Financial Math Qualifier, Spring 2020

Final

Problem 1. Consider the sample space generated by the infinite coin toss trials and let $\{M_n : n = 0, 1, ...\}$ be a submartingale on this space. For each $n \ge 0$, let $\Delta_n(\omega_1 \cdots \omega_n)$ be a function that depends only the first *n* trials. Show that the discrete stochastic integral defined by

 $I_0 = 0$ and $I_n = I_{n-1} + \Delta_{n-1}(M_n - M_{n-1})$

is a submartingale if and only if $\Delta_n \ge 0$ almost surely for all $n = 0, 1, \dots$

- **Problem 2.** A portfolio manager is given x to invest on an asset which follows the *n*-period binomial market model and risk-free money market. The contract between the investor and the manager asserts that if the value of the portfolio is above level $\ell > 0$, the the manager receives a payment; otherwise, no payment is made. In addition, there is a restriction that the wealth should not fall below zero at any time. Therefore, the manager's goal is to maximize $\mathbb{P}(X_N \ge \ell)$ where X_N is the total amount of wealth from investment at time N. We also assume no arbitrage, the parameters of the binomial tree satisfy d < 1 + r < u.
 - a) Show that the wealth at all times, X_n for all n = 0, 1, ..., N, is nonnegative almost surely if and only if the wealth at time N, X_N , is so.
 - **b**) Show that the optimal wealth X_N^* is given by

$$X_n^* = \mathbf{I}\left(\frac{\lambda Z}{(1+r)^N}\right)$$

where

$$\mathbb{E}\left[\frac{Z}{(1+r)^N}\mathbf{I}\left(\frac{\lambda Z}{(1+r)^N}\right)\right] = x,$$

and the function I is given by

$$\mathbf{I}(y) = \begin{cases} \gamma & 0 < y \le \frac{1}{\gamma} \\ 0 & y > \frac{1}{\gamma} \end{cases}$$

Problem 3. Consider a market model for the risky asset in which there is a riskneutral probability measure, $\tilde{\mathbb{P}}$. Show that in such market, any convex payoff g with g(0) = 0 generates the same price for the American option as for the European option. **Problem 4.** Consider the binomial stochastic interest rate model under a riskneutral probability in which the short rate is given by

$$R_n(\omega_1\cdots\omega_n) = \frac{r_H}{n} \# H(\omega_1\cdots\omega_n) + \frac{r_T}{n}(n - \# H(\omega_1\cdots\omega_n)),$$

where r_H and r_T are two given positive constants and #H denotes the number of heads in a sequence of trials. We also assume the transition probabilities are given:

$$\mathbb{P}(\omega_1 \cdots \omega_n H | \omega_1 \cdots \omega_n) = p(\omega_1 \cdots \omega_n)$$
$$\mathbb{P}(\omega_1 \cdots \omega_n T | \omega_1 \cdots \omega_n) = 1 - p(\omega_1 \cdots \omega_n)$$

- **a**) Show that $\{R_n\}_{n>0}$ is a Markov process.
- **b**) Through an example of this model, show that the discount process given by

$$D_{n}(\omega_{1}\cdots\omega_{n-1}) = (1+R_{0})^{-1}(1+R_{1}(\omega_{1}))^{-1}\cdots(1+R_{n-1}(\omega_{1}\cdots\omega_{n-1}))^{-1}, n \ge 1$$

is not Markov.

- c) Check if in your example the futures price and forward price are the same. If different, explain why.
- **d**) Is there any stochastic interest rate binomial model with Markov discount process? Justify your answer.
- **Problem 5.** In a risk-neutral pricing framework, let the prices of all call options with a fixed maturity T and all strikes $K \ge 0$ are known; i.e., $C(x, K, T) = \tilde{\mathbb{E}}[e^{-rT}(S_T K)_+|S_0 = x]$ is known for all $K \ge 0$. Show that if the function C(x, K, T) is twice differentiable on K, then $e^{rT}\partial_{KK}C(x, K, T)$ is the probability density function (pdf) of S_T , the asset price at time T.
- **Problem 6.** Consider a measure space be given by $\Omega := \mathbb{R}$ and the Borel σ -field on \mathbb{R} and a random variable on this measure space X given by $X(\omega) = \lfloor \omega \rfloor$, where $\lfloor x \rfloor$ is the largest integer less than or equal to x.
 - **a**) Find the σ -field generated by X.
 - **b)** $Y(\omega) = \omega^2$. Show that the σ -field generated by Y is strictly smaller than the σ -field generated by X.
- **Problem 7.** For $t \in [0, T)$, let the process X be given by the following Itô integral:

$$X_t = \int_0^t \frac{dB_t}{T-u},$$

where B is a standard Brownian motion.

a) Show that $\lim_{t\to T} (T-t)X_t = 0$ almost surely.

b) Find the mean $m_Y(t)$ and covariance $c_Y(s,t)$ functions of the Gaussian process

$$Y_t = \begin{cases} (T-t)X_t & t < T\\ 0 & t = T \end{cases}.$$

Problem 8. Let the two dimensional process (X, Y) is given by

$$\begin{cases} X_t &= rX_t + \sigma Y_t dB_t \\ Y_t &= -\gamma Y_t dt + \sqrt{Y_t} dW_t \end{cases},$$

where r, σ , and γ are positive constants

a) For y > 0, let $u(y) := \mathbb{P}(\tau < \infty | Y_0 = y)$, where τ is the heating time of the process Y_t to zero. Show that u(y) satisfies the ordinary differential equation

$$y^2u'' - \gamma yu' = 0.$$

b) Solve the above ordinary differential equation using the following boundary conditions:

$$\begin{cases} u(0) = 1\\ 0 \le u \le 1 \end{cases} .$$