Algebra Qualifying Exam

August 25, 2019

Please value accuracy and precision: 8 approximate solutions will likely carry less weight than 4 complete ones. You may use standard results, provided you carefully state them **in full.**

Six problems carry full credit.

- (1) Let $C = Mod_R$ be the category of (left) *R*-modules, where *R* is a ring (with 1, as always). Prove that in *C* every morphism is a mono if and only if it is injective.
- (2) Let *G* be a group. Inn(*G*) is the group of *inner automorphisms*, that is, those of the form $a \mapsto \iota_g(a) = gag^{-1}$, for some $g \in G$. Prove that Inn(*G*) cannot be a nontrivial cyclic group.
- (3) Prove that a group *G* of order 45 is abelian.
- (4) Prove that the polynomial $f = x^3y^2 + x^2y^3 + x + y^3$ is irreducible in k[x, y] (k a field of characteristic zero). Is the ideal I = (f) prime? Maximal?
- (5) Prove that $R = \mathbb{Z}[\sqrt{-7}]$ is not a PID.
- (6) Let *I* be the ideal (p, x) in $R = \mathbb{Z}[x]$, where *p* is a prime.
 - (a) Prove that *I* is not a free *R*-module.
 - (b) Provide a resolution.
- (7) Let V be a Q-vector space of dimension 2, and let $\{e_1, e_2\}$ be a basis. Define $\mathbb{Q}[t]$ -module structures on V as follows:

$$t e_1 = e_2$$
$$t e_2 = e_1$$

resp.

$$t e_1 = e_2$$
$$t e_2 = e_1 + e_2$$

and denote the corresponding $\mathbb{Q}[t]$ -modules by $V_{t,1}$ (resp. $V_{t,2}$). Determine whether $V_{t,1}$ and $V_{t,2}$ are isomorphic as $\mathbb{Q}[t]$ -modules.

- (8) Let K/\mathbb{Q} be a Galois extension with group G and let $\alpha \in K$. Let $d = [\mathbb{Q}(\alpha) : \mathbb{Q}(\alpha^2)]$.
 - (a) Show that $d \leq 2$.
 - (b) If the order of *G* is odd then show that there exists a polynomial $h(x) \in \mathbb{Q}[x]$ for which $h(\alpha^2) = \alpha$.
 - (c) If d = 2 then show that there exists $\sigma \in G$ for which $\sigma(\alpha) = -\alpha$.