Preliminary Examination in Complex Analysis January 5, 2004

Solve three from part I and three from part II. Indicate which one you want graded, or the first ones will be graded.

Part I

1. Let p be a real number not equal to ± 1. Compute using residues

$$
\int_{0}^{2 \pi} \frac{d \theta}{1-2 p \cos \theta+p^{2}}
$$

2. Suppose the Bernoulli polynomials are defined by the Taylor expansion

$$
\frac{z e^{w z}}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{k}(w)}{k!} z^{k}
$$

Find the first three Bernoulli polynomials, $B_{0}(w), B_{1}(w), B_{2}(w)$.
3. Let f be a function with a simple pole at zero with residue a. Let C_{R} be a segment of a circle given by $z=R e^{i \theta}$ for $\theta_{0} \leq \theta \leq \theta_{0}+\alpha$. Let

$$
I(R)=\int_{C_{R}} f(z) d z
$$

Show

$$
\lim _{R \rightarrow 0} I(R)=\alpha i a
$$

4. Find the residues at all singularities of

$$
\frac{\pi \cot \pi z}{16 z^{2}-1}
$$

5. Consider the Zhukovsky's function

$$
w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) .
$$

Prove that it is conformal and univalent on the open disk \mathbb{D} of radius 1 centered at the origin. Describe the images of the circles $|z|=r$ for $0<r<1$.

Part II

1. Suppose f is a function analytic on some open set containing the closed disc $\{z:|z| \leq 1\}$. Let Γ be the circle $|\zeta|=1$ and suppose $|z|<1$.
a) Show that

$$
0=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta) \bar{z}}{1-\bar{z} \zeta} d \zeta
$$

b) Use part a) and Cauchy's formula to show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) \frac{1-|z|^{2}}{\left|1-\bar{z} e^{i t}\right|^{2}} d t
$$

2. Suppose b_{n} is a sequence of complex numbers with $\left|b_{n}\right|$ increasing to ∞ and

$$
\sum_{n=1}^{\infty} \frac{1}{\left|b_{n}\right|^{3}}<\infty .
$$

Suppose $R<\left|b_{N}\right|$. Show that the series

$$
\sum_{n=N}^{\infty}\left(\frac{1}{z-b_{n}}+\frac{1}{b_{n}}+\frac{z}{b_{n}^{2}}\right)
$$

converges uniformly in $|z|<R$ to an analytic function.
3. The order of an elliptic function f is the multiplicity of the solution of $f(z)=\infty$ in the fundamental parallelogram P-in other words, the number of poles, counting multiplicity, inside P. Using known facts about elliptic functions, prove that there cannot exist elliptic functions of order one.
4. Let $G L(2, \mathbb{C})$ be the set of 2×2 matrices with complex entries and non-zero determinant. Let \mathcal{M} be the set of Möbius (fractional linear) transformations. Consider the map π from $G L(2, \mathbb{C})$ to \mathcal{M} given by

$$
\pi:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow T
$$

where

$$
T: z \rightarrow \frac{a z+b}{c z+d}
$$

a. Show that

$$
\pi(A B)=\pi(A) \circ \pi(B)
$$

where \circ indicates composition of mappings.
b. Find the inverse image of the identity under π

