Preliminary Exam, Complex Analysis
Part II, August 2006

No hand calculators. 2 hours. Do four problems.

1. Prove that if ) |a,| < co then the product [] 2, (1 + a,) converges.
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3. Suppose f is a function analytic on some open set containing the closed disc {z : [2| < 1}. Let I' be the circle

|¢| =1 and suppose |z| < 1.

a) Show that
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b) Use part a) and Cauchy’s formula to show that
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5. Suppose Im 7 > 0 and that F' is the fundamental parallelogram given by
{z+yr|0<z<1,0<y <1}
Suppose that f is an entire function with the following properties

flz+1) = f(2)
f(Z+T) _ f(z)efm'ref%riz.

. Which of the following limits converge to meromorphic functions in the plane? Explain your answer

with

and that f has no zeros on the boundary of F. Show that f has exactly one zero in F. (Hint: use arg. prin.)



