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The Idea

• Markets aggregate information into prices.

• Is it possible to reverse engineer this to extract information from
prices?

• Yes, but the information retrieved is often incomplete.

• The techniques used are often quite different from those used to
form prices.
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Market expectations of Fed behavior

• The Federal Reserve sets short term interest rates. Expectations of
future rate moves play a role in many financial markets.

• Knowing market expectations aids in the prediction of market
responses to Fed actions.

• Market expectations is a measure of the effectiveness of Fed
communication.

• This can help in devising better communication and policy.
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Fed Funds Futures and Options

• The Fed Funds rate is an overnight interbank rate and is the target
instrument of the Federal Reserve. The daily effective fed funds rate
is reported by the Board of Governors (H.15 data series).

• Futures on the Fed Funds rate are cash settled, have been traded
since 1988 and settle on the average Fed Funds rate over the month
of the contract. Each contract has a notional value of $5,000,000.
Being long one contract is equivalent to making a $5,000,000 loan
for one month at the average Fed Funds rate over that month.
Prices are quoted as 100 minus the rate. Currently, the open interest
for February is almost 130,000 contracts.

• Options on the Fed Funds futures have traded since 2003. Each
option is for one Fed Futures contract. Currently, the open interest
for the February contract is almost 550,000 options.

• Both the futures and option contracts provide rich information on
market expectations of Federal Reserve actions.
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Extracting Information from Fed Funds Futures and
Options

• This talk is based on the work of John Carlson, Ben Craig and
William Melick of the Federal Reserve Bank of Cleveland and Mark
Fisher from the Federal Reserve Bank of Atlanta.

• Currently (Wednesday) the futures contracts were trading at

February − 97.0200 (vol 7, 697)

March − 97.2550 (vol 15, 793)

April − 97.5250 (vol 27, 575)

May − 97.7700 (vol 15, 737)

• FOMC meetings are scheduled for March 18, April 29/30, and June
24/25.
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The Model

The price of a call or put is the discounted value of the expected payout.

Ct(X ,T ) = e−r(T−t)

∫ ∞

−∞
max(0,FT − X )p(FT )dFT

Pt(X ,T ) = e−r(T−t)

∫ ∞

−∞
max(0,X − FT )p(FT )dFT

where

• Ct(X ,T ) is the price of a call and Pt(X ,T ) is the price of a put at
time t with strike X that expires at time T .

• r is the interest rate from time t to T .

• FT is the futures price at time T .

• p(·) is the probability density of FT .

• These formulas hold exactly on if the options are European and
there is no risk premium.
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The Model - continued

If there is no FOMC meeting within the expiration month, the the value
of the futures contract will approximately be the target rate. The target
rate is discreet in 25 basis point increments. If F1,T , · · · ,FK ,T are the
possible target rates and π1, · · · , πK are the corresponding probabilities,
then

Ct(X ,T ) = e−r(T−t)
K∑

j=0

max(0,Fj,T − X )πj

Pt(X ,T ) = e−r(T−t)
K∑

j=0

max(0,X − Fj,T )πj



The Model - continued

If we assume that the options are measured with error, then the model
can be compactly written as

Y = Xπ + ε

where Y is the N-vector of option prices, π is a K -vector of probabilities,
ε is a N-vector of errors, and X ise−r(T−t)max(0,F1,T − X1) · · · e−r(T−t)max(0,FK ,T − X1)

...
. . .

...
e−r(T−t)max(0,XN − F1,T ) · · · e−r(T−t)max(0,XN − FK ,T )


with Xi the strike price of the i th option.



Solving the Model

Y = Xπ + ε

is a regression model and could be solved via OLS, but π is a vector of
probabilities and so must be non-negative and sum to one. It is easy to
impose the linear restriction that the sum of the π must be one, but
imposing the non-negativity constraint is a little more tricky in the
classical regression framework.



The Bayesian Approach

The Bayesian paradigm assumes that there is a random process for
generating the observed data Y conditional on some set of parameters θ
and a prior probability distribution for the parameters. If the likelihood,
which is the density for the data generating process given θ, is

p(Y |θ)

and the prior probability density for the parameters θ is

p(θ)

then joint density of the data and parameters and, more importantly, the
probability of the parameters given the data is

p(θ|Y ) = p(Y |θ)p(θ)/p(Y ) ∝ p(Y |θ)p(θ)

This is the posterior probability of the parameters.



Advantages of the Bayesian Approach

• The close connection to probability theory allows rigorous and
intuitive statements such as, “the probability that a certain
parameter lies is some interval is p.”

• Advances in computer technology and Markov Chain Monte Carlo
(MCMC) techniques allows for easy simulation.

• Price of admission: A prior.



Advantages of the Bayesian Approach

• The close connection to probability theory allows rigorous and
intuitive statements such as, “the probability that a certain
parameter lies is some interval is p.”

• Advances in computer technology and Markov Chain Monte Carlo
(MCMC) techniques allows for easy simulation.

• Price of admission: A prior.



Advantages of the Bayesian Approach

• The close connection to probability theory allows rigorous and
intuitive statements such as, “the probability that a certain
parameter lies is some interval is p.”

• Advances in computer technology and Markov Chain Monte Carlo
(MCMC) techniques allows for easy simulation.

• Price of admission: A prior.



Solving the Model - continued

If we assume that the errors ε = (ε1, · · · εN) are normally distributed with
mean zero and variance ζ = diag(ζ1, · · · , ζN) then the likelihood is

p(Y |π, ζ) ∝ |ζ|−1/2exp

(
−1

2
(Y − Xπ)′ζ−1(Y − Xπ)

)

• We will initially take the prior on π and ζ to be flat.

• This prior is not proper on ζ. Often independent inverse gamma
distributions are used for the as the prior for ζ



Solving the Model - continued

If we assume that the errors ε = (ε1, · · · εN) are normally distributed with
mean zero and variance ζ = diag(ζ1, · · · , ζN) then the likelihood is

p(Y |π, ζ) ∝ |ζ|−1/2exp

(
−1

2
(Y − Xπ)′ζ−1(Y − Xπ)

)

• We will initially take the prior on π and ζ to be flat.

• This prior is not proper on ζ. Often independent inverse gamma
distributions are used for the as the prior for ζ



Solving the Model - continued

If we assume that the errors ε = (ε1, · · · εN) are normally distributed with
mean zero and variance ζ = diag(ζ1, · · · , ζN) then the likelihood is

p(Y |π, ζ) ∝ |ζ|−1/2exp

(
−1

2
(Y − Xπ)′ζ−1(Y − Xπ)

)

• We will initially take the prior on π and ζ to be flat.

• This prior is not proper on ζ. Often independent inverse gamma
distributions are used for the as the prior for ζ



Simulating the Posterior - Metropolis-Hasting

• Let p(θ) be a probability density that we do not know how to
directly simulate but that we can evaluate, at least up to some
constant multiple.

• Metropolis-Hastings allows us to sample from this distribution. Let
q(θ|θ′) be a density from which we do know how to sample.

• Given a sample θ(1), · · · θ(i), draw θ from q(θ|θ(i)) and compute

f (θ, θ(i)) =
p(θ)

p(θi )

q(θ(i)|θ)
q(θ|θ(i))

• Draw u from the uniform distribution on [0, 1] and define

θ(i+1) =

{
θ if f (θ, θ(i)) ≥ u

θ(i) if f (θ, θ(i)) < u

• If q(θ|θ′) = q(θ′|θ) then this is the Metropolis Algorithm.
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Conclusions

• Market prices contain aggregated information. Extracting this
information is of use to central bankers and others.

• A Bayesian approach can be useful in these situations.

• Fast computers and MCMC simulations make a Bayesian approach
feasible in many situations.

• Accessible probabilistic interpretations of parameters make
conveying Bayesian results easy.

• Bayesian techniques should be in every researcher’s toolbox.
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