Preliminary Exam, Complex Analysis
 August 2007

No hand calculators. Do 4 problems from part I and 3 problems from part II.

Part I

(1) State the Cauchy Riemann equations and using them show that an analytic function satisfying $|f(z)|=1$ for all z must be a constant. (Assume the domain is connected.)
(2) Use the method of residues to find an expression for the integrals

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin \theta} \text { where }-1<a<1
$$

and

$$
\int_{-\infty}^{\infty} \frac{\cos x d x}{x^{2}+a^{2}} \text { where } a>0
$$

(3) Let $f(z)$ and $g(z)$ be analytic in the closed disk $|z| \leq 1$. Suppose that $|f(z)|>|g(z)|$ for $|z|=1$. Use the argument principle to show that $f(z)$ and $f(z)+g(z)$ have the same number of zeros in the region $|z|<1$. (This is a version of Rouché's Theorem).
(4) Find the first three terms of the Laurent series expansion of

$$
\frac{e^{z}}{z\left(z^{2}+1\right)}
$$

in each of the regions $0<|z|<1$ and $0<|z+i|<1$.
(5) Let f and g be holomorphic in the unit disk $|z| \leq 1$. Evaluate, in terms of f, g and z the integral

$$
\frac{1}{2 \pi i} \int_{|\zeta|=1}\left(\frac{f(\zeta)}{\zeta-z}+\frac{z g(\zeta)}{z \zeta-1}\right) d \zeta
$$

for $|z|>1$ and for $|z|<1$.

Part II

(1) Prove that if $\sum\left|a_{n}\right|<\infty$ then the product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges.
(2) Prove that the transformation $x+i y=\sin (u+i v)$ maps the semi-infinite strip $0 \leq u \leq \pi / 2, v \geq 0$ one to one onto a region of the x, y plane. Also find the region.
(3) Show that an analytic function which is meromorphic in the extended complex plane is the quotient of two polynomials (i. e., a rational function).
(4) For $x>0$, the gamma function can be defined by

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

Prove the functional equation $\Gamma(z+1)=z \Gamma(z)$ and show that $\Gamma(z)$ can be extended to a function meromorphic on $\operatorname{Re} z>-1$ with pole at $z=0$ with residue 1.

