
MA-SCHLENKER C -OCTAHEDRA IN THE 2-SPHERE
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Abstract. We present constructions inspired by the Ma-Schlenker example of [9] that
show the non-rigidity of spherical inversive distance circle packings. In contrast to the use
in [9] of an infinitesimally flexible Euclidean polyhedron, embeddings in de Sitter space,
and Pogorelov maps, our elementary constructions use only the inversive geometry of the
2-sphere.

Introduction

In [5], P. Bowers and K. Stephenson questioned whether inversive distance circle packings
of surfaces are uniquely determined by their underlying triangulation and the inversive
distances between the pairs of adjacent circles. Guo [7] confirmed the local rigidity of
inversive distance circle packings on closed orientable surfaces of non-negative genus, and
subsequently Luo [8] verified the global rigidity of these packings, answering the Bowers-
Stephenson question in the affirmative. Contrasted to this is the beautiful and surprising
example of Ma and Schlenker in [9] that provides a counterexample to uniqueness in the
spherical case. They produced pairs of packing radii that determine pairs of geodesic
triangulations and circle packings on the 2-sphere S2 realizing the same inversive distance
data, but for which there is no inversive transformation taking one of the circle patterns
to the other. This was doubly surprising as the famous Koebe-Andre’ev-Thurston Circle
Packing Theorem implies uniqueness of spherical packings up to inversive equivalence
whenever the edge labels are all in the unit interval—the case of tangent or overlapping
circle packings.

The ingredients of Ma and Schlenker’s example are Schönhardt’s twisted octahedron (an
infinitesimally flexible polyhedron in Euclidean space E3), embeddings in de Sitter space S31,
and special properties of the Pogorelov map between different geometries. In contrast, we
provide a construction of a large family of Ma-Schlenker-like examples using only inversive
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(a) Octahedral graph labeled
with the inversive distances
from Fig. 1b.

(b) A planar circle pattern re-
alizing the octahedral graph
in Fig. 1a.

(c) Two non-equivalent re-
alizations with inversive dis-
tance 37 on the outer edges.

Figure 1. A critical Ma-Schlenker circle octahedron and two non-inversive
equivalent nearby patterns with the same inversive distances on the graph.

geometry. In fact, we show how to construct many counterexamples to the uniqueness of
inversive distance circle packings in the 2-sphere.

Figure 1b pictures a planar configuration of six circles, three inner of a common radius
and three outer of a common radius. Edges between selected circle centers representing
inversive distance constraints are depicted by dashed gray lines. The edges have the in-
cidence relations of the 1-skeleton of an octahedron and by stereographic projection to
the 2-sphere S2 followed by an appropriate Möbius transformation, may be arranged so
that the labeled inversive distances are preserved, and so that connecting centers of ad-
jacent circles by great circle arcs cuts out an octahedral triangulation of S2. Figure 1a
depicts the underlying octahedral graph labeled with the inversive distances between the
adjacent circles from Fig. 1b, accurate to the nearest tenth. This determines a critical
Ma-Schlenker circle octahedron, an inversive distance circle packing of the 2-sphere with
the following property. By varying the three outer circles as pictured in Fig. 1c, one may
obtain infinitely many pairs of circle packings such that the two circle packings of a pair
are not inversive equivalent even though they have the same inversive distances labeling
corresponding edges. This was the first of many similar examples the authors constructed,
and the remainder of this paper develops the tools needed to construct such examples and
verify the claims of this paragraph.

Date : July 1, 2016.



MA-SCHLENKER C -OCTAHEDRA IN THE 2-SPHERE 3

1. Preliminaries from Circle Packing and Inversive Geometry

In this preliminary section, we recall and expand upon the basic facts about inversive dis-
tance, circle packings, and inversive geometry that are needed to describe and understand
our examples.

1.1. Inversive distance in the plane and the 2-sphere. Let C1 and C2 be distinct
circles in the complex plane C centered at the respective points p1 and p2, of respective
radii r1 and r2, and bounding the respective companion disks D1 and D2. The inversive
distance 〈C1,C2〉 between C1 and C2 is

(1.1) 〈C1,C2〉 =
|p1 − p2|

2 − r21 − r
2
2

2r1r2
.

We find it convenient to extend this to disk pairs by defining the inversive distance
〈D1,D2〉 between the disks D1 and D2 in exactly the same way, with 〈D1,D2〉 = 〈C1,C2〉.
The absolute inversive distance between distinct circles is the absolute value of the inver-
sive distance and is a Möbius invariant of the placement of two circles in the plane. This
means that there is a Möbius transformation of C taking one circle pair to another if and
only if the absolute inversive distances of the two pairs agree.1 The important geometric
facts that make the inversive distance useful in inversive geometry and circle packing are
as follows. When 〈C1,C2〉 > 1, D1 ∩ D2 = ∅ and 〈C1,C2〉 = cosh δ, where δ is the hy-
perbolic distance between the totally geodesic hyperbolic planes in the upper-half-space
model C × (0,∞) of H3 whose ideal boundaries are C1 and C2. When 〈C1,C2〉 = 1, D1

and D2 are tangent at their single point of intersection. When 1 > 〈C1,C2〉 > 0, D1 and
D2 overlap with angle 0 < θ 6 π/2 with 〈C1,C2〉 = cos θ. In particular, 〈C1,C2〉 = 0

precisely when θ = π/2. When 〈C1,C2〉 < 0, then D1 and D2 overlap by an angle greater
than π/2. This includes the case where one of D1 or D2 is contained in the other, this
when 〈C1,C2〉 6 −1. In fact, when 〈C1,C2〉 < −1 then 〈C1,C2〉 = − cosh δ where δ has the
same meaning as above, and when 〈C1,C2〉 = −1 then C1 and C2 are ‘internally’ tangent.
When −1 < 〈C1,C2〉 < 0, then the overlap angle of D1 and D2 satisfies π > θ > π/2 and
again 〈C1,C2〉 = cos θ.

1There is a similar statement for the inversive distance without the modifier absolute. Indeed, the
inversive distance is a Möbius invariant of the placement of two relatively oriented circles in the plane. See
Bowers-Hurdal [3].
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In the 2-sphere S2, the inversive distance may be expressed as2

(1.2) 〈C1,C2〉 =
− cos^(p1,p2) + cos(r1) cos(r2)

sin(r1) sin(r2)
.

Here, ^(p1,p2) denotes the spherical distance between the centers, p1 and p2, of the
respective circles3 C1 and C2 with respective spherical radii r1 and r2.4 Stereographic
projection to the plane C preserves the absolute inversive distance of circle pairs and, as
long as neither of the two companion disks D1 and D2 contains the north pole, it preserves
the inversive distance.

1.2. Edge-labeled triangulations of the 2-sphere and inversive distance circle
packings. Bowers and Stephenson originally introduced inversive distance circle packings
in [3] with inversive distances restricted to be non-negative. We will take this opportunity
to define packings with no restrictions on the inversive distance and offer some warnings of
the pitfalls of the more general setting. We are concerned here with configurations of circles
in the 2-sphere S2 with a specified pattern of inversive distances. Let K be an abstract
oriented triangulation of S2 and β : E(K)→ R a mapping defined on E(K), the set of edges
of K. Call K together with β an edge-labeled triangulation with edge label β and denote
it as Kβ. We denote an edge of K with vertices u and v by uv, and an oriented face with
vertices u, v, and w ordered respecting the orientation of K by uvw. We define two types
of circle configurations that realize the inversive distance data encoded in an edge-labeled
triangulation.

Definition. A circle realization for Kβ is a collection C = {Cv : v ∈ V(K)} of circles
in either the plane C or the 2-sphere S2 indexed by the vertex set V(K) of K such that
〈Cu,Cv〉 = β(uv) whenever uv is an edge of K. When uv is an edge of K, the corresponding
circles Cu and Cv are said to be adjacent.

A circle packing for Kβ is a circle realization in the 2-sphere where the circles are placed in
a way that the circles Cu, Cv, and Cw form a positively oriented triple in S2 whenever uvw

2In both Luo [8] and Ma-Schlenker [9] there is a typo in the expression for the spherical formula for
inversive distance. They report the negative of this formula. A quick 2nd order Taylor approximation
shows that this formula reduces to Expression 1.1 in the limit as the arguments of the sines and cosines
approach zero.

3Any circle in S2 bounds two distinct disks. Without explicitly stating so, we always assume that one
of these has been chosen as a companion disk. The center and radius of a circle in S2 are the center and
radius of its companion disk. The ambiguity should cause no confusion.

4It is in no way obvious that Formulæ 1.1 and 1.2 are Möbius invariants of circle pairs. There is a
not so well-known development of inversive distance, which applies equally in spherical, Euclidean, and
hyperbolic geometry, that uses the cross-ratio of the four points of intersection of C1 and C2 with a common
orthogonal circle. It is computationally less friendly than 1.1 and 1.2, but has the theoretical advantage of
being manifestly Möbius-invariant. See [3].
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is a positively oriented face of K. This general definition allows for behavior, for example
branch structures, that we wish to avoid. Moreover, this general definition involves some
subtleties that arise from the analytic fact that there is no Möbius-invariant metric on
the 2-sphere, and from the topological fact that a simple closed curve in the 2-sphere
fails to have a well-defined inside as it has two complementary domains, both of which
are topological disks. For one example of these subtleties, centers and radii of circles are
not well-defined in inversive geometry so that two circle realizations for Kβ may have
differing properties, say with one forming a triangulation of S2 by connecting adjacent
centers along great circular arcs and the other not, even though one is the Möbius image of
the other; see [2] for enlightening discussion and examples.5 We choose a more restrictive
definition that conforms to the construction of circle packings by the use of polyhedral
metrics, a construction we review below and that is used by Ma and Schlenker in their
construction. In particular, our interest is in circle packings that produce isomorphic copies
of the triangulation K by connecting the centers of adjacent circles by geodesic segments.
In this paper then, circle packing means the following.

Definition. An inversive distance circle packing, or simply a circle packing, for Kβ is
a collection C = {Cv : v ∈ V(K)} of circles in S2 with four properties:

(i) C is a circle realization for Kβ;

(ii) when uv is an edge of K, the centers of Cu and Cv are not antipodal;6

(iii) when uvw is a face of K, the centers of Cu, Cv, and Cw do not lie on a great circle
of S2;

(iv) joining all the pairs of centers of adjacent circles Cu and Cv by geodesic segments
of S2 produces a triangulation of S2, necessarily isomorphic with K.

These conditions imply that when uvw is a face of K, the centers of Cu, Cv, and Cw
do not lie on a common geodesic, and for two distinct faces of K, the interiors of the
corresponding geodesic triangles determined by C have empty intersection.7 To reiterate
the warning stated in the preceding paragraph, under this restricted definition of circle
packing, the Möbius image of a circle packing need not be a circle packing.

5This behavior does not occur for the traditional tangency and overlapping packings.
6Though (iii) implies (ii), we opt to state (ii) explicitly, for emphasis.
7All of this generalizes in a straightforward way to triangulations of arbitrary constant curvature surfaces,

closed or not, but our concern will be with the 2-sphere. Also, we have described here the univalent circle
packings, so this discussion can be generalized to packings that are only locally univalent and even to ones
with branch vertices. See [11] and [4].
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Figure 2. An edge-segregated inversive-distance packing that is not glob-
ally segregated. The overlap angle for the two shaded circles is greater than
π/2, but there is no edge between them.

When C is a circle packing for Kβ, the set of radii rv of the circles Cv ∈ C is a set of packing
radii for Kβ. Two circle packings C and C ′ for Kβ are inversive equivalent if there is an
inversive transformation T ∈ Inv(S2) for which T(Cv) = C ′

v for each vertex v. Here of course
Inv(S2) is the group of inversive transformations of the 2-sphere generated by inversions
through the circles of S2. The packings are Möbius equivalent if T can be chosen to be a
Möbius transformation, an element of Möb(S2), the Möbius group of the 2-sphere generated
by even numbers of compositions of inversions. The corresponding sets of packing radii,
{rv : v ∈ V(K)} and {r ′v : v ∈ V(K)}, are said to be inversive equivalent provided C and
C ′ are inversive equivalent. The question of uniqueness of packings or of packing radii for
Kβ is always up to inversive equivalence of packings or packing radii, and our interest is in
constructing pairs of circle packings for the same edge-labeled triangulation that are not
inversive equivalent.

Circle packings traditionally have been studied when adjacent circles overlap non-trivially,
and with angles of overlap at most π/2; i.e., when β takes values in the unit interval [0, 1].8

This is because of various geometric, computational, and theoretical difficulties associated
to overlaps greater than π/2. The Koebe-Andre’ev-Thurston Circle Packing Theorem
applies only to these, as do many of the known existence and uniqueness results.9 The
Bowers-Stephenson question of the uniqueness of inversive distance circle packings was

8But see Rivin [10].
9In fact, the global rigidity result of Luo [8] proving uniqueness for packing radii on closed parabolic and

hyperbolic surfaces holds only with the assumption of overlaps of at most π/2. The authors in [2] study
the rigidity of circle frameworks, which are more general collections of circles than are circle realizations
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asked for packings, still with overlaps at most π/2, but where adjacent circles may be
separated, when β may take values greater than unity. This motivates the following
definitions. A collection of circles in the plane or the sphere is said to be segregated
provided the corresponding collection of companion disks bounded by the circles pairwise
overlap by no more than π/2. A circle realization or packing C for Kβ is said to be edge-
segregated if the companion disks of any two adjacent circles overlap by at most π/2,
i.e., if β takes on only non-negative values. A segregated circle packing obviously is edge-
segregated, but an edge-segregated circle packing need not be segregated; see fig. 2. A
circle packing that is not edge-segregated is said to have deep overlaps at the adjacent
circle pairs where β is negative. Finally, a collection of circles is separated provided the
corresponding collection of companion disks are pairwise disjoint, and a circle realization
or packing is edge-separated if β only takes values greater than unity so that adjacent
circles are separated.

The Koebe-Andre’ev-Thurston Circle Packing Theorem is the fundamental existence and
uniqueness result for circle packings for which the image of β is contained in the unit
interval. There are no good results on the existence of general circle packings, edge-
segregated or not, when β takes values outside the unit interval [0, 1]. The Guo, Luo,
and Ma-Schlenker results already referenced are the current state of the art in uniqueness
results for edge-segregated circle packings. The reference [2] makes some observations on
rigidity for general circle realizations and packings, where β is completely unrestricted,
and shows the non-uniqueness of packing radii for general packings of arbitrary surfaces
as well as the non-rigidity of segregated realizations.

An alternate way to describe circle packings in the 2-sphere with prescribed inversive
distances is through the constructive use of spherical polyhedral surfaces. Let ` : E(K) →
(0,∞) be a map that satisfies the strict triangle inequality for the edges of any face uvw,
meaning that

(1.3) `(uw) < `(uv) + `(vw).

If in addition

(1.4) `(uv) + `(vw) + `(wu) < 2π

for each face uvw, we call ` a spherical length function for K. Associated to a triangulation
K and a spherical length function ` is the spherical polyhedral surface S = S(K, `) obtained
by gluing together in the pattern of K spherical triangles whose side lengths are given by `.
Each edge uv of K is identified metrically as a Euclidean segment of length `(uv) and each
face uvw of K is identified metrically with a spherical triangle in S2 whose side-lengths are

and packings, with no bounds on the overlaps of the companion disks. There we show that the Luo rigidity
results fail to hold when circle packings with overlaps greater than π/2 are allowed.
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`(uv), `(vw), and `(wu). The surface S(K, `) topologically is a 2-sphere with a singular
Riemannian metric of constant curvature +1. Any singularities occur at the vertices of
K, and this only when the angle sum of the spherical triangles that meet at the vertex is
other than 2π.

Associated to any circle packing C of an edge-labeled triangulation Kβ is an obvious spher-
ical length function ` defined by letting `(uv) be the spherical distance in S2 between the
centers of adjacent circles Cu and Cv. The corresponding spherical polyhedral surface
S(K, `) then is isometric with S2. Now this spherical length function ` can be described
completely in terms of the edge label β and the set of packing radii {rv : v ∈ V(K)} using
Formula 1.2. This hints at a possible approach to finding inversive distance circle packings
for a given edge-labeled triangulation Kβ. Starting with Kβ and a set of positive numbers
0 < rv < π for v ∈ V(K), define the function ` : E(K)→ (0,∞) by

(1.5) `(uv) = cos−1 (cos ru cos rv − β(uv) sin ru sin rv) ,

provided that | cos ru cos rv − β(uv) sin ru sin rv| < 1 for all edges uv of K. If the proposed
packing radii rv are chosen so that ` exists and satisfies Inequalities 1.3 and 1.4 for each
face uvw, then ` is a spherical length function for K and the spherical polyhedral surface
S(K, `) supports a collection of metric circles C = {Cv : v ∈ V(K)}, where Cv is centered at
the vertex v with radius rv. Though S(k, `) is singular for typical proposed packing radii,
the idea is to vary the proposed radii rv in the hopes of finding a set that removes all the
singularities. When this occurs, the surface S(K, `) is isometric to the standard 2-sphere
and the collection C is a circle packing for Kβ, with 〈Cu,Cv〉 = β(uv) for every edge uv of
K. Of course there are a lot of ‘ifs’ here, and many edge-labeled triangulations will not have
any circle packings. The general existence question is quite intricate and is not pursued
here as our interest is rigidity.

1.3. Möbius flows. The most important ingredients from inversive geometry needed to
construct our examples are the Möbius flows associated to two distinct circles in the ex-
tended complex plane. Here are the pertinent facts. Circles C1 6= C2 lie in a unique coaxial
family AC1,C2

of circles in the extended complex plane Ĉ whose elements serve as the flow
lines of certain 1-parameter subgroups of the Möbius group Möb(Ĉ) ∼= PSL(2,C) acting
on the extended plane as linear fractional transformations. The family AC1,C2

is invariant
under these flows. When C1 and C2 are disjoint, any such flow is an elliptic flow conjugate
in Möb(Ĉ) to a standard rotation flow of the form t 7→ Rλt, where λ 6= 0 and Rλt is the
rotation z 7→ eλitz. When C1 and C2 meet in a single point p, the flow is parabolic and is
conjugate in Möb(Ĉ) to a standard translation flow of the form t 7→ Tλt, where λ 6= 0 and
Tλt is the translation z 7→ z + λt. Finally, when C1 and C2 meet in two distinct points a
and b, the flow is hyperbolic and is conjugate in Möb(Ĉ) to a standard scaling flow of the
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form t 7→ Sλt, where λ 6= 0 and Sλt is the scaling map z 7→ eλtz. All the flows determined
by two fixed circles C1 and C2 are said to be equivalent flows, with two such flows differing
only in the value of the parameter λ, with |λ| the speed of the flow. Note that any two
distinct circles in the coaxial family AC1,C2

determine the same Möbius flows as C1 and
C2. Of course, any Möbius flow preserves the inversive distances between circles.

Each coaxial family A has an associated orthogonal complement A⊥, this also a coaxial
family for which each circle of A is orthogonal to each circle of A⊥. In fact, A⊥ is exactly
the collection of circles (and lines) that are orthogonal to every member of A, and of course
A⊥⊥ = A. Any flow whose flow lines are the circles of A is generated by inversions through
the circles of the orthogonal complement A⊥. Other than the three standard cases of a
family of concentric circles (flow lines of a standard rotation flow), of parallel lines (flow
lines of a standard translation flow), and of a pencil of lines through a fixed point (flow lines
of a standard scaling flow), each coaxial family A in the plane has a unique line (rather
than circle) among its members, this called the radical axis of A. The centers of all the
circles of A lie on a common line, the line of centers of A. Beautifully, the radical axis of
A is the line of centers of A⊥, and vice-versa. An important property of the pair {A,A⊥} in
the plane is that every circle C centered on the radical axis of A and orthogonal to a single
member of A other than its radical axis is orthogonal to every member of A, which in turn
implies that C ∈ A⊥. This is just a special case of the fact that any circle orthogonal to
both C1 and C2 is necessarily a member of the orthogonal complement A⊥

C1,C2
.10

2. Ma-Schlenker c-Octahedra—the Examples writ Large

In this section we detail examples of pairs of spherical circle packings for a fixed edge-labeled
triangulation that fail to be inversive equivalent. These were discovered by studying the
properties of the first family of such examples constructed by Ma and Schlenker in [9] using
fairly sophisticated geometric constructions. Ours are constructed using Möbius flows and,
having properties reminiscent of the Ma-Schlenker examples, will be named after them.
This section presents a general construction of such examples and describes their important
properties, and the next verifies the claimed properties.

Let O be the octahedral triangulation of the 2-sphere with six vertices, each of valence four,
twelve edges, and eight faces, and combinatorially equivalent to the boundary of a regular
octahedron. The 1-skeleton graph of O is shown embedded in the plane in Fig. 1a.

Definition. The edge-labeled triangulation Oβ is called a Ma-Schlenker octahedron pro-
vided β takes a constant value a > 0 on the edges of a fixed face uvw, a constant value

10For a nice treatment of coaxial families in the plane, see [6], and for a broader treatment that develops
both an intrinsic and extrinsic version for the 2-sphere, see [1].
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Figure 3. The typical Ma-Schlenker octahedron O(a,b, c,d).

d > 0 on the edges of its opposite face w ′v ′u ′, and alternates between the values b > 0

and c > 0 on the ‘teepee’ of edges connecting the vertices of these two opposite faces, as
in fig. 3. When we need to emphasize the values of a, b, c, and d, we denote Oβ as
O(a,b, c,d).

Definition. A circle packing for a Ma-Schlenker octahedron is called a Ma-Schlenker
circle-octahedron, or a Ma-Schlenker c-octahedron for short. A pair of circle packings, C
and C ′, for the same Ma-Schlenker octahedron Oβ is called a Ma-Schlenker pair provided
C and C ′ are not inversive equivalent.

2.1. The construction. We now describe a method for constructing Ma-Schlenker pairs.
It begins with a construction of a 1-parameter family of planar circle realizations of Ma-
Schlenker octahedra O(a,b, c,d(t)) where a, b, and c are fixed while d = d(t) varies.
Figure 4 presents a graphical description of this construction in a special case. Fix a
non-negative number a and choose three circles Cu, Cv, and Cw in the complex plane
that are centered at the respective vertices of an equilateral triangle ∆ so that 〈Cu,Cv〉 =
〈Cv,Cw〉 = 〈Cw,Cu〉 = a. Normalize by insisting that ∆ have side length 2 with circle
Cu centered on z = −1, Cv centered on z = 1, and Cw centered on z = i

√
3, placing the

incenter of ∆ at z = i/
√
3. Let A = ACu,Cv be the coaxial family containing Cu and Cv

and note that the line of centers of A is the real axis R and the radical axis of A is the
imaginary axis Ri. Choose an initial circle C centered on the positive real axis such that
c = 〈Cv,C〉 > 0 and let b = 〈Cu,C〉. Note that b > c. Let µ = {µt : t ∈ R} be the
unit speed Möbius flow determined by A that is counterclockwise on the circle Cv, and
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(a) Start with three circles of equal radii cen-
tered at the vertices of an equilateral triangle.
Extend rays in order around the edges.

(b) Take three circles of equal radii at a fixed
distance along each ray to form the outer face.

(c) Flow the outer circles symmetrically until
the inversive distance reaches a minimum value.
This is the critical circle realization.

(d) Flow to find a pair of circle realizations
(solid and dashed) near the critical packing that
have equal inversive distances on the outer face.
These are not Möbius equivalent.

Figure 4. The construction for a particular Ma-Schlenker pair.
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(a) Hyperbolic (0 6 a < 1) (b) Parabolic (a = 1) (c) Elliptic (a > 1)

Figure 5. Möbius flows from the construction. The smaller gray circle is
A1 and the larger is A2.

let 1 < x1 < x2 be the points of intersection of C with the real axis. Let A1,A2 ∈ A

be the circles in the family A containing x1 and x2, respectively. For any real number t,
µt(C) is a circle tangent to both A1 and A2 and sits between them, external to the disk
bounded by A1 and internal to the disk bounded by A2. See fig. 5 for illustrations of the
family {µt(C) : t ∈ R} when the flow is hyperbolic (0 6 a < 1), parabolic (a = 1), and
elliptic (a > 1). Since the flow µ preserves the individual circles of the coaxial system A,
〈Cu,µt(C)〉 = b and 〈Cv,µt(C)〉 = c for all t ∈ R.

Let r be the counterclockwise rotation of the plane C through angle 2π/3 with fixed
point i/

√
3, the incenter of the triangle ∆. The circle configuration C(t) is defined as

the collection

(2.1) C(t) = {Cu,Cv,Cw,Cw ′(t) = µt(C),Cu ′(t) = r(µt(C)),Cv ′(t) = r2(µt(C))}.

The properties of C(t) of interest to us are, first, for all t ∈ R the configuration C(t) of
circles in the plane is a circle realization for the Ma-Schlenker octahedron O(a,b, c,d(t)),
where

(2.2) d(t) = 〈µt(C), r(µt(C))〉,

and second, for all t ∈ R, C(t) has order three rotational symmetry about the incenter
of ∆ via the rotation r. Stereographic projection of C(t) to S2 defines a 1-parameter
family of circle realizations for O(a,b, c,d(t)) in the 2-sphere, though these are not á
priori circle packings. These realizations possibly must be repositioned to a normalized
position by applying Möbius transformations of S2 to find appropriate intervals of t-values
that produce the desired circle packings.
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Figure 6. The center of the critical circle must fall within the shaded region.

Our goal is to find values of the inversive distance parameters a > 1/2 and b > c > 0

so that the function d(t) has a critical value at a parameter value t = τ, with d(τ)
a local minimum for d, and for which the circle µτ(C) is centered in the interior of
the closed half-plane H containing z = 1, the center of Cv, and bordered by the line
through z = −1, the center of Cu, and the incenter of ∆; see fig. 6. Moreover, µτ(C)
should have positive inversive distance to the unique circle O orthogonal to Cu, Cv,
and Cw. The circle O exists since a > 1/2. The claim is that with these conditions
satisfied, Ma-Schlenker pairs may be produced.

To see this, let O ′ be the unique circle orthogonal to Cu ′(τ), Cv ′(τ), and Cw ′(τ), which
exists since d(τ) > 1/2.11 By the order three rotational symmetry of C(t), O and O ′

are concentric, both centered at i/
√
3. Let C̃(t) be the image of C(t) under stereographic

projection to the 2-sphere followed by a Möbius transformation so that (1) the respective
images of the circles O and O ′ are latitudinal circles, the first centered on the south pole
and contained in the southern hemisphere, and the second on the north pole and contained
in the northern hemisphere, and (2) the circles L and L ′ have the same radius, L centered
on the south pole and L ′ on the north, where L is the latitudinal circle containing the
centers of the projections of Cu, Cv, and Cw, and L ′ is the latitudinal circle containing
the centers of the projections of Cu ′(τ), Cv ′(τ), and Cw ′(τ). Note that the order three
rotational symmetry of C(t) translates to an order three rotational symmetry of C̃(t) by a
rotation of S2 about the axis through the north and south poles.

11By an application of Equation 3.14.
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Our claim is that there is an open interval J of t-values containing τ for which each C̃(t),
for t ∈ J, is a circle packing. Since then the Ma-Schlenker c-octahedron C̃(τ) provides a
minimum value for d(t), variation of t about τ produces (possibly with further restrictions
on a, b, and c) pairs t < τ and t ′ > τ in J for which C̃(t) and C̃(t ′) form a Ma-Schlenker
pair, two circle packings for O(a,b, c,d), where d = d(t) = d(t ′), that fail to be inversive
equivalent.

Definition. The circle realization C(τ) is said to be critical, the circle packing C̃(τ) is
a critical Ma-Schlenker c-octahedron, and the corresponding edge-labeled triangulation
O(a,b, c,d(τ)) is a critical Ma-Schlenker octahedron. See fig. 7 for a 3D visualization
of a critical Ma-Schlenker c-octahedron.

The claim of the preceding paragraph, that there is an open interval J of t-values containing
τ for which each C̃(t), for t ∈ J, is a circle packing follows from the fact that the circle
µτ(C) is centered in the interior of the closed half-plane H. The point is that three points
u, v, and w equally spaced on L and u ′, v ′ and w ′ equally spaced on L ′ with u and w ′ on
the same meridian, v and u ′ on the same meridian, and w and v ′ on the same meridian,
cut out an octahedral triangulation of S2 when points are connected according to the Ma-
Schlenker octahedral pattern. Assuming the points are ordered counterclockwise when
viewed from the north pole, if now the points along L ′ are rotated counterclockwise by an
angle strictly between 0 and π, then this triangulation “stretches” to form a triangulation
with vertices u, v, and w, and the rotated u ′, v ′, and w ′. It is only when the rotation
reaches π radians that there is ambiguity as then u and w ′ are antipodal, and then as w ′

is rotated past π radians, the geodesic arc connecting u to w ′ moves to the other side of
the north pole, and the triangle uvw ′ now contains the north pole, as do vwu ′ and wuv ′.
At this point we have lost the triangulation. The point of the half-plane is that the center
of µτ(C) in the interior of H guarantees that the position of w ′ is obtained in this manner
by a positive counterclockwise rotation strictly less than π.

We have used the restriction a > 1/2 to ensure the existence of a circle mutually orthogo-
nal to the three circles Cu, Cv, and Cw. This in turn is used to ensure that stereographic
projection followed by an appropriate Möbius transformation produces, not just a real-
ization, but a circle packing for a Ma-Schlenker octahedron. This is done for cenvenience
of argument and we mention that even if a 6 1/2, when there is no mutually orthogonal
circle to Cu, Cv, and Cw, Ma-Schlenker circle packings are still possible.
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(a) A view from the south pole. (b) A view from the north pole.

(c) A view from slightly north of the equator. (d) A slight rotation from Fig. 7c.

Figure 7. A 3D visualization of a critical Ma-Schlenker octahedron show-
ing the triangulation.
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(a) Parabolic flow.
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(b) Graph of the inversive distance function d(t).

Figure 8. A parabolic flow. The parameters are x1 = 1.7, x2 = 3. The
highlighted minimum and (local) maximum occur at τ = tmin = 0.121766

(orange) and m = tmax = 0.866025 (green), and the inversive distances are
d(tmin) = 18.6065 and d(tmax) = 28.051. (Computed values are rounded.)

3. Ma-Schlenker c-Octahedra—the Devil of the Details

figs. 8 to 10 show examples of the graphs of d(t) for various values of a and choices of
initial circle C. The Ma-Schlenker pairs arise from pairs t and t ′ near τ and at the same
horizontal level on the graph of d(t). A precise description of the derivation of these graphs
is given subsequently, after we make some observations.

3.1. The parabolic case. Here a = 1, the circles Cu, Cv and Cw are mutually tangent,
and the flow is parabolic. An example is shown in Fig. 8a, where the initial circle C meets
the real axis at x1 = 1.7 and x2 = 3, with b = 〈Cu,C〉 = 7.538 and c = 〈Cv,C〉 = 0.308.
The three circles Cu, Cv and Cw are the dotted circles. The critical circle C(τ), in orange,
gives a minimum value for d(t) and is centered in the half-plane H. The graph of d(t)
is shown in Fig. 8b, whose shape is typical of all the examples with a = 1. The general
characteristics of the parabolic flow are the same as for the hyperbolic, which is described
in detail in the next paragraph.

3.2. The hyperbolic case. Here 1/2 < a 6 1 and the pairs of circles among Cu, Cv, and
Cw meet at angle π/3 > θ = cos−1 a > 0. The center of the unique circle O orthogonal
to Cu, Cv and Cw is the incenter i/

√
3 of ∆, and lies in the bounded interstice formed
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(a) Hyperbolic flow. (b) Detail of the
dotted box.
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20

40

60

80

(c) Graph of the inversive dis-
tance.

Figure 9. Hyperbolic flow. The parameters are x1 = 2.11803, x2 =

4.06155, and y = 0.5. The highlighted minimum (orange) occurs at τ =

tmin = 0.06782 and the local maximum (green) at m = tmax = 1.31696.
The inversive distances are d(tmin) = 14.1647 and d(tmax) = 46.8136.

by Cu, Cv and Cw. As t → ±∞, the inversive distance parameter d(t) → +∞. The
absolute minimum value of d(t) occurs at two distinct t-values 0 < τ < τ ′, which implies
that both circles, C(τ) = µτ(C) and C(τ ′) = µτ ′(C), are centered in the first quadrant
of the complex plane. Between these lies a parameter value m at which d(t) obtains a
local maximum. The circle C(m) = µm(C) is orthogonal to O and inversion IO through
the circle O preserves C(m) and exchanges circles C(τ) and C(τ ′). The center of C(τ)
lies outside of O, and that of C(τ ′) inside. More generally, the inversion IO generates a
symmetry of the graph in the following way. Since O is in the orthogonal complement
A⊥
Cu,Cv

, the inversion IO preserves the family A = ACu,Cv , merely inverting each circle
of A to itself. In particular, since A1 and A2 are members of A and form the envelope of
the family B = {µt(C) : t ∈ R} of circles generated by the Möbius flow µ, IO(A1) = A1

and IO(A2) = A2 form the envelope of the circles of the family IO(B), implying that IO
preserves the family B. It follows that IO generates an involution of R. Indeed, for each
t ∈ R, let t ′ be the real value for which µt ′(C) = IO(µt(C)). Then t ′′ = t with fixed point
m = m ′. This generates a symmetry of the graph of d(t) with d(t) = d(t ′) since

d(t) = 〈µt(C), r(µt(C))〉 = 〈IO(µt(C)), IO(r(µt(C)))〉
= 〈IO(µt(C)), r(IO(µt(C)))〉 = 〈µt ′(C), r(µt ′(C))〉 = d(t ′),

since the inversion IO commutes with the rotation r, as both are centered at i/
√
3.



18 JOHN C. BOWERS AND PHILIP L. BOWERS

(a) Elliptic flow. (b) Detail of the
dotted box.
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(c) Graph of the inversive distance,
which is periodic of period 2π.

Figure 10. An elliptic flow. The parameters are x1 = 2, x2 = 6, and y =

0.5. The highlighted minimum (orange) occurs at τ = tmin = 0.0506, the
local maximum (blue) at m = t

(1)
max = 0.7137, and the absolute maximum

(green) at M = t
(2)
max = 3.85532. The inversive distances are d(tmin) =

5.000, d(t(1)max) = 10.4245, and d(t(2)max) = 391.247.

fig. 9 presents an example where a = 0.6 with the angle θ of intersection of Cu and Cv
equal to 2 tan−1(1/2) ∼= 0.9273. The three circles Cu, Cv and Cw are suppressed in the
figure, and the respective values of b and c are b = 6.689 and c = 1. The circles Cu and
Cv meet at ±yi where y = 0.5. In the close up of Fig. 9b, the three local maximum circles
(green) and the six enveloping circles are orthogonal to O (not shown).

3.3. The elliptic case. Here a > 1 and the facts are similar to those of the hyperbolic
case. The primary difference is that d(t) now is periodic of period ω = 2π/|λ|, where |λ|

is the speed of the elliptic flow. There are parameter values 0 < τ < m < τ ′ < M < ω

where d(τ) = d(τ ′) is the absolute minimum value, d(m) is a local maximum value, and
d(M) is the absolute maximum value. The circles C(m) = µm(C) and C(M) = µM(C) are
orthogonal to O and C(τ) = µτ(C) and C(τ ′) = µτ ′(C) are centered in the first quadrant
and are exchanged by the inversion IO, which generates a periodic symmetry of the graph
similar to the case articulated in the preceding paragraph.

fig. 10 presents an example where a = 5/3 and the coaxial family A has foci ±y, where
y = 0.5. The three circles Cu, Cv and Cw are suppressed in the figure, and the respective
values of b and c are b = 5.846 and c = 1.227. In the close up of Fig. 10b, the three
local maximum circles (blue), the three absolute maximum circles (green), and the six
enveloping circles are orthogonal to O (not shown).
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A  = C(f , r )

A  = C(f , r )

f1
1 1

2

2 2 2

1

f

C(z, r)

Figure 11. The centers of C(z, r) lie on the dotted ellipse with equation
|z− f1|+ |z− f2| = r1 + r2.

3.4. Formulæ. The next order of business is to derive useful formulæ for analyzing d(t).
Let C(z, r) denote the circle in the complex plane centered at z and of radius r > 0. The
inversive distance between the circle C(z, r) and its rotated cousin r(C(z, r)) = C(r(z), r)

is

(3.1) h(z, r) =
|z− r(z)|2 − 2r2

2r2
=

1

2

|
√
3z− i |2

r2
− 1.

Let f1 and f2 be the respective centers of the two circles A1 and A2. A glance at fig. 11
should convince the reader that if C(z, r) is externally tangent to A1 and internally tangent
to A2, then |z − f1| = r1 + r and |z − f2| = r2 − r, where r1 and r2 are the respective radii
of the circles A1 and A2. It follows that

(3.2) |z− f1|+ |z− f2| = r1 + r2,

implying that the centers z = z(t) of the circles µt(C) lie on the ellipse described by
Equation 3.2. Using |z−f1| = r1+r to eliminate r from Equation 3.1 gives the formula

(3.3) h(z) =
1

2

|
√
3z− i |2

(|z− f1|− r1)
2
− 1

for the inversive distance between a circle C(z, r) externally tangent to A1 and its rotated
cousin r(C(z, r)). To find the extrema of the inversive distance function d(t) of Equa-
tion 2.2, we need to find the extrema of h(z) of Equation 3.3 when z is subject to the
constraint of Equation 3.2.
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Figure 12. The canonical Möbius flow for the parabolic case.

The ellipse of Equation 3.2 has foci f1 and f2 with center (f1+f2)/2, major radius (r1+r2)/2,
and minor radius 1

2

√
(r1 + r2)2 − (f2 − f1)2. The Cartesian equation for this ellipse is

(3.4)
(2x− f1 − f2)

2

(r1 + r2)2
+

4y2

(r1 + r2)2 − (f2 − f1)2
= 1.

Equation 3.3 has been used to compute the value of d(τ), the critical minimum value of
d(t) in the examples presented in this paper, and the values of d(t) = d(t ′) for the Ma-
Schlenker pairs. We now describe the derivations of the plots of figs. 8 to 10. In each case
this is accomplished by mapping via a Möbius transformation to a standard flow, applying
the standard flow, and mapping back.

The parabolic case, fig. 8. Let a1 = a1(t) and a2 = a2(t) be the points of tangency of
the circle C(t) = µt(C) with the respective enveloping circles A1 and A2, as in fig. 12.
We will derive formulæ for a1 and a2 in terms of parameters 1 < x1 < x2 and the variable
t and use these to write the center z(t) and radius r(t) of C(t) for use in the function

(3.5) d(t) = h(z(t), r(t))

of Formula 3.1. The Möbius transformation T(z) = 1/z, which is its own inverse, maps A1

to the vertical line x = 1/x1 and A2 to the vertical line x = 1/x2. The flow µt is obtained
by conjugation of the standard unit speed flow νt(z) = z − ti with T . The formulæ for
a1(t) and a2(t) become

as = as(t) = T

(
1− xsti

xs

)
= xs

1+ xsti

1+ x2st
2
, for s = 1, 2.
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Figure 13. The canonical Möbius flow for the hyperbolic case.

The radius r(t) of C(t) becomes

(3.6) r = r(t) =
r1r2(a2(t) − a1(t))

r2(a1(t) − f1) + r1(a2(t) − f2)
,

and its center z(t) becomes

(3.7) z = z(t) = f1 + (r1 + r(t))
a1(t) − f1

r1
.

fig. 8 was generated using Formulæ 3.6 and 3.7 in Equation 3.5 in Mathematica. We
have posted Mathematica notebooks for generating visualizations of these constructions at
https://w3.cs.jmu.edu/bowersjc/page/circles/.

The hyperbolic case, fig. 9. In this case the circles Cu and Cv meet at points ±yi as
in fig. 13. The relationships among the parameters are that y < 1/

√
3, and for s = 1, 2,

f2s + y
2 = r2s and xs = fs + rs. The graphic is computed from Equations 3.5, 3.6, and 3.7

with the only difference from the parabolic case that the formulæ for a1 and a2 change.
To obtain the correct formulæ, we use the Möbius transformation

(3.8) T(z) =
x2 − yi

x2 + yi

z+ yi

z− yi

to map −yi to 0, yi to ∞, and x2 to 1. The image of A2 is the real axis and the image of
A1 is the line through the origin at angle

(3.9) θ = cos−1

(
f1f2 + y

2

r1r2

)

https://w3.cs.jmu.edu/bowersjc/page/circles/
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Figure 14. The angle α.

up from the real axis. The standard unit speed flow is now νt(z) = etz and a1 and a2 are
given as

(3.10) a1 = a1(t) = T
−1
(
et+θi

)
and a2 = a2(t) = T

−1(et),

where, setting κ = (x2 − yi)/(x2 + yi), we may write T and T−1 as

(3.11) T(z) = κ
z+ yi

z− yi
and T−1(z) = yi

z+ κ

z− κ
.

The elliptic case, fig. 10. In this case the circles Cu and Cv are part of a coaxial family
with foci ±y. The relationships among the various parameters are 0 < y < 1, and for
s = 1, 2, fs = (y2 + x2s)/2xs and rs = xs − fs = (y2 − x2s)/2xs. Again, the graphic is
computed from Equations 3.5, 3.6, and 3.7 with a1 and a2 given by

(3.12) a1 = a1(t) = T
−1
(
eti
)

and a2 = a2(t) = T
−1
(
etiT(x2)

)
.

Here T is the Möbius transformation that takes y to 0, −y to ∞, and x1 to 1. This takes
the circle A1 to the unit circle and A2 to a circle centered at the origin of radius greater
than 1. The standard unit speed flow is the rotation flow νt(z) = etiz and T and T−1 are
given by

(3.13) T(z) = κ
z− y

z+ y
and T−1(z) = −y

z+ κ

z− κ
,

where κ = (x1 + y)/(x1 − y).
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3.5. The angular equation. One more geometric fact is useful. In the setting of the
planar construction of Section 2.1, let α = α(t) be the angle subtended by the ray from
the incenter of the triangle ∆ through the center of Cw ′ = Cw ′(t) and a ray from the
incenter that is tangent to Cw ′ , as in fig. 14. It is easy to see that the angle α lies
between 0 and π/2, and an algebraic manipulation determines that

(3.14) d(t) = 〈Cw ′ , r(Cw ′)〉 = 1

2
+

3

2
cot2 α(t).

Notice as α strictly increases from 0 to π/2, the function cot2 α strictly decreases from∞ to 0. Thus the comparison of two values of d may be made simply by comparing the
corresponding angles α:

(3.15) d(t) < d(t ′) if and only if α(t) > α(t ′).

From this observation one can make quick judgements of the correctness of many of our
claims in the examples just by examining the graphics of the planar circle realizations of
the figure, perhaps with a straight edge and protractor.

4. The Construction on the Sphere

In this final section we present an alternative description of the construction of Ma-
Schlenker realizations, this time directly on the 2-sphere S2 realized as the unit sphere
in E3 = C × R. In this normalization, the north pole is n = (0, 1), the south pole is
s = (0,−1), and the equatorial plane is identified with C. The circles Cu, Cv, and Cw
in S2 are of equal radii whose centers are equally spaced on the equator. Projecting or-
thogonally along the north-south direction to the equatorial plane, the upper hemisphere
projects to the unit disk and the three circles Cu, Cv, and Cw project to symmetrically
placed chords of the unit circle, as in Fig. 15a. The orthogonal projections of the typical
circles A1 and A2 in the coaxial family ACu,Cv that form the envelope of the Möbius-flowed
circles Cw ′(t) are shown in Fig. 15a. The coaxial family ACu,Cv is obtained as follows.
Let Πu and Πv be the 2-planes in E3 whose respective intersections with the 2-sphere S2

are the circles Cu and Cv. Let `u,v be the line Πu∩Πv, a line that runs in the north-south
direction. Then ACu,Cv is precisely the collection of circles formed as intersections Π ∩ S2
as Π ranges over all 2-planes in E3 that contain the line `u,v. Notice that the circles in the
coaxial family ACu,Cv project orthogonally to the family of lines in C that pass through
the common point q, the intersection of the vertical line `u,v with the equatorial plane
C. This explains the position of the projections of A1 and A2 in Fig. 15a. In this set
up, local maxima for d(t) occur when the three circles corresponding to u ′, v ′ and w ′

are all centered on the equator. This occurs once when the flow µt is hyperbolic or par-
abolic, and periodically with two different local maximum values as the flow pushes the
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(a) Above the north pole. (b) A 3D view.

Figure 15. Two views of a state of the construction of a Ma-Schlenker
realization with Cu, Cv, and Cw centered on the equator.

circle across the equator when elliptic. By shifting the origin, we may assume that a local
maximum occurs at time t = 0 so that the circles Cu ′(0), Cv ′(0), and Cw ′(0) are centered
on the equator, and, without loss of generality, we may assume that the flow is oriented
so that Cw ′(t) is centered in the upper hemisphere for initial positive values of t. Under
these normalizations d(t) = d(−t) and Cw ′(−t) = IO(Cw ′(t)) for all t, where O is the
equator. The resulting realizations of the Ma-Schlenker octahedra of the form O(a,b, c,d)

have order three rotational symmetry about the axis through the north and south poles.
We should comment that a realization built in this manner will not be a circle packing.
To obtain a packing these will need to be Möbius flowed using a hyperbolic flow from the
north toward the south pole.

As an example, we construct a critical circle packing for the Ma-Schlenker octahedron
O(1,b, 1, 1) where b > 1 and d(τ) = 1. Choose Cu, Cv, and Cw to have equal radii of π/3
so that the three circles are mutually tangent and project orthogonally to an equilateral
triangle inscribed in the unit circle, as in fig. 16. Choose A1 = Cv and A2 so that the
circles Cu ′(t), Cv ′(t), and Cw ′(t) are disjoint except at two values t = ±τ of the flow
variable, when the circles are mutually tangent. Automatically, d(t) must take on its
isolated minimum values at t = ±τ where d(±τ) = 1, with d(t) > 1 for t 6= ±τ. To obtain
a critical Ma-Schlenker c-octahedron, apply the hyperbolic Möbius flow from the north
toward the south pole whose flow lines are the meridianal circles until the centers of Cu,
Cv, and Cw lie on a latitude L and those of Cu ′(τ), Cv ′(τ), and Cw ′(τ) lie on a latitude L ′
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Figure 16. The view of a critical circle realization for O(1,b, 1, 1) from
above the north pole, with Cu, Cv, and Cw centered on the equator.

of equal radii, L centered on the south pole and L ′ on the north. The resulting realization
is a circle packing and therefore a critical Ma-Schlenker c-octahedron.
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