ALGEBRA QUALIFYING EXAM

August 25, $2005-1: 00-5: 00$ PM

Correct and complete solutions to eight problems carry full credit. Please indicate clearly which eight problems you are solving.
(1) Let G be a finite group, let p be the smallest prime that divides the order of G, and let H be a subgroup of G of index p. Prove: H is normal in G.
(2) Let G be a group of order n acting nontrivially on a set with r elements. if $n>r$!, then G has a proper normal subgroup.
(3) Carefully state Sylow's theorems, and explain in detail an application (of your choice) of these results.
(4) Let A be an abelian group. Show that $A / 2 A$ is a finite group if A is finitely generated. On the other hand, show that A is not necessarily finitely generated if $A / 2 A$ is a finite group.
(5) Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a maximal ideal.
(6) Let K / F be an algebraic extension and let R be a ring contained in K and containing F. Show that R is a subfield of K containing F.
(7) Give an example of a degree-3 polynomial $p(x) \in \mathbb{Q}[x]$ whose Galois group is S_{3}. Justify your answer.
(8) Compute $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)^{2005}$.
(9) A linear operator $T: V \rightarrow V$ on a finite dimensional vector space V is nilpotent if $T^{r}=0$ for some $r>0$.
-Prove that there exists a basis of V such that the matrix A for T in that basis is upper triangular, with all diagonal entries equal to 0 .
-Prove that $\operatorname{det}(I+A)=1$.
-Prove that if T is nilpotent and V has dimension n, then $T^{n}=0$.

