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Abstract

Recent research identifies and corrects excess disper-
sion in the entries of the leading eigenvector of a co-
variance matrix estimated from a high dimension low
sample size (HL) data set. Unchecked, this disper-
sion bias can have a substantial impact on variance-
minimizing optimization. The dispersion bias can be
corrected with the data-driven GPS and MAPS es-
timators, which are structural analogs of the James-
Stein estimator for a collection of averages. This re-
search points to a wide array of eigenvector biases
and James-Stein-like corrections. In this article, we
elucidate parallels between eigenvector bias correc-
tion and the James-Stein correction for a collection
of averages. We review applications of the GPS and
MAPS estimators to quadratic optimization, empha-
sizing potential extensions and open questions.

Significance Statement

Eigenvectors are used throughout the physical and
social sciences to reduce the dimension of complex
problems to manageable levels, and to distinguish sig-
nal from noise. Our research identifies and corrects
substantial biases in the leading eigenvector of a co-
variance matrix estimated in the high dimension low
sample size (HL) regime. Our analysis sheds light on
aspects of how estimation error corrupts an estimated
covariance matrix and is transmitted via quadratic
optimization. Applications to quantitative portfo-
lio construction are established, while the benefits of
our bias correction to genome-wide association stud-
ies (GWAS) and machine learning algorithms await
exploration.

Introduction

Averaging is the most important tool for distilling in-
formation from data. To name just two of countless
examples, batting average is a standard measure of
the likelihood that a baseball player will get on base,
and an average of squared security returns is com-
monly used to estimate the variance of a portfolio of
stocks.

The average can be the best estimator in the sense
of having the smallest mean squared error. But
a strange thing happens when considering a collec-
tion of many averages simultaneously. The aggregate
mean squared error is no longer minimized by the col-
lection of averages. Instead, the error can be reduced
by shrinking the averages toward a target, even if,
paradoxically, there is no underlying relation among
the quantities. For baseball players, since an individ-
ual batting average incorporates both the true mean
and estimation error from sampling, the largest ob-
served batting average is prone to be over-estimated
and the smallest under-estimated. That is why the
aggregate mean squared error is reduced when the
collection of observed averages are all moved toward
their center.

This line of thinking has been available at least
since Sir Francis Galton introduced “regression to-
wards mediocrity” in 1886. Still, Charles Stein sur-
prised the community of statisticians with a sequence
of papers about this phenomenon beginning in the
1950s. Stein showed that it is always possible to
lower the aggregate squared error of a collection of
three or more averages by formulaically shrinking
them toward their collective average. In 1961, Stein
improved and simplified the analysis in collaboration
with Willard James. The resulting empirical James-
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Stein estimator (JS) launched a new era of statistics.

This article describes James-Stein for eigenvectors.
It was originally developed to locate an unobserved
position on a sphere, inspiring the name “GPS” for
“Global Positioning System”, and used to improve
accuracy of minimum variance portfolios. GPS is an
empirical shrinkage operator, and it turns out to be
structurally parallel to JS.

A sample leading eigenvector is a direction in a
high dimensional data set that maximizes explained
variance. Originally developed to study axes of ro-
tation of rigid bodies, eigenvectors are used today to
identify points of centrality on the world wide web,
as financial risk factors, and as control variables in
genome-wide association studies, to name just a few
examples. Like a collection of averages, a sample
eigenvector is a collection of values that may be im-
proved by shrinkage.

The GPS estimator corrects excess dispersion in
the entries of an eigenvector estimated from a high-
dimensional data set, where the number of variables
vastly exceeds the number of observations. These
noisy regimes fall outside the realm of classical statis-
tics, and they arise in machine learning, genetics, and
finance, where a relatively small number of observa-
tions is used to explain or predict complex phenom-
ena.

Below, we review the connection between James-
Stein for averages and for eigenvectors. The latter
sheds light on aspects of how estimation error cor-
rupts an estimated covariance matrix and is transmit-
ted to portfolios via quadratic optimization. Along
the way we provide ideas for extensions and applica-
tions.

What is the James-Stein estima-
tor?

Suppose there are p > 3 unknown means µ =
(µ1, µ2, . . . , µp) to be estimated. We observe a fixed
number of samples, and compute the corresponding
sample averages z = (z1, z2, . . . , zp).

It is common practice to use zi as an estimate for
the unobserved mean value µi, and this may be the

best one can do if estimating only a single mean.
With certain normality assumptions, the discovery of
Stein (1956) and James & Stein (1961), elaborated
by Efron & Morris (1975), Efron & Morris (1977),
Efron (2010), is that a better estimate is obtained by
shrinking the sample averages toward their collective
average in a specific way.

Let m(z) =
∑p

i=1 zi/p denote the collective aver-
age, and 1 = (1, 1, . . . , 1). The winning recipe, which
defines the JS estimator, is

µ̂JS = m(z)1+ cJS(z −m(z).1) (1)

The shrinkage factor cJS is given by

cJS = 1− ν2

s2(z)
, (2)

where

s2(z) =

p∑
i=1

(zi −m(z))2/(p− 3) (3)

is a measure of the variation of the sample averages
zi around their collective average m(z), and ν2 is
an estimate of the conditional variance of each sam-
ple average around its unknown mean. It measures
the noise affecting each observation. The value of
ν2 must be estimated independently of s2(z) or as-
sumed, and it is sometimes taken to be 1 without
comment.

The observable quantity s2(z) incorporates both
the unobserved variation of the means and the noise
ν2. The term ν2/s2(z) in equation (2) can be thought
of as an estimated ratio of noise to the sum of signal
and noise. Equation (1) calls for a lot of shrinkage
when the noise dominates the variation of the sample
averages around their collective average, and only a
little shrinkage when the reverse is true.

The JS estimator is better in the sense of expected
mean squared error,

Eµ,ν

[
|µ̂JS − µ|2

]
< Eµ,ν

[
|z − µ|2

]
. (4)

For any fixed µ and ν, the conditional expected mean
squared error is improved when using µ̂JS instead of
z. This result comes with an unavoidable caveat: z
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remains the optimal estimate when p = 1 and p = 2,
and sometimes when p = 3.
Suppose we have p > 3 baseball players, and, for

i = 1, . . . , p, player i has true batting average µi,
meaning that in any at-bat the player has a prob-
ability µi of getting a hit. This probability is not
observable, but we do observe, say over the first 50
at-bats of the season, the realized proportion zi of
hits. Assuming we know ν2 or have an independent
way to estimate it, equation (1) improves on the zi
as estimates of the true means µi.
This example lends intuition to the role of the noise

to signal-plus-noise ratio ν2/s2(z) in the JS shrink-
age factor. If the true batting averages differ widely,
but the sample averages tend to be close to the true
values, then equation (1) calls for little shrinkage, as
appropriate. Alternatively, if the true averages are
close together but the sampling error is large, a lot
of shrinkage makes sense. The JS estimator prop-
erly quantifies the shrinkage and interpolates between
these extremes.

What is the GPS estimator?

The GPS estimator is an empirical approximation
of a leading eigenvector of an unobserved covariance
matrix in a high-dimension low-sample-size (HL) set-
ting, where the number of variables vastly exceeds
the number of observations. It improves on the sam-
ple leading eigenvector by having lower squared error
with high probability, and leading to better estimates
of covariance matrices for use in quadratic optimiza-
tion.
GPS is, like JS, a shrinkage estimator, and shares

many of its characteristics. Suppose we have n in-
dependent observations of p >> n variables whose
unobserved covariance matrix Σ has leading normal-
ized eigenvector b. We suppose the entries of b have
a non-zero average, m(b) =

∑p
i=1 bi/p, which we are

free to assume is positive by change of sign if needed.
Denote by S the p × p sample covariance matrix

constructed from our n observations, with leading
eigenvalue λ2 and corresponding eigenvector h, which
we may assume has unit length and positive average
entry m(h) =

∑p
i=1 hi/p > 0.

The GPS estimator hGPS is obtained by shrinking
the entries of h toward their average,

hGPS = m(h)1+ cGPS(h−m(h)1). (5)

The shrinkage constant cGPS is given by

cGPS = 1− ν2

s2(h)
, (6)

where

s2(h) =
1

p

p∑
i=1

(λhi − λm(h))
2

(7)

is a measure of the variation of the entries of λh
around their average λm(h), and ν2 is equal to the av-
erage of the non-zero smaller eigenvalues of S, scaled
by 1/p,

ν2 =
tr(S)− λ2

p · (n− 1)
. (8)

GPS calls for a lot of shrinkage when the average of
the non-zero smaller eigenvalues dominates the vari-
ation of the entries of λh around their average and
only a little shrinkage when the reverse is true.

Using ideas developed Goldberg et al. (2022) and
Goldberg et al. (2020), Shkolnik (2021) proves, with
high probability, the angle between hGPS and b is
smaller than the angle between h and b:

∠
(
hGPS , b

)
< ∠(h, b), (9)

and mathematically justifies the statement that GPS
is James Stein for eigenvectors.

We illustrate (9) in Figure 1. The left panel shows
GPS shrinkage as defined by equation (5). The right
panel shows an equivalent formulation of GPS shrink-
age in terms of angles between the corresponding vec-
tors on the unit sphere obtained by normalization.
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Figure 1: Shrinkage of the sample eigenvector h along
the line connecting h and m(h)1 in Euclidean space
(left panel) and projected on the unit sphere (right
panel, which illustrates the central angles ∠(h, b) and
∠(hGPS , b).

As with JS, an example illustrating how to apply
GPS is helpful, and we do that in the next section.

GPS corrects an optimization
bias

The GPS estimator originated as an improvement
on standard implementations of mean-variance opti-
mization of a portfolio of public equities. In this sec-
tion we illustrate how GPS mitigates an optimization
bias, the impact of estimation error in a covariance
matrix on the results of quadratic optimization.

Quantitative portfolio construction

From a universe of p securities, there are countless
ways to construct a portfolio. We focus on quan-
titative portfolio construction, which has relied on
mean-variance optimization since Markowitz (1952).
In this framework, a portfolio is represented by a vec-
tor whose ith entry is the fraction or weight of in-
vestment in security i. A non-singular estimate of
the covariance matrix is required by the program. A
portfolio is efficient if it has minimum forecast vari-
ance subject to constraints and the simplest efficient
portfolio is minimum variance.

A minimum variance portfolio

A fully invested but otherwise unconstrained mini-
mum variance portfolio is the solution to the “mean-
variance optimization” problem

minw∈Rp w⊤Σ̂w

subject to:

w⊤1 = 1,

(10)

where the p × p matrix Σ̂ is a non-singular estimate
of the true security covariance matrix Σ. While it
is precisely specified, the solution ŵ∗ to (10) is not
optimal: the true optimum w∗ is the solution to (10)

with Σ̂ replaced by Σ.

The impact of estimation error on op-
timization

The estimation error in the matrix Σ̂ is transmit-
ted to the resulting portfolios. From Michaud (1989)
and other sources, we know that mean-variance opti-
mizers are “estimation error maximizers”. Here, we
review two metrics for the effect of the optimization
bias, the impact of covariance matrix estimation error
on weights and risk forecasts of optimized portfolios.

Since a variance-minimizing optimization tends to
place excess weight on securities whose variances and
correlations with other securities are under-forecast,
variance forecasts for optimized portfolios are biased
downward. We measure variance bias with the vari-
ance forecast ratio, defined for our minimum variance
portfolio by

VFR(ŵ∗) =
ŵ∗Σ̂ŵ∗

ŵ∗⊤Σŵ∗
. (11)

A variance forecast ratio less than 1 indicates an
underforecast while a variance forecast ratio greater
than 1 indicates is overforecast.

Another measure of the distance between an opti-
mized and optimal portfolio is tracking error, which
we define as

TE2(ŵ∗) = (ŵ∗ − w∗)⊤Σ(ŵ∗ − w∗) (12)

4



for the minimum variance portfolio. Tracking error
is used throughout mathematical finance to measure
the width of the distribution of the difference in re-
turn of two portfolios, and it is commonly applied
to measure the distance between a portfolio and its
benchmark. All else equal, a smaller tracking error is
better.
Since they require knowledge of the true covariance

matrix Σ, neither tracking error nor variance forecast
ratio can be used in an empirical study. In simula-
tion, they illuminate the transmission of error from
Σ̂ to ŵ∗.

Factor models and optimization

In the HL regime where p >> n, the sample covari-
ance matrix S is singular, and is therefore not a can-
didate for Σ̂. Factor models of security returns have
emerged as a standard tool to generate full-rank esti-
mated covariance matrices. The prototype is a one-
factor model of returns:

r = βf + ϵ, (13)

where r is a p-vector of security returns, β is a p-
vector of factor loadings, f is a random variable serv-
ing as a common factor through which returns are
correlated, and ϵ is a p-vector of specific returns that
are uncorrelated with f and each other.
In this situation, the true covariance matrix of r

takes the form

Σ = σ2ββ⊤ + δ2I, (14)

where f has variance σ2 and each entry of ϵ has vari-
ance δ2. Estimating Σ reduces to finding estimates
of σ2, β, and δ2, so that

Σ̂ = σ̂2β̂β̂⊤ + δ̂2I. (15)

A standard implementation of (15) relies on prin-
cipal component analysis (PCA), where the vector of

factor loadings β̂ is taken to be a scalar multiple of
the leading eigenvector h of the sample covariance
matrix. Goldberg et al. (2022) show that with high
probability the entries of h are overly dispersed. Fur-
ther, in the HL regime, setting β to a multiple of

hGPS instead of h can generate optimized portfolios
that are closer to optimal, and diminishes the down-
ward bias in forecasts of variance for these portfolios.
We provide an example below.

Numerical illustration

Consider a hypothetical market driven by the one-
factor model (13). Our calibration is taken approx-
imately from Goldberg et al. (2022) and Goldberg
et al. (2020), which explain how to tune simulations
to empirical data. We assume the factor model is
latent, meaning the components β, f and ϵ are not
observed. We draw factor and specific returns f and ϵ
independently from mean 0 normal distributions with
standard deviations 16% and 60%, respectively. The
entries of β, or factor loadings, are loosely inspired
by market betas. Even though they are not random
quantities, we draw entries of β independently from
a normal distribution with mean 1 and variance 0.25.
We set the number of securities p to 500, 1000, and
3000. For each p, we simulate n = 252 observations
100 times, so each boxplot in Figures 2 and 3 is based
on 100 outcomes.

Figure 2 shows errors in the approximation of the
leading eigenvector b by the sample leading eigenvec-
tor h on the left and its GPS correction hGPS on the
right. As the number p of securities increases, we ob-
serve median errors diminish along with the widths
of their distributions. The GPS correction provides
modest but discernible improvement over PCA by
lowering the excess dispersion.

While the reduction in total angular error ∠(h, b)
is modest, the GPS correction has a profound impact
on the optimized portfolio. In Figure 3, we show
tracking error (panel a) and variance forecast ratio
(panel b) for portfolios optimized with a one-factor
PCA model and its GPS correction. Theory predicts
that as p increases to infinity, the variance forecast
ratio for a PCA model tends to 0 while tracking error
is bounded below. With the GPS correction, track-
ing error tends to 0 and the variance forecast ratio
is bounded below. Numerical evidence supports the
assertion that variance forecast ratio tends to 1 as p
increases to infinity.

The asymptotic theory illustrated in Figures 2
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Figure 2: Angle between the leading eigenvector b
of the true covariance matrix and its estimators, h
and hGPS in simulated markets. The estimated co-
variance matrix is based on n = 252 observations of
p = 500 securities. Each boxplot is generated by 100
simulations. The GPS correction materially dimin-
ishes the angle between estimated and true eigenvec-
tors.

and 3 does not depend on the normal distribution,
even though our example is based on normal returns.
More empirically realistic simulations in which spe-
cific returns are generated by heavy-tailed distribu-
tions will still have good asymptotic properties, so
long as variance is finite. For fixed numbers of secu-
rities p and observations n, however, such simulations
generate more outliers than the normal simulations.
It would be valuable to frame this issue quantita-
tively, and to develop improvements to GPS when
data are heavy-tailed.

What is a MAPS estimator?

While GPS can correct excess dispersion of the lead-
ing sample eigenvector in the HL regime, further im-
provements are possible using a generalization called
a MAPS (Multiple Anchor Point Shrinkage) estima-
tor developed in Gurdogan & Kercheval (2021). In
particular, when certain order information about the
betas is available, MAPS can provide a consistent es-

(a) Tracking error

(b) Variance forecast ratio

Figure 3: Portfolio-level accuracy metrics for simu-
lated minimum variance portfolios optimized with a
PCA model and a GPS correction. The estimated co-
variance matrix is based on n = 252 observations of
p = 500 securities. Each boxplot is generated by 100
simulations. Tracking error is materially diminished
by the GPS correction, indicating greater accuracy of
portfolio weights. Variance forecast ratio is increased
toward 1 by the GPS correction, indicating greater
accuracy of variance forecasts.
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timator of the true leading normalized eigenvector b
of Σ, that is, an estimate of b with asymptotically
zero angular error for fixed n as p → ∞.

MAPS shrinkage

The GPS estimator is created by shrinking the sam-
ple covariance leading eigenvector h toward the con-
stant vector q1 = m(h)1. If we call q1 an “anchor
point” for the estimation, we can ask whether there
are additional anchor points {q2, . . . , qk} containing
useful information. Denote by L = ⟨q1, . . . , qk⟩ the
linear subspace of Rp spanned by {q1, . . . , qk}.
With the subspace L in hand, the “MAPS shrink-

age target” PL(h) is the orthogonal projection of
h onto L, and the corresponding MAPS estimator
shrinks h toward PL(h):

hMAPS = PL(h) + cMAPS(h− PL(h)) (16)

where the shrinkage factor is

cMAPS = 1− ν2

s2(h)
(17)

with

s2(h) = (λ2/p)(1− ||PL(h)||2) (18)

and

ν2 =
tr(S)− λ2

p(n− 1)
. (19)

The GPS estimator corresponds to the special case
L = ⟨m(h)1⟩. In that case direct calculation verifies
that PL(h) = m(h)1 and formula (18) reduces to the
corresponding GPS formula (7).

MAPS as a consistent estimator

For example, suppose we know the rank ordering of
the betas β1, . . . , βp, but not their actual values. Let
[x] denote the greatest integer less than or equal to x.
Order the betas by size and divide them into k = [

√
p]

groups, with the largest [
√
p] betas in the first group,

the next largest in the second group, etc., and any
extras added to the last group.

For i = 1, . . . , k, the anchor point qi is defined
as the vector (a1, . . . , ap) where aj = 1 if βj be-
longs to group i, and zero otherwise. The subspace
L = ⟨q1, . . . , qk⟩ and formula (16) define a consistent
MAPS estimator in the sense that

lim
p→∞

||hMAPS − b|| = 0 (20)

almost surely.

It is not necessary that the full rank ordering be
known, only that the groups are “ordered” in the
sense that no element of any group lies between the
minimum and maximum elements of another group.

To illustrate how this could work, we continue in
the setting of a public equity market, where analysts
sort securities into sectors, such as energy, informa-
tion technology, financials, and utilities. Empirically,
securities in the same sector tend to have similar load-
ings bi on the common factor f . For example, utility
stocks have had relatively low loadings on the com-
mon factor, while energy stock loadings have been
relatively high.

To the extent that the sectors organize the betas
into ordered groups, the MAPS estimator as defined
above will be a consistent estimator of b. In practice,
sector groupings of betas are not perfectly ordered,
so this will be only approximately true.

From oracles to data-driven esti-
mators

The JS, GPS and MAPS estimators arise as data-
driven versions of ideal “oracle” estimators that are
not themselves observable. For JS, the oracle is a
Bayes estimator, described next. For GPS, the ora-
cle is the point hO along the line in Euclidean space
through h and m(h)1 that is closest to the true eigen-
vector b. The MAPS oracle is an analogous point
also defined in terms of the unknown b. Here we dis-
cuss the relationship between the empirical and oracle
quantities in more detail.
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James-Stein and Bayes

The original formulation of the James-Stein estima-
tor, as well as many modern renditions, relies on the
normal distribution, which allows us to see JS as a
partially empirical version of a Bayesian estimator.
Suppose that the pairs (µi, zi) and (µj , zj) are in-

dependent for i ̸= j, and satisfy

µ ∼ N (m1, τ2I) and z|µ ∼ N (µ, ν2I), (21)

where N indicates the normal distribution. In this
setting, the unobserved means µi are centered around
m with variance τ2, and ν2 quantifies the noise inde-
pendently affecting each observed zi.
Computations using Bayes Rule tell us that the

best estimate of the true mean µ, conditional on ob-
serving z, is obtained by shrinking z toward m1,

µBayes = m1+ c(z −m1), (22)

where

c = 1− ν2

τ2 + ν2
. (23)

These Bayesian formulas look a lot like the James-
Stein shrinkage formulas (1) and (2), but rely on the
unobserved parameters m, τ2 and ν2. Conditional on
ν2,

E[m(z)] = m (24)

and, with some analysis,

E

[
ν2

s2(z)

]
=

ν2

τ2 + ν2
. (25)

Hence the JS formulas can be viewed as empirical
versions of (22) and (23), where m and ν2/((τ2+ ν2)
are replaced by empirical unbiased estimators m(z)
and ν2/s2(z)

The JS framework does not include an estimate of
ν2, which justifies the description of James-Stein as
“partially empirical Bayes.”
Formula (25) explains why we describe ν2/s2(z) as

a noise to signal-plus-noise ratio. The signal in ques-
tion is the true variance τ2 of the means µi around
their collective mean m, and it is obscured by the
noise ν2 contaminating the observations zi.

Eigenvalues, stability, and factor mod-
els

For JS, specification of the noise term ν2 requires ad-
ditional assumptions, and along with τ2 can be con-
sidered “oracle parameters” requiring empirical sub-
stitutes. Likewise, the unobserved covariance param-
eters σ2|β|2 and δ2 of (14) can be considered ora-
cle parameters. The observed eigenvalues of S are
additional empirical ingredients in estimating these
parameters.

It is useful to notice first that in the HL regime,
when data are explained by a one-factor model
like (13), the eigenvalues of S remain stable after divi-
sion by the number of variables p as it increases. The
stability can be explained with classical statistics.
Consider the p×n matrix Y holding n observations of
p variables, assumed to have zero mean. When p > n,
the sample covariance matrix S = Y Y ⊤/n is sin-
gular. Assuming no exceptional dependence among
the observations of the variables, exactly p− n of its
eigenvalues are zero. Now consider the n × n dual
sample covariance matrix SD = Y ⊤Y/p, which mea-
sures cross-sectional average co-movement at pairs of
times. Every nonzero eigenvalue of S is obtained by
scaling an eigenvalue of SD by p/n. Since the roles
of p and n are reversed in SD compared to S, SD

is a covariance matrix of a small number of variables
estimated from a large number of observations. This
is the low-high (LH) domain of classical statistics.

The eigenvalues of S help us estimate the oracle
parameters in the factor model (14). Under standard
factor model assumptions, the leading eigenvalue λ2

of S is approximated, for large p, by

λ2 ≈ |β|2|f |2

n
+

p

n
δ2 (26)

where f = (f1, . . . , fn) is the vector of realizations
of the common factor return corresponding to the n
observation times. The trace of S is approximated
by

Tr(S) ≈ |β|2|f |2

n
+ pδ2. (27)

From the definition (8), it follows that

ν2 ≈ δ2/n. (28)
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Noise to corrupted signal

Like JS, the shrinkage constant for GPS and MAPS
can be described in terms of a ratio ν2/s2(h) of noise
to a “corrupted signal”. The numerator ν2 is a scaled
average of sample non-zero smaller eigenvalues. For-
mula (28) says that ν2 is, through the lens of a factor
model, an estimate of scaled specific variance. Both
representations identify ν2 as noise if the true lead-
ing eigenvector and eigenvalue b and λ are viewed as
the primary carriers of information. The denomina-
tor s2(h) is expressed in (7) and (18) as the variation
of the sample leading eigenvector scaled by the sam-
ple leading eigenvalue. This term is driven, in part,
by the the variance of the true leading eigenvector.
Further analysis is required to fully understand the
way in which this signal is obscured by the smaller
sample eigenvalues that determine ν2. A clue to the
mystery may be in Denton et al. (2022).

Consistency

Unlike MAPS, neither the data-driven GPS estimator
nor the oracle to which it aspires can be consistent es-
timators of the true eigenvector b. Nevertheless, GPS
shrinkage can eliminate the impact of the dispersion
bias on quadratic optimization with a one-factor co-
variance matrix like the one in (15). The elimination
of the dispersion bias is complete at finite p for the or-
acle hO and asymptotic for the data-driven estimator
hGPS .

MAPS may or may not generate a consistent es-
timator of b, depending on the anchor points used.
By correcting systematic errors beyond the dispersion
bias, a MAPS-based covariance matrix can generate
more accurate minimum variance portfolios than a
GPS-based covariance matrix. Eigenvector bias and
its relationship to quadratic optimization in the HL
regime is an open area of research.

Outlook

The GPS and MAPS eigenvector estimators, con-
ceived originally as corrections to PCA models in
the HL regime for use in quadratic optimization, are

analogs of the JS estimator for a collection of aver-
ages. We’ve highlighted essential similarities and also
important differences between James Stein shrinkage
for averages and for eigenvectors. The growing preva-
lence of HL data sets in finance, genetics and machine
learning, where the number of variables vastly ex-
ceeds the number of observations, calls for a deeper
understanding of biases in estimated eigenvectors and
methods to correct them.

Historical notes

Primary sources for the James-Stein estimator are
Stein (1956) and James & Stein (1961), and a later
overview is Efron & Morris (1977). Sir Francis Gal-
ton in the 19th century formulated the concepts of
correlation and regression to mediocrity, more com-
monly known today as regression to the mean; see
Galton (1886). Notable contributions on the role of
factor models in financial economics include Sharpe
(1963), Sharpe (1964) Rosenberg (1974) and Ross
(1976). Stein (1986) discussed the currently popular
practice of shrinking eigenvalues in 1986, while, to
the best of our knowledge, eigenvector shrinkage was
developed in 2017. The eigenvector shrinkage formu-
las presented in this article are linear, as in Gold-
berg et al. (2020) and Shkolnik (2021). Equivalent,
norm-preserving versions of the shrinkage formulas
are featured in Goldberg et al. (2022) and Gurdogan
& Kercheval (2021).
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