COMPLEX PRELIMINARY EXAM Department of Mathematics Florida State University

Jan. 10, 2009

1 Part 1

1. Calculate the Laurent series about $z=0$ for $\frac{1}{1+z^{2}}$ when $|z|>1$.
2. Calculate the image of the strip $\{z: \pi / 2<\operatorname{Im} z<\pi\}$ under the mapping $e^{i z}$.
3. Suppose $\Omega \subset \mathbb{C}$ is open and $f: \Omega \rightarrow \mathbb{C}$ is analytic and nonconstant. If $g: f(\Omega) \rightarrow \mathbb{R}$ is harmonic, then show that $g(f)$ is harmonic in Ω.
4. Using residues, calculate the improper integral $\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(1+x^{2}\right)^{2}} d x$.

2 Part 2

5. Suppose that $\left|z_{0}\right|<1$. Show that

$$
\left|\frac{z-z_{0}}{1-\bar{z}_{0} z}\right| \leq 1
$$

when $|z| \leq 1$. Show that equality occurs if and only if $|z|=1$.
6. Construct a conformal mapping of the strip $\{z: 0<\operatorname{Im} z<1\}$ onto the unit disk $\{z:|z|<1\}$.
7. Construct an entire function with a single zero at the square root of each positive integer, \sqrt{k}, where $k=1,2,3, \ldots$

