# Preliminary Exam, Complex Analysis 

Part I, January 2006

No hand calculators. 2 hours. Do 5 problems and indicate which 5 you are solving
(1) Suppose $f$ and $g$ are holomorphic in $|z| \leq 1$ and $f(z) \neq 0$ for $|z|=1$. Show that for $\epsilon>0$ sufficiently small, $f$ and $f+\epsilon g$ have the same number of zeros in $|z|<1$.
(2) Let $C_{R}$ be the semicircle $\{z||z|=R, \operatorname{Im} z>0\}$.
a) Show that

$$
\int_{C_{R}} \frac{e^{3 i z}}{\left(z^{2}+1\right)^{2}} d z
$$

goes to zero as $R \rightarrow \infty$.
b) Using residues compute

$$
\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)^{2}} d x
$$

Explain your method.
(3) Compute the following contour integrals
a)

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z \quad f(z)=\frac{\left(z^{2}+1\right)^{2}}{z^{2}+3 z+6}
$$

where $C$ is the circle $|z|=2$
b)

$$
\int_{C} z^{7} d z
$$

where $C$ is the curve $z(t)=t+i t^{2}, 0 \leq t \leq 1$.
c)

$$
\int_{C}|z|^{2} d z
$$

where $C$ is the curve in part b ).
(4) Suppose $\left|a_{n}\right|^{1 / n}>L>0$ for infinitely many integers $n$. Show that the power series

$$
\sum_{n} a_{n} z^{n}
$$

diverges for $|z|>1 / L$.
(5) Suppose $f$ is holomorphic in $|z| \leq 1$ and $|f(z)| \leq M$ for $|z|=1$. Show that for $|z| \leq 1 / 2$ we have

$$
\left|f^{(n)}(z)\right| \leq n!M 2^{n+1}
$$

(6) Find the singular (principal) part of

$$
\frac{\sin (\pi z / 2)}{\left(z^{2}-3 z+2\right)^{2}}
$$

at all poles.

