Preliminary Exam, Complex Analysis

 Part I, August 2006No hand calculators. 2 hours. Do all problems.
(1) Consider a function $f=u+i v$ of a complex variable $z=x+i y$. The existence of a complex derivative f^{\prime} implies a relation between the partial derivatives of u and v. Explain this, with proof.
(2) Evaluate

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z
$$

counterclockwise around the circle $|z|=3$. (Your answer should be in terms of t, which can be any complex number.)
(3) Suppose $f(z)$ is holomorphic in the complex plane except for poles at $z=1$ with residue 1 and at $z=-1$ with residue -1 . Suppose also that

$$
\lim _{z \rightarrow \infty} \frac{f(z)}{z^{2}}=1
$$

Show that

$$
f(z)=\frac{z^{4}-z^{2}+2}{z^{2}-1}+a z+b
$$

for constants a and b.
(4) Show that

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\pi \frac{e^{-a}}{a}
$$

for all $a>0$.

