ALGEBRA QUALIFYING EXAM

THURSDAY, AUGUST 20TH, 1:00-5:00 PM

Please value accuracy and precision in your answers. You may use standard results, such as named theorems, provided that you identify them explicitly and state the relevant hypotheses carefully.

- (1) If A and B are normal subgroups of G such that G/A and G/B are both abelian, prove that $G/(A \cap B)$ is abelian.
- (2) Let G be a group of order 1715. Show that G has a normal subgroup H of order 5, and that $H \leq Z(G)$ (=center of G).
- (3) Prove that $7x^3 + 6x^2 + 4x + 6$ is irreducible in $\mathbb{Q}[x]$ in at least two different ways. (One of them may involve long computations, which you may summarize.)
- (4) (a) Find a polynomial $f \in \mathbb{F}_2[x]$ such that $\mathbb{F}_2[x]/(f)$ is isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ as vector spaces.
 - (b) Prove that there is no polynomial $f \in \mathbb{F}_2[x]$ such that $\mathbb{F}_2[x]/(f)$ is isomorphic to $\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ as rings.
 - (c) Prove that there is a polynomial $g \in \mathbb{F}_3[x]$ such that $\mathbb{F}_3[x]/(g)$ is isomorphic as a ring to $\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{F}_3$.
- (5) Let I be a nilpotent ideal in a commutative ring (with 1) R, that is, an ideal I such that $I^n = (0)$ for some n.
 - Let K be an R-module, and assume IK = K. Prove that K = (0).
 - Let M and N be R-modules and let $\phi : M \to N$ be an R-module homomorphism. Show that if the induced map $\overline{\phi} : M/IM \to N/IN$ is surjective, then ϕ is surjective.
- (6) Show that if φ is an endomorphism of a vector space V of dimension n, and if φ is nilpotent, then $\varphi^n = 0$.
- (7) (a) In any category C, state the universal property of the coproduct.
 - (b) State the universal property of the free group over a set S.
 - (c) Let F(S) denote the free group over a set S. Prove there is an isomorphism

$$F(S \amalg T) \cong F(S) * F(T)$$

where \amalg denotes the coproduct in the category of sets and * that in the category of groups.