Answer 5 of the following 7 questions.

General hint: You may use statements from previous parts of a question, including parts you could not prove.

- 1. Let G be a simple group of order $168 = 2^3 \cdot 3 \cdot 7$.
 - (a) How many subgroups of order 7 does G have?
 - (b) Prove: G is isomorphic to a subgroup of the symmetric group S_8 .
 - (c) Prove: G is isomorphic to a subgroup of the alternating group A_8 .
- 2. Let G be a group and H a finite index subgroup of G.
 - (a) If $g \in G$ show that there is a smallest positive integer k such that $g^k \in H$. Show that k divides every integer m such that $g^m \in H$.
 - (b) If H is normal in G show that k divides [G:H].
 - (c) Produce a counterexample to the claim that for all subgroups H we have k dividing [G:H].
- 3. Let $R = \mathbb{Z}[i]$, let p = 1 + i and r in R, let $f = x^n r \in R[x]$. Suppose that f is reducible in R[x] and that p|r. Show that 2|r.
- 4. Let $c, d \in \mathbb{Z}$, with d not a square, and $R = \mathbb{Z}[\sqrt{d}]$. Let $a = c + \sqrt{d}$ and let A be the absolute value of $c^2 d$.
 - (a) Show that a is prime in R if and only if A is a prime number.
 - (b) Give an example (with proof) where a is irreducible but not prime.
 - (c) Prove that for any such example, there must exist an ideal I in R that is not principal and that contains a.
- 5. Let R be a PID and let M be a submodule of \mathbb{R}^n . Show that there exists a submodule N of \mathbb{R}^n and a non-zero element $f \in \mathbb{R}$ such that $f \cdot N \subseteq M \subseteq N$ and \mathbb{R}^n/N is free.
- 6. Let $f, g \in \mathbb{Q}[x]$ be irreducible of degree n. Let $\alpha \in \mathbb{C}$ be a root of f, and $\beta \in \mathbb{C}$ be a root of g.
 - (a) If f has a root in $\mathbb{Q}(\beta)$ then show that g has a root in $\mathbb{Q}(\alpha)$.
 - (b) More generally, if f has an irreducible factor of degree d in $\mathbb{Q}(\beta)[x]$, then show that g has an irreducible factor of degree d in $\mathbb{Q}(\alpha)[x]$.
- 7. Let $f \in \mathbb{Q}[x]$ be irreducible of degree n, let K be the splitting field of f over \mathbb{Q} , and let $G = \operatorname{Gal}(K/Q)$. Let α_1 be a root of f in K, and let $H_1 = \{g \in G \mid g(\alpha_1) = \alpha_1\}.$
 - (a) If H_1 is a normal subgroup of G then show that $H_1 = \{e\}$.
 - (b) If G is abelian then show that |G| = n.