ALGEBRA QUALIFYING EXAM

AUGUST 22, 2010 — 1:00–5:00 PM

Correct and complete solutions to six or more problems carry full credit. You may use standard results (such as a 'named' theorem), provided that you state such results in full.

- (1) State the universal property satisfied by free groups.
- (2) Let G be a finite group, and let N be a normal subgroup of G. Let p be a prime integer which does not divide |G|/|N|. Prove that the number of Sylow p-subgroups of N is the same as that of G.
- (3) Prove that every finite abelian group G has subgroups of index n for every positive integer n dividing |G|. Is the abelian hypothesis necessary?
- (4) Let R be a commutative ring (with 1).
 - Prove that an ideal of R is proper if and only if it is contained in some prime ideal of R.
 - Prove that if \mathfrak{p} is a prime ideal of R, I is an ideal of R, and $\mathfrak{p} \supseteq I^2$, then $\mathfrak{p} \supseteq I$.
 - Let I, J be ideals of R, and assume that I + J = (1). Prove that $I^2 + J^2 = (1)$.
- (5) Let R be an integral domain. Prove that if the following two conditions hold, then R is a PID:

(i) any two nonzero elements $a, b \in R$ have a greatest common divisor which can be written in the form ra + sb for some $r, s \in R$

(ii) if a_1, a_2, a_3, \ldots are nonzero elements of R such that $a_{i+1}|a_i$ for all i, then there is a positive integer N such that a_n is a unit times a_N for all $n \ge N$.

- (6) An *R*-module is 'simple' if it is not zero and it has no proper submodules. Show that a simple module is isomorphic to R/\mathfrak{m} , where \mathfrak{m} is a maximal ideal of R.
- (7) Let ϕ be a linear transformation from the finite dimensional vector space V to itself, such that $\phi^2 = \phi$. Prove that there is a basis of V such that the matrix of ϕ with respect to this basis is a diagonal matrix whose entries are all 0 or 1.
- (8) Prove that every matrix is similar to its transpose.