Doctoral Qualifying Examination in Complex Analysis

Spring 2003 - December 30, 2002
Solve 6 (six) out of 8 (eight) problems. Show all your work. Explain your answers.

1. Let $A \subset \mathbb{C}$ be open and connected. Define $A^{*}=\{z \mid \bar{z} \in A\}$. If $f: A \rightarrow \mathbb{C}$ is analytic, prove that $f^{*}: A^{*} \rightarrow \mathbb{C}$, where $f^{*}(z)=\overline{f(\bar{z})}$, is also analytic.
2. a. Show that every function analytic in a simply connected region D has an antiderivative in D.
b. Use part a show that if f is analytic and never zero in a simply connected region D, there is a function g analytic in D such that $e^{g}=f$.
3. Compute with residues

$$
\int_{0}^{2 \pi} \frac{1}{(2-\sin \theta)^{2}} d \theta
$$

4. For $R>0$ let γ_{R} be the path from R to $R+R i$, then from $R+R i$ to $-R+R i$, and finally from $-R+R i$ to $-R$ along straight line segments.
a. Show that as $R \rightarrow \infty$ the integral

$$
\int_{\gamma_{R}} \frac{e^{i a z}}{1+i z} d z, \quad a>0
$$

goes to 0 .
b. Use the above to compute ($a>0$)

$$
\int_{-\infty}^{+\infty} \frac{e^{i a x}}{1+i x} d x
$$

5. a. Let $a, b \in \mathbb{C}$, with $0<|a|<|b|$ and

$$
f(z)=\frac{1}{(z-a)(z-b)}
$$

Find two distinct Laurent series for f in annuli centered at the origin.
b. The residue of a function g at ∞ is defined to be the residue of the function $-z^{-2} g(1 / z)$ at $z=0$. Find the residue of $f(z)$ at ∞.
6. Classify and find the residues at the singularities in the complex plane of the function

$$
f(z)=\exp \left(\frac{1}{1-z}\right)+\frac{z}{\left(z^{4}-1\right)(z-i)} .
$$

7. a. Show that if $n>2|z|$ then

$$
\left|\frac{1}{z-n}+\frac{1}{n}\right| \leq \frac{2|z|}{n^{2}}
$$

b. Show that

$$
\sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right)
$$

converges to a function meromorphic in the plane. What are the poles and corresponding residues of this function?
8. Find explicitly a function giving a conformal map from the open disk $|z-i|<1$ onto the strip $|\operatorname{Re} z|<1 / 2$.

