Preliminary Examination in Complex Analysis Summer 2003 — August 18, 2003

Solve six (and only six!) out of the following list of problems.

1. Let f be a complex valued function defined on the open region $D \subset \mathbb{C}$ and write f = u + iv, where u and v are the real and imaginary parts, respectively. Prove the following fact:

f is analytic at $z\in D$ if u and v are differentiable at z=x+iy and the Cauchy-Riemann equations $u_x=v_y$, and $u_y=-v_x$ are satisfied at z.

- **2.** A pair of real valued *harmonic* functions u and v defined on a region $D \subset \mathbb{C}$ are said to be *conjugate* if they are the real and imaginary parts of an analytic function f = u + iv.
 - a. Prove that if u is harmonic on a simply connected region D then there exists a harmonic conjugate.
 - b. Give a counterexample to explain why the simple connectedness hypothesis is required (Be sure to explain what "simply connected" means.)
- 3. Consider the following form of Jordan's lemma:

Let the function f(z) be analytic in the upper half plane $\mathbb{H} = \{z: \operatorname{Im}(z) > 0\}$ with the possible exception of a finite number of isolated singular points, and let it tend to zero as $|z| \to \infty$, uniformly in $\arg z \in [0, \pi]$. Then for a > 0

$$\lim_{R \to \infty} \int_{C_R} e^{iaz} f(z) \, dz = 0 \,,$$

where C_R is the semicircular arc $\{z: |z| = R, \operatorname{Im}(z) > 0\}$ in \mathbb{H} .

a. Use Jordan's lemma and the residue technique to compute the *improper integral*

$$I = \int_0^\infty \frac{\cos x}{x^2 + 4} \, dx \, .$$

Be sure to explain why and how you apply Jordan's lemma and justify all your main steps.

b. Prove Jordan's lemma. (HINT: Use the inequality $\sin \theta \geq \frac{2}{\pi} \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$.)

4. Let $f(z) = \frac{(z-1)^2}{z^3+1} \cdot \exp\left(\frac{1}{z^2-1}\right)$ and $g(z) = \pi^2 z^2 \csc^2(\pi z)$.

a. Determine and classify all the isolated singularities of f and g on the Riemann Sphere $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$. (You will have to explain how to define "analytic" at ∞ .)

- b. Determine the singular parts and residues of f and g at those points.
- 5. Determine the number of zeros of the polynomial $P(z) = z^{87} + z^{36} 4z^5 + 1$ contained in the open unit disk $\mathbb{D} = \{z : |z| < 1\}$.
- **6.** Find explicitly a conformal map from the open unit disk \mathbb{D} to the half plane *H* containing *i* and bounded by the line *L* passing through -1 i, the origin and 1 + i.
- 7. Consider the Zhukovsky's function

$$w = f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

Prove that it is conformal and univalent on the open disk \mathbb{D} of radius 1 centered at the origin. Determine the image $\Delta = f(\mathbb{D})$ and discuss the behavior of f at the boundary

8. a. Fix a real number R > 0. Show that for $n \in \mathbb{N}$, n > R/2, and $z \in D_R = \{z \colon |z| < R\},$

$$\left|\frac{1}{z^2 + 4n^2}\right| \le \frac{1}{4n^2 \left|1 - \frac{R^2}{R'^2}\right|},$$

where R' is any real number such that n > R'/2 > R/2.

b. Prove that

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{1}{z^2 + 4n^2}$$

defines a meromophic function in the complex plane. What are the poles and corresponding residues?

- **9.** The order of an elliptic function f is the multiplicity of the solution of $f(z) = \infty$ in the fundamental parallelogram P—in other words, the number of poles, counting multiplicity, inside P. Using known facts about elliptic functions, prove that there cannot exist elliptic functions of order one.
- 10. Find the genus and branch points for the covering of \mathbb{P}^1 by the Riemann surface associated to the *Fermat curve* C defined by the equation $z^n + w^n = 1$, where the covering map $\pi : C \to \mathbb{P}^1$ is $(z, w) \mapsto z$. (Your results must be expressed in terms of the integer n.)