Algebra Qualifying Exam, August 2008.

For full credit solve at least 6 of the 8 problems. Please indicate which 6 problems you are solving.

1. Let $\phi: G \rightarrow H$ be a homomorphism of groups. Suppose H is abelian, and N is a subgroup of G that contains $\operatorname{ker} \phi$. Prove that N is normal in G.
2. The permutation group S_{20} has an abelian subgroup of order 5^{4}, namely

$$
<(12345),(678910),(1112131415),(1617181920)>
$$

Show that every other subgroup of S_{20} of order 5^{4} is abelian as well.
3. Let R be a commutative ring. Show that every cyclic left R-module (i.e., a module generated by a single element) is isomorphic as a left R-module to R / J for some ideal J of R.
4. Let F be a field, and let f be a polynomial in $F[x]$ that has at least two distinct irreducible factors in $F[x]$. Show that there exists a polynomial $g \in F[x]$ with $0<\operatorname{degree}(g)<\operatorname{degree}(f)$ for which $g^{2} \equiv g \bmod (f)$.
5. Let E be a finite field extension of a field F. Suppose $[E: F]$ is odd, and $\alpha \in E$ is such that $E=F(\alpha)$. Prove that $E=F\left(\alpha^{2}\right)$.
6. Suppose K is a finite extension of a field F. Prove or disprove: if R is a subring of K that contains F, then R is a field.
7. Let A be an n by n matrix with entries in \mathbb{Z}. Show that every eigenvalue in \mathbb{Q} is an element of \mathbb{Z}.
8. If A is an n by n matrix with entries in \mathbb{Z} and odd determinant then show that for some positive number k, all entries of the matrix $A^{k}-I$ are even. Hint: work over the finite field $\mathbb{Z} /(2)$.

