GRV qualifying exam, 1:30-5:30 pm, August 262018.

Answer 5 of the following 7 questions.
General hint: You may use statements from previous parts of a question, including parts you could not prove.

1. Let G be a simple group of order $168=2^{3} \cdot 3 \cdot 7$.
(a) How many subgroups of order 7 does G have?
(b) Prove: G is isomorphic to a subgroup of the symmetric group S_{8}.
(c) Prove: G is isomorphic to a subgroup of the alternating group A_{8}.
2. Let G be a group and H a finite index subgroup of G.
(a) If $g \in G$ show that there is a smallest positive integer k such that $g^{k} \in H$. Show that k divides every integer m such that $g^{m} \in H$.
(b) If H is normal in G show that k divides [$G: H$].
(c) Produce a counterexample to the claim that for all subgroups H we have k dividing $[G: H]$.
3. Let $R=\mathbb{Z}[i]$, let $p=1+i$ and r in R, let $f=x^{n}-r \in R[x]$. Suppose that f is reducible in $R[x]$ and that $p \mid r$. Show that $2 \mid r$.
4. Let $c, d \in \mathbb{Z}$, with d not a square, and $R=\mathbb{Z}[\sqrt{d}]$. Let $a=c+\sqrt{d}$ and let A be the absolute value of $c^{2}-d$.
(a) Show that a is prime in R if and only if A is a prime number.
(b) Give an example (with proof) where a is irreducible but not prime.
(c) Prove that for any such example, there must exist an ideal I in R that is not principal and that contains a.
5. Let R be a PID and let M be a submodule of R^{n}. Show that there exists a submodule N of R^{n} and a non-zero element $f \in R$ such that $f \cdot N \subseteq M \subseteq N$ and R^{n} / N is free.
6. Let $f, g \in \mathbb{Q}[x]$ be irreducible of degree n. Let $\alpha \in \mathbb{C}$ be a root of f, and $\beta \in \mathbb{C}$ be a root of g.
(a) If f has a root in $\mathbb{Q}(\beta)$ then show that g has a root in $\mathbb{Q}(\alpha)$.
(b) More generally, if f has an irreducible factor of degree d in $\mathbb{Q}(\beta)[x]$, then show that g has an irreducible factor of degree d in $\mathbb{Q}(\alpha)[x]$.
7. Let $f \in \mathbb{Q}[x]$ be irreducible of degree n , let K be the splitting field of f over \mathbb{Q}, and let $G=\operatorname{Gal}(K / Q)$. Let α_{1} be a root of f in K, and let $H_{1}=\left\{g \in G \mid g\left(\alpha_{1}\right)=\alpha_{1}\right\}$.
(a) If H_{1} is a normal subgroup of G then show that $H_{1}=\{e\}$.
(b) If G is abelian then show that $|G|=n$.
