Complex prelims II

Solve 4 problems:

1. Show that the series

$$\frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus 0} \left(\frac{1}{z - n} + \frac{1}{n} \right)$$

defines a meromorphic function on \mathbb{C} . Determine the set of poles, and their orders.

- 2. Determine the subsets A and U of \mathbb{C} where the function $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$ (the "Riemann Zeta function") converges absolutely and uniformly, respectively.
- 3. Let n be an integer. The n^{th} root of any Möbius transformation T is any Möbius transformation S such that $S^n = T$. Prove:
 - (a) if T = Id, then T has infinitely many n^{th} roots;
 - (b) if T is parabolic then there is a unique n^{th} root;
 - (c) in all other cases T has exactly $n n^{\text{th}}$ roots.
- 4. Let $\operatorname{GL}_2(\mathbb{C})$ be the group of 2×2 invertible matrices with complex entries, and $\mathcal{M}\ddot{o}b$ the group of fractional linear transformations of the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Let $\pi \colon \operatorname{GL}_2(\mathbb{C}) \to \mathcal{M}\ddot{o}b$ be the usual map assigning to the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ the fractional linear transformation:

$$z \longmapsto \frac{az+b}{cz+d}$$

- (a) Determine the inverse image of the identity transformation;
- (b) Let $SL_2(\mathbb{C})$ be the subgroup of $GL_2(\mathbb{C})$ of matrices with determinant equal to 1. Prove that the map $SL_2(\mathbb{C}) \to \mathcal{M}\ddot{o}b$ given by the restriction of π to $SL_2(\mathbb{C})$ is onto.
- (c) Let $\operatorname{GL}_2(\mathbb{R})$ and $\operatorname{SL}_2(\mathbb{R})$ be the corresponding objects with real entries. Prove that their images in $\mathcal{M}\ddot{o}b$ under π are *not* equal.
- (d) Identify the images of GL₂(ℝ) and SL₂(ℝ) under π with groups of automorphisms of appropriate subsets of Ĉ.
- 5. Let $\Lambda = \Lambda(1, \tau)$ be a lattice in \mathbb{C} generated by 1 and $\tau \in \mathbb{H}$. Let f be a meromorphic function on \mathbb{C} with simple poles with residue equal to 1 at the lattice points, and:

$$f(z+1) = f(z) + \eta_1$$

 $f(z+\tau) = f(z) + \eta_2$

 $2\pi i = \eta_1 \tau - \eta_2 \,.$

Prove that

6. Let *E* be an elliptic curve, which we assume isomorphic to a torus \mathbb{C}/Λ , where the isomorphism is given by $[t] \to (\wp(t), \wp'(t))$, and \wp is the Weierstrass function relative to the lattice Λ . ([*t*] denotes the congruence class of $t \in \mathbb{C}$ modulo Λ .)

We say that a point $P \in E$ is of order 3 in E, if $3P = \mathcal{O}$, where \mathcal{O} is the "zero" element of E. (Here 3P = P + P + P, with respect to the group law of E.)

Prove that there are, excluding the origin \mathcal{O} , at most 8 points of order 3 in E.

Use known facts about elliptic curves and elliptic functions to conclude that they are all inflection points.