Analysis Qualifying Exam

Part I: Complex Analysis

August, 2019

1. Prove that if f is entire and the imaginary part of f is bounded on \mathbb{C}, then f must be constant.
2. Find a conformal map from the unbounded region outside the disks $\{|z+1| \leq 1\} \cup$ $\{|z-1| \leq 1\}$ to the upper half plane.
3. Let $\log z$ be the principal branch of the logarithm defined on $G=\{z \in \mathbb{C} \mid z \notin$ $(-\infty, 0]\}$. Show that if $t>0$, then the equation $\log z=t / z$ has exactly one root in G.
4. Show that the function $f(z)=\int_{0}^{1} \frac{d t}{1-t z}$ is analytic on the open unit disk $\{z \in \mathbb{C}$: $|z|<1\}$.
5. Find the Laurent series expansion for

$$
f(z)=\frac{1}{z^{3}\left(4+z^{2}\right)}
$$

in the region $\{z: 0<|z|<2\}$
6. Let γ be the closed polygon $[3-i, 3+i, 1 / 2+i, 1 / 2-i, 3-i]$. Find the following integrals

$$
\int_{\gamma} z^{m} /(z-1)^{m}, \quad m \in \mathbb{N}
$$

7. Compute the integral

$$
\int_{0}^{\pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}} \quad \text { where } a^{2}<1
$$

