Preliminary Examination in Complex Analysis

Fall semester 2005 - August 27
Solve four from part I and three from part II

Part I

1. Use known facts in Complex Analysis to prove the following statement:

If f is analytic on a simply connected region D of the complex plane, then f admits a primitive in D.
2. Compute the Laurent expansion of

$$
f(z)=\frac{1}{z(z-1)(z-2)}
$$

in the following annuli: $A(0 ; 0,1), A(0 ; 1,2)$, and $A(0 ; 2, \infty)$. (Notation: $A(p ; r, R)$ denotes the annulus centered at p with radii r, R.)
3. Using known techniques in Complex Analysis, compute:

$$
I=\int_{-\infty}^{\infty} \frac{x^{2} e^{-2 \pi i \xi x}}{\left(4+x^{2}\right)^{2}} d x
$$

as a function of $\xi \in \mathbb{R}$. Be sure to justify your main steps.
4. Consider the Zhukovsky's function

$$
w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) .
$$

Prove that it is conformal and univalent on the open disk \mathbb{D} of radius 1 centered at the origin. Determine the image $\Delta=f(\mathbb{D})$ and discuss the behavior of f at the boundary $\partial \mathbb{D}$.
5. Determine if the four points $0,1, \frac{1}{2}+i \frac{\sqrt{3}}{2}, \frac{2 i}{\sqrt{3}}$ lie on the same circle.

Part II

1. Suppose that f is a non-vanishing continuous function on the closed unit disk $\overline{\mathbb{D}}$ which is holomorphic on \mathbb{D}. Prove that if

$$
|f(z)|=1 \quad \text { whenever }|z|=1,
$$

then f is constant. (Hint: Extend to $|z|>1$ by setting $f(z)=1 / \overline{f(1 / \bar{z})}$. Why?)
2. Investigate the covering of $\widehat{\mathbb{C}}$ by $\widehat{\mathbb{C}}$ determined by the rational function

$$
f(z)=\frac{-z^{2}+3}{z^{3}-2 z} .
$$

(Find the number of sheets, the branch points, the nature of the branching.)
3. Prove that the sum $\sum_{n \in \mathbb{Z}} 1 /(z-n)^{2}$
a. converges normally on all compact subsets of $\mathbb{C} \backslash \mathbb{Z}$;
b. defines a meromorphic function of period 1 .
4. Use known facts to prove that there are no elliptic functions of order 1. Justify your steps.

