Algebra Qualifying Exam, August 2008.

For full credit solve at least 6 of the 8 problems. Please indicate which 6 problems you are solving.

- 1. Let $\phi: G \to H$ be a homomorphism of groups. Suppose H is abelian, and N is a subgroup of G that contains ker ϕ . Prove that N is normal in G.
- 2. The permutation group S_{20} has an abelian subgroup of order 5⁴, namely

<(12345),(678910),(1112131415),(1617181920)>

Show that every other subgroup of S_{20} of order 5^4 is abelian as well.

- 3. Let R be a commutative ring. Show that every cyclic left R-module (i.e., a module generated by a single element) is isomorphic as a left R-module to R/J for some ideal J of R.
- 4. Let F be a field, and let f be a polynomial in F[x] that has at least two distinct irreducible factors in F[x]. Show that there exists a polynomial $g \in F[x]$ with 0 < degree(g) < degree(f) for which $g^2 \equiv g \mod (f)$.
- 5. Let *E* be a finite field extension of a field *F*. Suppose [E : F] is odd, and $\alpha \in E$ is such that $E = F(\alpha)$. Prove that $E = F(\alpha^2)$.
- 6. Suppose K is a finite extension of a field F. Prove or disprove: if R is a subring of K that contains F, then R is a field.
- 7. Let A be an n by n matrix with entries in \mathbb{Z} . Show that every eigenvalue in \mathbb{Q} is an element of \mathbb{Z} .
- 8. If A is an n by n matrix with entries in \mathbb{Z} and odd determinant then show that for some positive number k, all entries of the matrix $A^k I$ are even. Hint: work over the finite field $\mathbb{Z}/(2)$.