Complex Analysis

Qualifying exam. August 2012

Instructions: Do 4 problems from part I and 4 from part II.
Part I
(1) Show that the function $f(z)=|z|^{2}$ has complex derivative only at $z=0$. What is $f^{\prime}(0)$?
(2) Find the radius of convergence of the series $\sum_{n=1}^{\infty} a_{n} z^{n}$ when
(a) $a_{n}=2^{-n} n$!
(b) $a_{n}=\frac{n^{4}}{2^{n}+n^{2}}$

Explain your answer.
(3) (a) Evaluate $\int_{\gamma} \bar{z} d z$ where γ is the circle $|z-1|=2$ positively oriented.
(b) Evaluate $\int_{\gamma} \frac{d z}{z}$ where γ is the line segment from 2 to $1+i$.
(4) Suppose $f(z)$ has a pole of order n at z_{0}. Suppose $g(z)$ is holomorphic at z_{0}. Let

$$
G(z)=g(z) \frac{f^{\prime}(z)}{f(z)}
$$

Show that

$$
\operatorname{res}_{z_{0}} G=-g\left(z_{0}\right) n
$$

(5) Suppose f is an entire function and there are constants A and R_{0} such that

$$
\sup _{|z|=R}|f(z)| \leq A R^{2}
$$

for $R>R_{0}$. Show that f is of the form $a z^{2}+b z+c$ for constants a and b and c. Part II
(1) Suppose that $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix with non zero determinant.

Define a fractional linear transformation

$$
f_{M}(z)=\frac{a z+b}{c z+d}
$$

If M and M^{\prime} are two such matrices, show that

$$
f_{M} \circ f_{M^{\prime}}=f_{M M^{\prime}}
$$

(2) The Fourier transform is defined by

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x
$$

Show that if $a>0$ and

$$
P_{a}(x)=\frac{1}{\pi} \frac{a}{a^{2}+x^{2}}
$$

then if $\xi<0, \widehat{P_{a}}(\xi)=e^{2 \pi a \xi}$.
(3) Prove that if $\sum\left|z_{n}\right|^{3}<\infty$, then the product $\prod_{n=1}^{\infty}\left(1-z_{n}\right) e^{z_{n}+z_{n}^{2} / 2}$ converges.
(4) (a) Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{z-n}
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{z+n}
$$

diverge absolutely for every z not an integer.
(b) Show that the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{z+n}\right)
$$

converges absolutely every z not an integer.
(5) Show that

$$
w=-\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

is a conformal map from the halfdisc $\{z=x+i y:|z|<1, y>0\}$ to the upper half-plane $\operatorname{Im} w>0$.

