp has a
unique fixed point sp and a unique invariant hyperplane p∗ that contains sp.
The point sp (resp. p∗) is an accumulation point of Γ′p-orbit of any point in Ωt
(resp. Ω∗

t ) and so sp ∈ ∂Ωt and p∗ ∈ ∂Ω∗
t . Thus p∗ corresponds to a supporting

hyperplane to Ωt at sp.
Let A be the affine patch defined by p∗. In these coordinates the points of

∂Ωt that are not contained in the kernel of p∗ or in any segment through p
can be realized as the graph of ht : Ut ⊂ Rd−1 → R, where Ut is a open convex
Γ′p-invariant subset of Rd−1 and ht is a continuous convex function (Here we
are identifying Rd−1 with the space of lines through sp that are not contained
in the kernel of p∗).

It is easy to see that the only open convex Γ′p-invariant subset of Rd−1 is
Rd−1 and so Ut =Rd−1. If we let f0 be the function defined in section 4.1 then
in order to find H int satisfying (2) we need to find a positive constant D such
that ht < f0 +D.

Let K ⊂Rd−1 be a compact fundamental domain for the affine action of Γ′p
on Rd−1 and choose D so that ht|K < f0|K +D. Suppose for contradiction that
there is a point u ∈ Ut such that ht(u) Ê f0(u)+D. By continuity of ht we
can find v ∈ Ut such that ht(v) = f0(v)+D. Furthermore, we can find γ ∈ Γ′p
such that γv ∈ K . As a result we get that γ · (ht(v),v) = γ · ( f0(v)+D,v). By
equivariance properties of ht and f0 we get that (ht(γv),γv)= ( f0(γv)+D,γv),
but this contradicts our choice of D. The existence of H ext follows from a
similar argument where we find a positive constant E such that f0 −E < ht.
This completes the proof of (2) in this case.

In the case where Γ′p is a lattice in Bd the group Γ′p now has 2 distinct fixed
points p+ and p−. Each of these points is an accumulation point of the Γ′p-
orbit of a point in Ωt and so both p+ and p− are contained in ∂Ωt. A similar
argument shows that the group Γ′p has two fixed points p∗

± ∈ ∂Ω∗
t . One of

these dual fixed points, say p∗+, corresponds to a supporting hyperplane for
Ωt and we let sp be the segment connecting p+ and p− that is contained in
∂Ωt.

Again we see that in the affine patch corresponding to p∗+ the points of ∂Ωt
that are not contained in the kernel of p∗ or in any segment containing p
can be realized as the graph of ht : Ut ⊂ Rd−1 → R, where Ut is a open convex
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Γ′p-invariant subset of Rd−1 and ht is a continuous convex function. Similar
to the previous case we see that the only open convex Γ′p-invariant subsets
of Rd−1 are R±×Rd−2, and so without loss of generality, we can asssume that
Ut =R+×Rd−2.

If we let g0 be the function defined in section 4.1 then we can again find
positive constants D and E such that f0 −E < ht < f0 +D, and thus we can
find horoballs H int and H ext satisfying (2) and (3).

�

Let H ⊂ Γ be a subgroup, and let X ⊂Ω be a subset, then we say that X
is (Γ,H)-precisely invariant or just precisely invariant if the groups are clear
from context whenever

• X is invariant under H
• If γ ∈Γ and γ · X ∩ X 6=∅ then γ ∈ H.

Precisely invariant subsets are useful since they correspond to (compo-
nents of) the universal cover of embedded submanifolds. More specifically if
X ⊂Ω is (Γ,H)-precisely invariant then X /H embeds in Ω/Γ.

Lemma 5.7 tells us that for each peripheral subgroup we can find a horoball
H int that is contained in Ωt. The next lemma shows that, in addition, we can
also arrange that these horoballs are precisely invariant with respect to the
corresponding peripheral subgroup.

Lemma 5.8. The horoballs, H int, constructed in Lemma 5.7 can be chosen to
be precisely invariant under the corresponding peripheral subgroup.

The following version of the Margulis lemma for properly convex domains
will be crucial in the proof of Lemma 5.8.

Lemma 5.9 (KMZ Lemma, [CLT15b, CM13]). In every dimension d, there
exists a positive constant ε such that for every properly convex open set Ω,
for every x ∈ Ω, for every discrete subgroup Γ of PGL(Ω), the subgroup Γε
generated by the elements γ ∈Γ such that dΩ(x,γ · x)< ε is virtually nilpotent.

Proof of Lemma 5.8. Let ε be the constant of Lemma 5.9. Let Γp be a periph-
eral subgroup of Γ. Assume that Γp gives rise to a bent cusp, the case for a
standard cusp can be treated similarly. Let H int be the horoball guaranteed
by Lemma 5.7, and let H ′

int be a slightly smaller horoball with the same cen-
ter. Since Γp is virtually a lattice in Bd that arises from bending it contains a
parabolic translation from P0

d−1 which we call γ. We claim that every point on
∂H ′

int is moved the same H int-Hilbert distance by γ. Let x, y ∈ ∂H ′
int. Since

Bd acts transitively on ∂H ′
int we can find δ ∈ Bd such that δy= x. Therefore

dH int (x,γx)= dH int (δy,γδy)= dH int (δy,δγy)= dH int (y,γy),

thus proving the claim.
Furthermore, since γ is parabolic, if z a point on the boundary of an even

smaller horoball then dH int (z,γz)< dH int (x,γx) and this distance can be made
arbitrarily close to zero by choosing the horoball to be sufficiently small.
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Thus, by shrinking H ′
int if necessary, we can assume that dH int (z,γz) < ε for

z ∈H ′
int. By the comparison property in Lemma 2.1 we see that dΩt (z,γz)< ε

for z ∈H ′
int

We claim that H ′
int is the desired precisely invariant horoball. By con-

struction H ′
int is Γp-invariant. Next, suppose that τ ∈ Γt and that τH ′

int ∩
H ′

int 6=∅. Let u ∈ τH ′
int ∩H ′

int, hence v = τ−1u ∈H ′
int. Observe that

dΩt (u,τγτ−1u)= dΩt (τ
−1u,γτ−1u)= dΩt (v,γv)< ε,

and so we see that τγτ−1 also moves u a distance less than ε. This implies
that the group 〈γ,τγτ−1〉 is virtually nilpotent. As an abstract group, Γt is
the fundamental group of a finite volume hyperbolic manifold, hence hyper-
bolic relatively to its peripheral subgroup. This implies that τ and γ have a
common fixed point for their action on the ideal boundary of Hd, and thus
τ ∈Γp. �

By combining the previous few results we get the following Corollary.

Corollary 5.10. If Mt = (Ωt,Γt) is a of properly convex projective structure
resulting from bending M along Σ then each end of Mt is either a standard or
bent cusp.

Proof. Each end of Mt gives rise to a conjugacy class of peripheral subgroups.
From Lemma 5.5 we know that every peripheral subgroup Γp ⊂ Γt is virtu-
ally a lattice in either Pd or Bd. Furthermore, from Lemma 5.7 we see that
for a Γp-invariant horoball H p ⊂Ωt. Finally, Lemma 5.8 ensures that we can
choose the H p to be (Γp,Γt)-precisely invariant. As a result we can find an in-
variant horoball in Ωt, and as a result the end corresponding to the conjugacy
class of Γp is projectively equivalent to H p/Γp. �

5.3. Volume of manifolds arising from bending. We close this section by
proving that the manifolds resulting from bending are always finite volume.

Theorem 5.11. Let M be a finite volume hyperbolic manifold and let Σ be
a finite volume totally geodesic hypersurface. Let (Mt =Ωt/Γt)t∈R be the pro-
jective manifolds obtained by bending M along Σ, then Mt is a finite volume
properly convex projective manifold.

Proof. Only the finite volume assertion remains to be proven. Since M is
topologically tame it has finitely many ends. Hence the set of peripheral sub-
groups of Γ is finite up to conjugation by Γ. In order to simplify the exposition
we assume that M has a single cusp. We first deal with the case where the
cusp is bent. Let Γp be a peripheral subgroup of Γ. By Lemmas 5.8 and 5.7
we can find a horoball H int that is (Γt,Γp)-precisely invariant under Γp and
centered at the peripheral face of Γp.

Thus we see that H int/Γp is an embedded submanifold of Ωt/Γt the clo-
sure of whose complement is compact. Thus the proof will be complete if we
can show that H int/Γp has finite Busemann volume. Since Γp is virtually a
lattice in Bd, we can find a finite index subgroup Γ′p which is a lattice in Bd.
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Furthermore, H int/Γ′p is a finite sheeted cover of H int/Γp, and so without loss
of generality we can assume that Γp =Γ′p and the proof will thus be complete
if we can show that H int/Γp is a finite volume submanifold of Ωt/Γt.

Let H ′ be a slightly larger precisely invariant horoball with the same cen-
ter as H int such that H int ⊂ H ′ ⊂Ωt. By Theorem 4.1 we see that H int/Γp
is a finite volume submanifold of H ′/Γp. By comparison properties 2.2 of the
Busemann volume this implies that H int/Γp is a finite volume submanifold
of Ωt/Γt.

In the case of a standard cusp, the argument is similar. We conclude by
remarking that the ellipsoid is the projective model of the hyperbolic space
and well-known estimates of volume in hyperbolic space gives the finiteness
of the volume of a standard cusp. �

6. GEOMETRY OF ENDS IN TERMS OF HOMOLOGY

This section discusses the relationship between the topology of the pair
(M,Σ) and the geometry of the ends of M after bending along Σ. The fact that
the geometry of the cusps is determined completely by topological information
is somewhat surprising in light of the previous observation that nature of the
structure on the cusp depends on a projective structure on S1 associated to
each end (see Remark 5.6).

Let T be a cusp cross section of M. Since T is a flat (d−1)-manifold, it is
finitely covered by a (d−1)-torus, T∗. Let (T∩Σ)∗ be the complete preimage of
T∩Σ in T∗ under the aforementioned covering. Concretely, (T∩Σ)∗ is a union
of parallel (d−2)-tori in T∗. The covering map provides each component with
an orientation and as a result we get a homology class [(T∩Σ)∗] ∈ Hd−2(T∗;Z).
The following theorem shows that this homology class characterizes the type
of the structure on the cusp corresponding to T.

Theorem 6.1. Let M be a finite volume hyperbolic d-manifold and let Σ be an
embedded totally geodesic hypersurface, and let (Mt =Ωt/Γt)t∈R be the family
of projective manifolds obtained by bending M along Σ. If T is a cusp cross
section of one of the cusps of M then for t 6= 0 the cusp corresponding to T in
Mt is a bent cusp if and only if the homology class [(T ∩Σ)∗] ∈ Hd−2(T∗;Z) is
non-trivial.

Proof. Let ρt be the holonomy representation for the projective structure re-
sulting from bending M along Σ and let Ωt = Dt(Hd) be the (properly convex)
image of the developing map for the aforementioned structure. If Σ∩T =∅
then it is clear that [(T ∩Σ)∗] = 0. We have previously seen that in this case
that the projective structure on the cusp corresponding to T remains stan-
dard. Thus we can assume that Σ intersects T.

Let Γ∞ be a peripheral subgroup for T, let ∆∞ be a peripheral subgroup for
one of the (parallel) cusp cross sections of Σ that intersect T, and let γ ∈ ΓTr∞
be an element whose image generates ΓTr∞ /∆Tr∞ . By Lemma 5.8 we can find
for each t a horoball H t ⊂Ωt that is (ρt(Γ),ρt(Γ∞))-precisely invariant. Let
H0 = D−1

t (H t) ⊂ Hd. It is easy to see that H0 is (Γ,Γ∞)-precisely invariant
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and it is not hard to see that H0 is a bounded distance from a (Γ,Γ∞)-precisely
invariant horoball. The cusp of M corresponding to T is a bent cusp if and
only if H t/ρt(ΓTr∞ ) is a bent cusp and so we turn our attention to this simpler
projective manifold.

There is a unique foliation of H0 by a pencil of hyperplanes on which the
action of ∆Tr∞ is trivial. We call this pencil C∗ and we see that C∗

t = Dt(C∗)
gives rise to a foliation of H t on which the action of ρt(∆Tr∞ ) is trivial.

As a result the developing map Dt : H0 →H t induces a map D t :R→R cor-
responding to collapsing the hyperplanes in C∗ and C∗

t to points. Concretely,
D t is the developing map for the affine structure on S1 mentioned in Remark
5.6. Each of these affine structures gives rise to a holonomy representation

ρt :Z∼=ΓTr
∞ /∆Tr

∞ →Aff(R).

We can regard γ ∈ ΓTr∞ as a curve in T∗ and by Poincaré duality we see
that [(T∩Σ)∗]= 0 if and only if the algebraic intersection of γ with (T∩Σ)∗ is
zero. Let {ti}k

i=1 be the set of components of (T ∩Σ)∗. When we project from
T∗ to S1 each ti projects to a signed point, (pi,εi), where pi in S1 and εi =±1
according to the algebraic intersection of the corresponding component with
γ. Let a be the number of signed points where εi = 1 and b be the number of
signed points where εi =−1. It is easy to see that [(T ∩Σ)∗] = 0 if and only if
a = b.

We now turn our attention to the developing map D t. When t = 0 the
developing map has image R. By conjugating by an element of Aff(R) we can
assume that ρ0(γ) is the translation x 7→ x+1. Each signed point (pi,εi) can
be lifted to a unique signed point in the interval [0,1] ⊂ R, which by abuse of
notation we also call (pi,εi). By renumbering, if necessary, we can assume
that pi < p j whenever i < j.

The developing map D t is obtained by successively modifying D0 in the
following way. Each pi divides R into two halves and D t is obtained post
composing the right half by the element of Aff(R) that fixes pi and whose
linear part is multiplication by et (resp. e−t) if εi = 1 (resp. εi =−1).

As we have seen, H t/ρt(ΓTr∞ ) is a bent cusp if and only if ρt(γ) is a hyper-
bolic element of Aff(R). This is equivalent to ρt(γ) being a similarity of R,
rather than an isometry.

Let δ > 0 be such that δ < p1. Under our previous identification we see
that the points 0 and δ are mapped by γ to 1 and 1+ δ, respectively. By
equivariance, we see that ρt(γ) must map D t(0) to D t(1) and D t(δ) to D t(1+δ).
By construction, 0 and δ are to the left of all the pi; and 1 and 1+δ are to
the right of all the pi. As a result we see that the distance between D t(0) and
D t(δ) is δ and the distance between D t(1) and D t(1+δ) is e(a−b)tδ. Thus we
see that ρt(γ) is an isometry if and only if a = b. �

Theorem 6.1 has the following immediate corollary
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Corollary 6.2. Under the hypotheses of Theorem 6.1; if Σ is separating then
each cusp M remains standard after bending along Σ. Consequently, the pro-
jective structures obtained by bending along Σ are all strictly convex.

Proof. If Σ is separating then [Σ] ∈ Hd−1(M;Z) is trivial and thus [T ∩Σ] ∈
Hd−2(T;Z) is trivial for any cusp cross section T. The proof is completed by
observing that [(T ∩Σ)∗] is just a multiple of the image of [T ∩Σ] under the
transfer homomorphism from Hd−2(T;Q) to Hd−2(T∗;Q). Strict convexity of
the resulting structures follows from [CLT15b, Thm 11.6]. �

7. EXAMPLES

In this section we discuss examples of properly convex manifolds that arise
from bending. The main results of this section are Theorem 7.3 and Theorem
7.1, which show that there are examples of both strictly convex and properly,
but not strictly convex finite volume manifolds in every dimension above 2.

7.1. A 3-manifold with both standard and bent cusps. We begin by de-
scribing a concrete 3-dimensional example. Let M be the complement in S3

of the Whitehead link. This manifold has two cusp cross sections T1 and T2
given by taking regular neighborhoods of the components C1 and C2 of the
link (see Figure 5). The manifold M also contains a totally geodesic pair of
pants S. This surface intersects T1 in a single curve and so [S∩T1] is a non
trivial homology class in H1(T1;Z). By Theorem 6.1 we see that when we
bend M along S the cusp corresponding to T1 becomes a bent cusp.

On the other hand, S intersects T2 in two parallel, but oppositely oriented
curves in T2 and so we see that [S∩T2] is a trivial class in H1(T2;Z) and so
Theorem 6.1 tells us that bending M along S results in the cusp correspond-
ing to T2 to remain standard.

FIGURE 5. The Whitehead link contains a totally geodesic
pair of pants
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7.2. Non-strictly convex Examples. Next, we show that for each dimen-
sion d Ê 3 there are properly convex manifolds with bent cusps. The precise
statement of the result is:

Theorem 7.1. For each d Ê 3 there exists a properly convex d-manifold M
such that M has finite volume and contains an end which is a bent cusp.

Proof. Let Γ̂ = PSO(Qd)∩PSLd+1(Z) and Λ̂ = PSO(Qd;d−1,1)∩ Γ̂. It is well
known (see [BHC62]) that M̂ :=Hd/Γ̂ is a non-compact finite volume orbifold
that contains a totally geodesic immersion of the non-compact finite volume
orbifold Σ̂ := Hd−1/Λ̂. By combining work of [Ber00] and [MRS13] we can
find finite index subgroups Γ É Γ̂ and Λ É Λ̂ such that M = Hd/Γ is a mani-
fold whose cusp cross sections are all (d−1)-dimensional tori that contains a
totally geodesic non-separating embedding of Σ=Hd−1/Λ.

Since Σ is non-compact there is a cusp cross section, T, of M that has non
trivial intersection with T. Since Σ is embedded we see that Σ∩T = tk

i=1ti,
where the ti are parallel (d−2)-dimensional tori embedded in T.

Suppose that k = 1. Then bending M along Σ will result in the cusp corre-
sponding to T becoming a bent cusp. If k > 1 and Σ is non-separating then
it is possible that bending T along the various component of Σ∩T will result
in cancellation, in which case the cusp will remain standard. However, we
claim that by passing to a finite sheeted cover of M we can always arrange
that k = 1. This can be seen as follows:

Let τi be the fundamental group of ti. Since each ti is contained in T we
see that the τi are all conjugate subgroups of Γ. However, since Σ is a totally
geodesic submanifold each subgroup τi corresponds to a distinct cusp cross
section of Σ and so the subgroups τi are pairwise non-conjugate subgroups of
Λ.

By construction, M is an arithmetic manifold and so Γ virtually retracts
onto Λ (see Theorem 1.4 and the comments at the end of §9 in [BHW11] for
details). That is to say there is a finite index subgroup Γ′ of Γ that contains
Λ and a homomorphism r : Γ′ →Λ that restricts to the identity on Λ. Since
ΛÉ Γ′ the embedding of Σ into M lifts to an embedding into M′ =Hd/Γ′. The
proof will be complete if we can show that the τi are pairwise non-conjugate
in Γ′. This is done in [MRS13], but the proof is short and so we include it
for the sake of completeness. Suppose for contradiction that two of these
subgroups, say τ1 and τ2, are conjugate in Γ′. Without loss of generality we
can assume that there exists γ ∈Γ′ such that γτ1γ

−1 = τ2. Since τ1 and τ2 are
both subgroups of Λ we see that

τ2 = r(τ2)= r(γτ1γ
−1)= r(γ)r(τ1)r(γ)−1 = r(γ)τ1r(γ)−1.

Thus the groups τ1 and τ2 are conjugate in Λ, which is a contradiction. �

An immediate corollary of Theorem 7.1 is the following, which provides a
partial answer to Question 3 in [Mar14a]

Corollary 7.2. In each dimension d Ê 3 there exist properly, but not strictly-
convex manifolds with finite volume.
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7.3. Strictly convex examples. In this subsection we show how to con-
struct examples for which bending gives rise to strictly convex projective
structures.

Theorem 7.3. For each d Ê 3 there exists a strictly convex d-manifold M =
Ω/Γ such that M has finite volume and Ω is strictly convex.

Proof. Our ultimate goal is to produce a finite volume hyperbolic d-manifold
that contains an embedded separating totally geodesic hypersurface. This
can be done as follows. Let Γ̂ = PSO(Qd)∩PSLd+1(Z). There is an obvious
embedding of the group PO(Qd−1) (i.e. the full isometry group hyperbolic (d−
1)-space) into the stabilizer of Hd−1

0 in PSO(Qd). Let PO(Qd;d−1,1) denote
its image and let Λ̂=PO(Qd;d−1,1)∩ Γ̂. It is easy to see that the orientable
hyperbolic d-orbifold M̂ := Hd/Γ̂ contains an immersed totally geodesic copy
of the non-orientalbe hyperbolic (d−1)-orbifold Σ̂ :=Hd−1/Λ̂.

By work of Long–Reid [LR01, §3] it is possible find finite sheeted covers M
of M̂ and Σ of Σ̂ as well as a totally geodesic embedding Σ ,→ M whose image
is separating. Technically, the results in [LR01] require M̂ and Σ̂ to be closed,
however a close examination of their proof reveals that the same argument
works in the case where M̂ and Σ̂ are finite volume. The result then follows
by applying Corollary 6.2 and Theorem 5.11. �

7.4. Proof of Theorem 1.1. We close this section by proving Theorem 1.1.
In order to do this we need a few preliminary results.

Lemma 7.4. Let Ωt be a properly convex domain obtained by bending M
along Σ. Then Ωt is irreducible.

Proof. Let Ω be one of the domains constructed using Theorem 7.1 or The-
orem 7.3, using a totally geodesic hypersurface Σ. By construction, those
groups contains the fundamental π1(MΣ) of one of the connected component
of M àΣ, but the group π1(MΣ) is changed during the bending by a conjuga-
tion, and the group π1(MΣ) acts strongly irreducibly on Rd+1 at time t = 0,
since its limit set is not included in an hyperplane of ∂Hd, so it acts strongly
irreducibly at any time. Hence, Γ acts strongly irreducibly on Rd+1. Thus Ω
is irreducible, since any decomposition of Ω as a non-trivial product would
imply the existence of a finite index non-irreducible subgroup of Γ. �

We now turn our attention to the proof of Theorem 1.3 which we will
need in order to prove that the domains Ω constructed by bending are non-
homogeneous. To complete the proof we use a Theorem of Benoist [Ben00].
In fact, we need a small improvement, given by Lemma 7.14 of [Mar14b].

Lemma 7.5. Let Γ be a strongly irreducible subgroup of PGLd+1(R) preserving
a properly convex open set. Let G be the connected component of the Zariski
closure of Γ. Suppose there exists a point x in the limit set, ΛG , of G and a
Zariski closed subgroup H of G such that the orbit H · x is a sub-manifold
of Pd of dimension at least d −1. Then G is conjugate to PSOd,1(R) or G =
PGLd+1(R).
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Proof of Theorem 1.3. In order to apply Lemma 7.5, we just need to set H to
be the Zariski closure of one of the peripheral subgroups of Γ. The group
Pd is Zariski closed, and so if the cusp is standard then by Theorem 5.4 we
can assume (after conjugating) that H = Pd. However, the group Bd is not
Zariski closed (since it contains entries with the transcendental function et).
Therefore, using a similar argument we find that H is d dimensional and
consists of matrices of the form

1 0 vt u
0 w 0 0
0 0 I v
0 0 0 1


where v ∈Rd−2, I is the (d−2)×(d−2) identity matrix, and u,w ∈R. Thanks

to the analysis of Section 4.1, we see that generically, the orbits of H contain
horospheres of the type introduced in 4.1, and hence these orbits is at least
dimension d−1. Moreover, for any x ∈RPd in the complement of a particular
hyperplane the H-orbit of x contains a horosphere. So, one can find a point of
ΛG whose H-orbit is at least of dimension d−1.

Thus, Lemma 7.5 shows that the Zariski-closure of Γ is either PSOd,1(R)
or G = PGLd+1(R). If t 6= 0 then it cannot be PSOd,1(R), since the matrix ct
(introduced in equation 2.6) does not normalize PSOd,1(R), for t 6= 0.

�

Finally, we prove that Ω is not homogeneous.

Lemma 7.6. For t 6= 0 the domains Ωt constructed by bending M along Σ are
non-homogeneous

Proof. In order to prove the result, we show that PGL(Ωt) is a discrete sub-
group of PGLd+1(R). The group Γt is Zariski-dense, so the group PGL(Ωt) is
also Zariski-dense.

First, we stress that a Zariski-dense subgroup, Λ, of an almost simple Lie
group, i.e. a Lie group with a simple Lie algebra, is either discrete or dense,
since the closure of Λ for the usual topology is normalized by Λ, and so nor-
malized by its Zariski-closure.

Now, the group PGL(Ωt) is not dense in PGLd+1(R) since it preserves the
convex Ωt. Hence, the group PGL(Ωt) is discrete. �

Remark 7.7. One consequence of the proof of Lemma 7.6 is that the index
of Γt in PGL(Ωt) is finite since the quotient of Ωt by both groups is of finite
volume.

Proof of Theorem 1.1. By Theorems 7.1 and 7.3 we can find examples of strictly
convex and non-strictly convex properly convex Ω via bending. By Theorem
5.11 we see that these Ω are quasi-divisible.

By Lemma 7.4 we see that these Ω are always irreducible. Finally, by
Lemma 7.6 we see that these Ω are always non-homogenous. �
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